Olivier Bernardi, Gwendal Collet, Éric Fusy

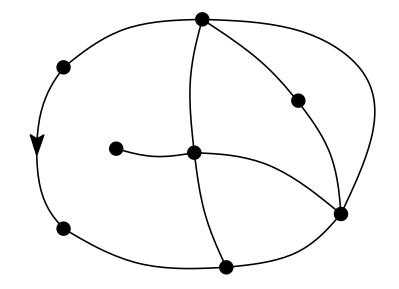
LIX – december 17^{th} 2013

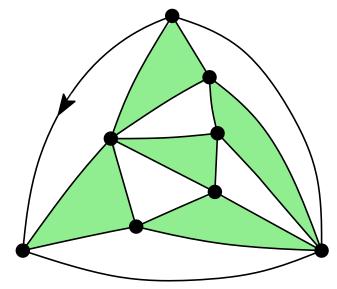
Rooted plane graph:

- no loops
- no multiple edges
- M(z) generating series according edges

Rooted eulerian triangulation:

- vertices have even degree
- green and white triangles
- ullet T(z) generating series according green triangles

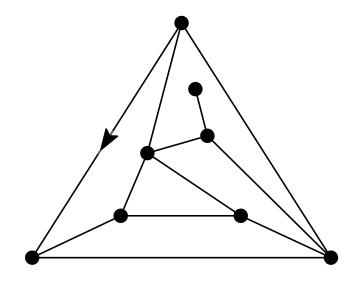




[M. Noy]
$$M(z) = \frac{z(1+T(z)/z^2)}{1-z(1+T(z)/z^2)}$$

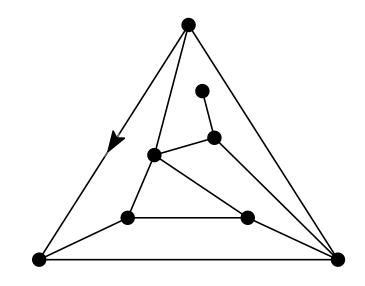
Outertriangular rooted plane graph

C(z) generating series according edges



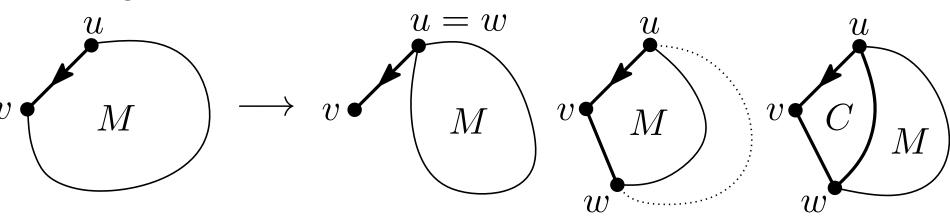
Outertriangular rooted plane graph

C(z) generating series according edges



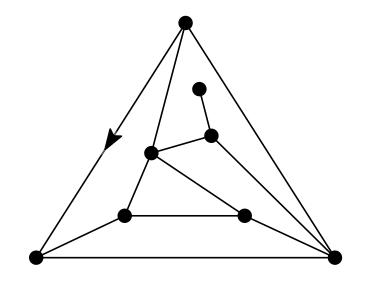
3 cases:

Plane graph:



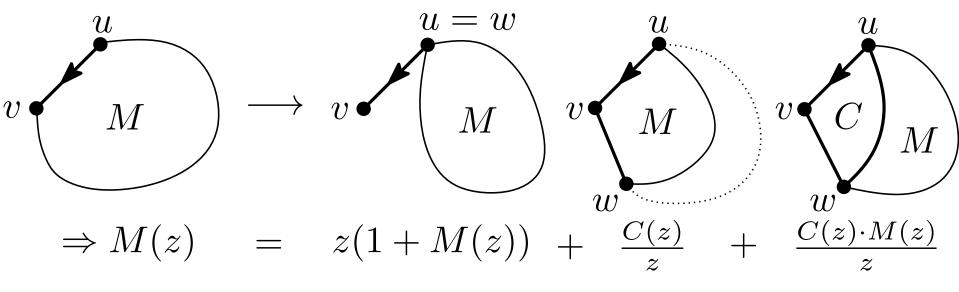
Outertriangular rooted plane graph

C(z) generating series according edges



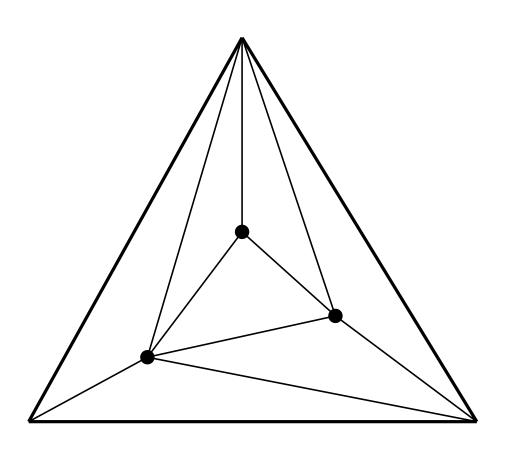
Plane graph:

3 cases:



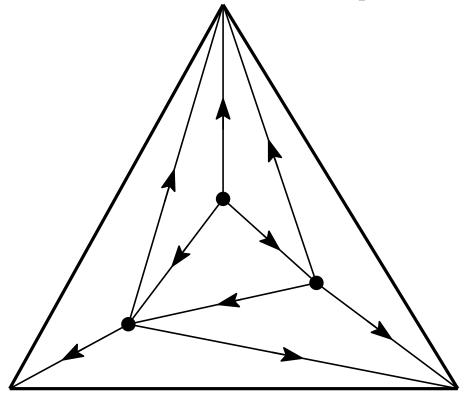
 $\Rightarrow M(z) = \frac{zB(z)}{1-zB(z)}$ where $B(z) = 1 + \frac{C(z)}{z^2}$

From simple triangulations to eulerian triangulations



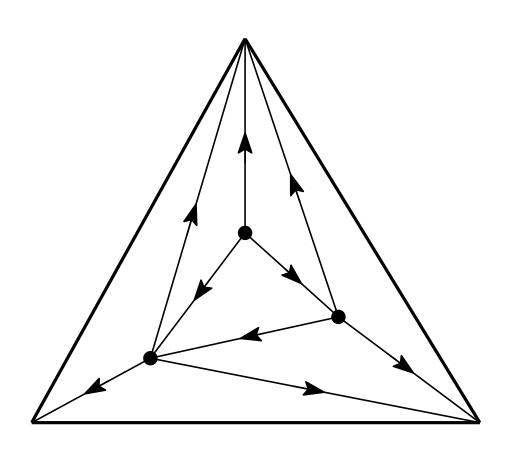
From simple triangulations to eulerian triangulations

[Schnyder'89, Brehm'02]



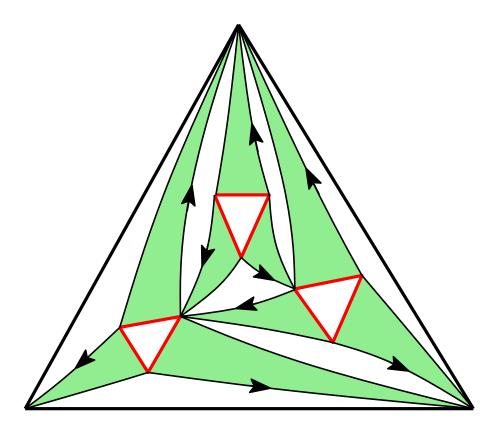
Canonical orientation:

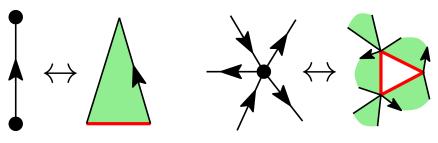
From simple triangulations to eulerian triangulations



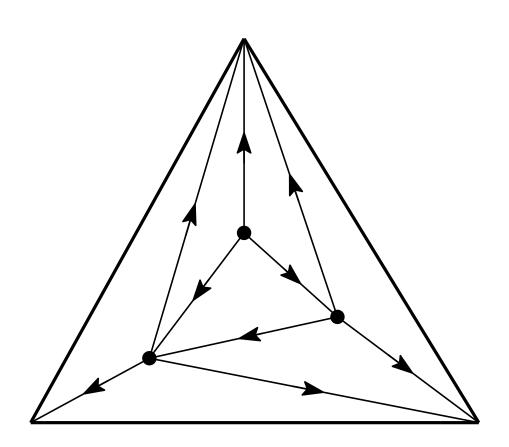
Canonical orientation:

3 outgoing edges at vertices outer-accessibility no clockwise circuit



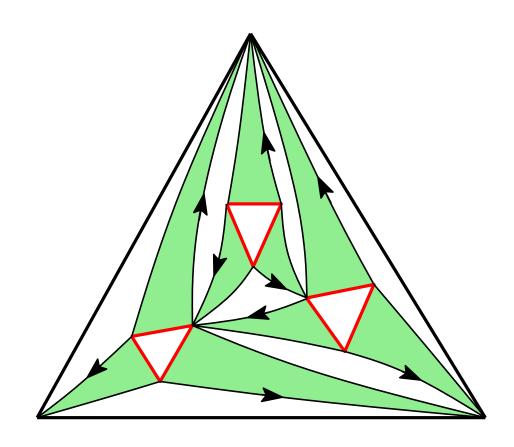


From simple triangulations to eulerian triangulations



Canonical orientation:

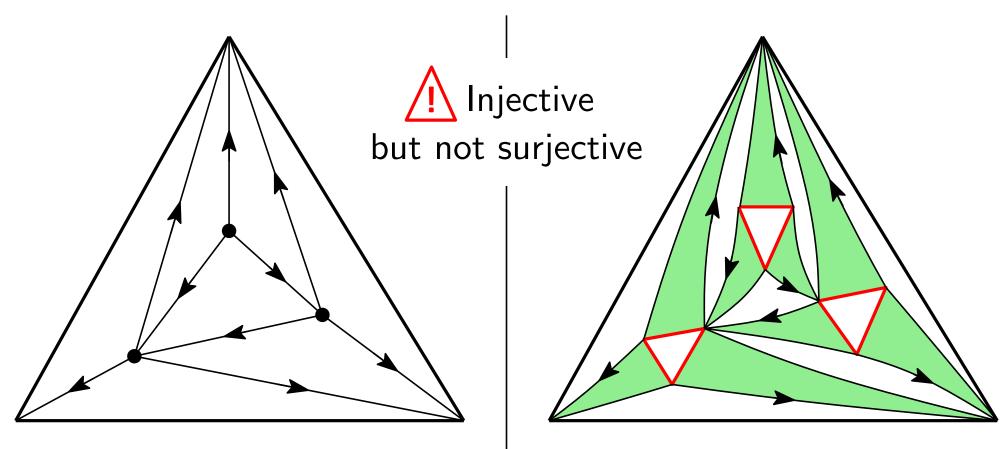
3 outgoing edges at vertices outer-accessibility no clockwise circuit



Canonical orientation:

1 outgoing edge at vertices outer-accessibility + / no clockwise circuit

From simple triangulations to eulerian triangulations



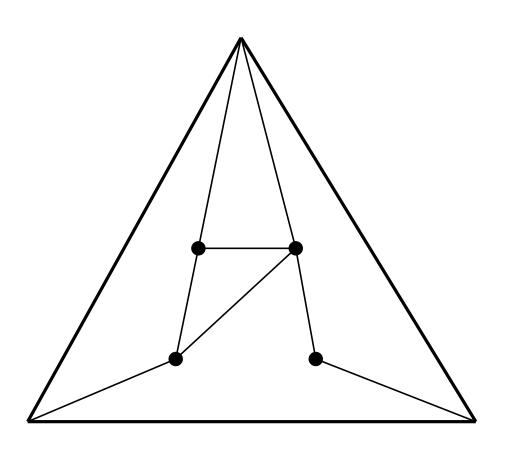
Canonical orientation:

3 outgoing edges at vertices outer-accessibility no clockwise circuit

Canonical orientation:

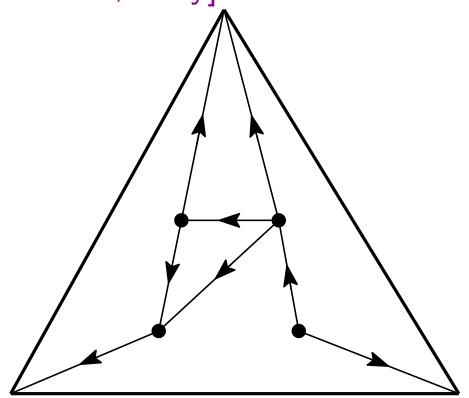
1 outgoing edge at vertices outer-accessibility + / no clockwise circuit

From outer-triangular plane graphs to eulerian triangulations



From outer-triangular plane graphs to eulerian triangulations

[Bernardi, Fusy]

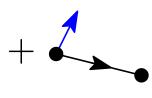


Canonical orientation:

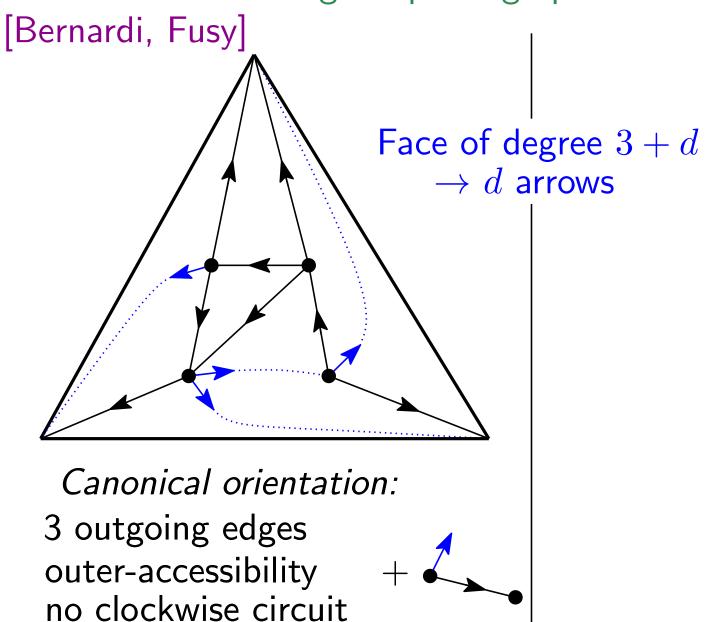
From outer-triangular plane graphs to eulerian triangulations

[Bernardi, Fusy]

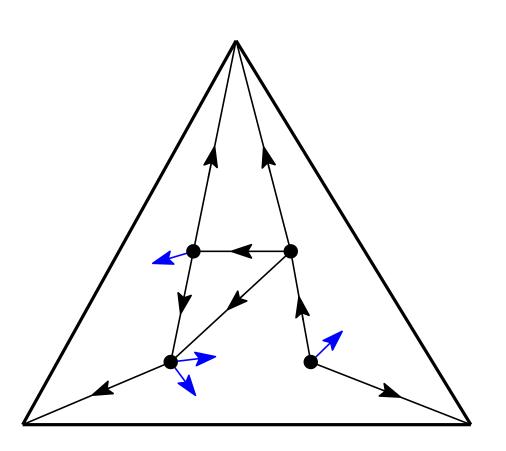
Canonical orientation:

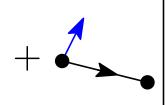


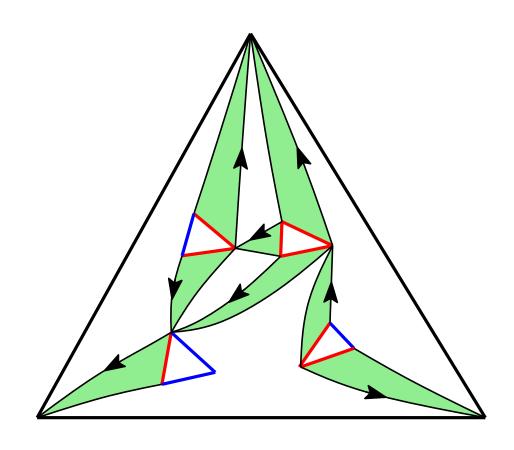
From outer-triangular plane graphs to eulerian triangulations

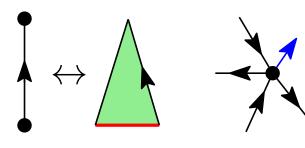


From outer-triangular plane graphs to eulerian triangulations

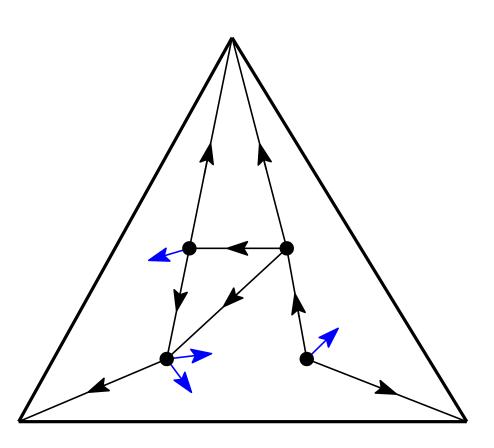




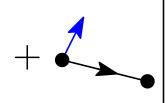


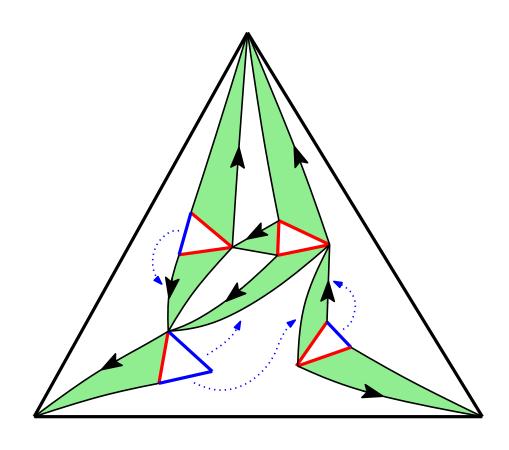


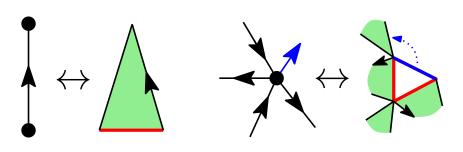
From outer-triangular plane graphs to eulerian triangulations



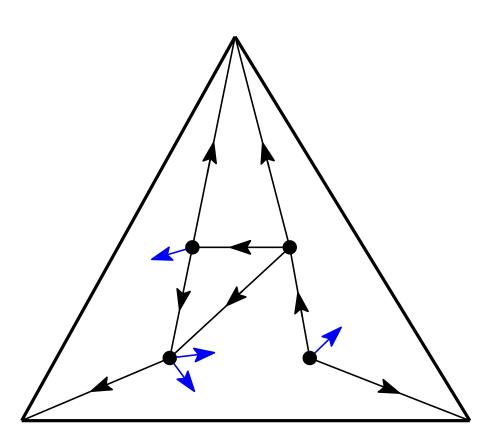
Canonical orientation:

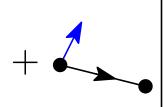


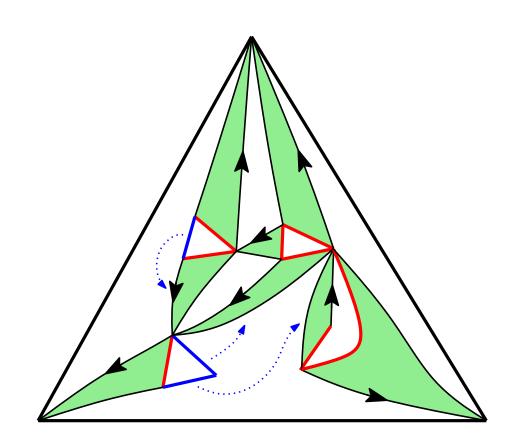




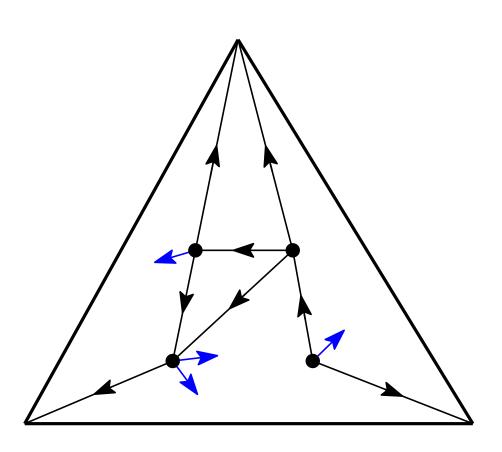
From outer-triangular plane graphs to eulerian triangulations

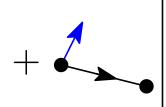


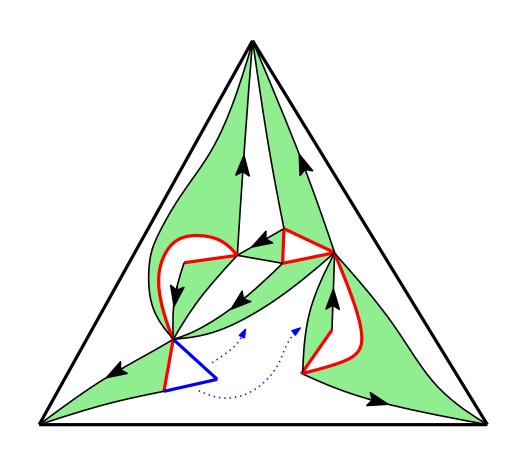




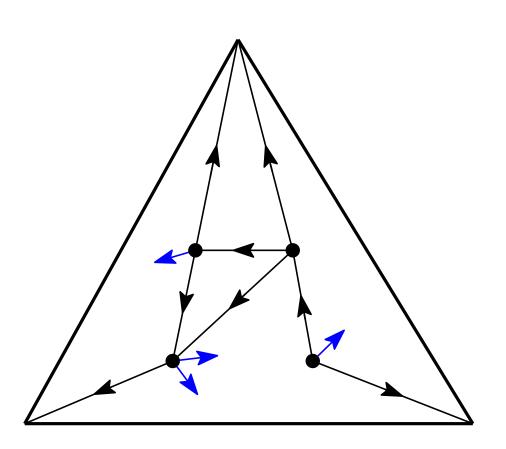
From outer-triangular plane graphs to eulerian triangulations

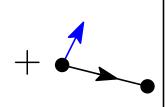


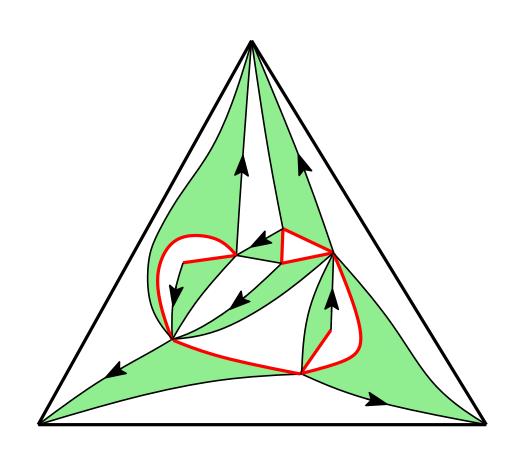




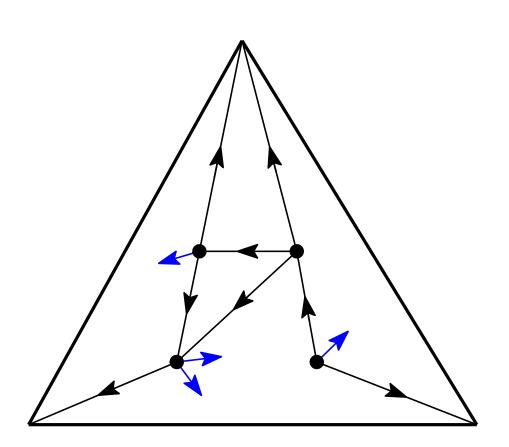
From outer-triangular plane graphs to eulerian triangulations





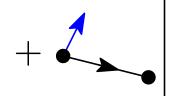


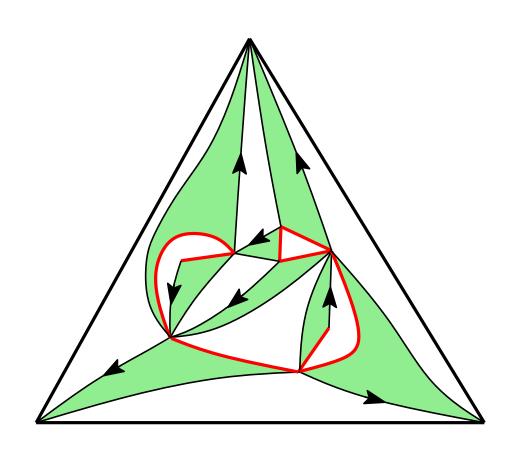
From outer-triangular plane graphs to eulerian triangulations



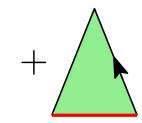
Canonical orientation:

3 outgoing edges outer-accessibility no clockwise circuit

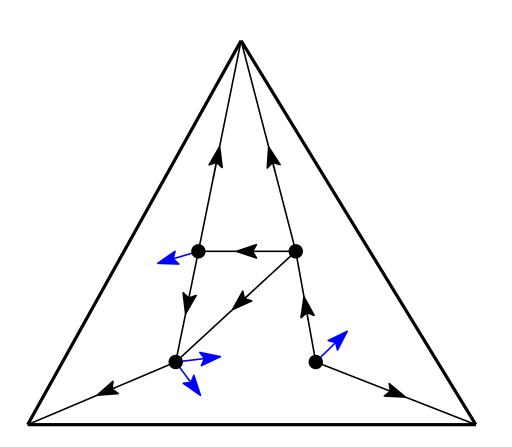




Canonical orientation:

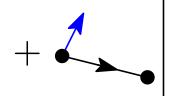


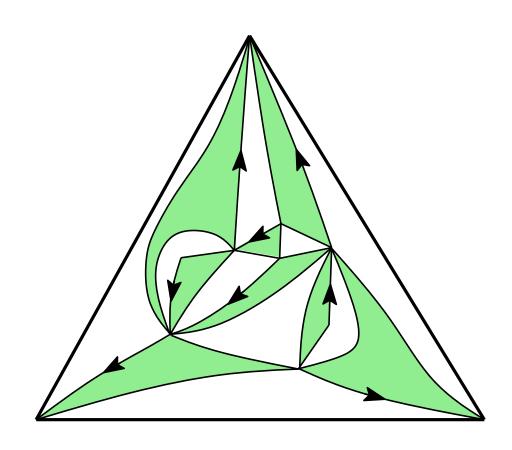
From outer-triangular plane graphs to eulerian triangulations



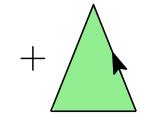
Canonical orientation:

3 outgoing edges outer-accessibility no clockwise circuit

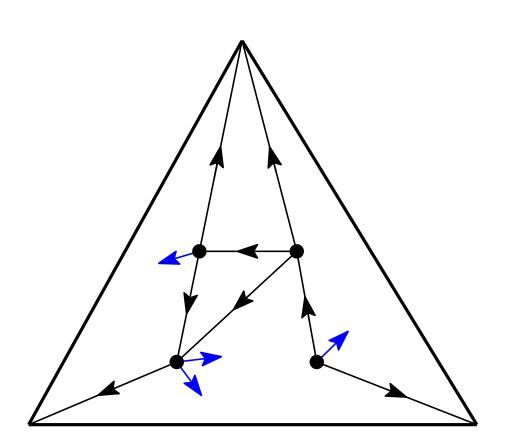




Canonical orientation:

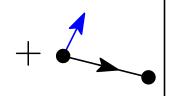


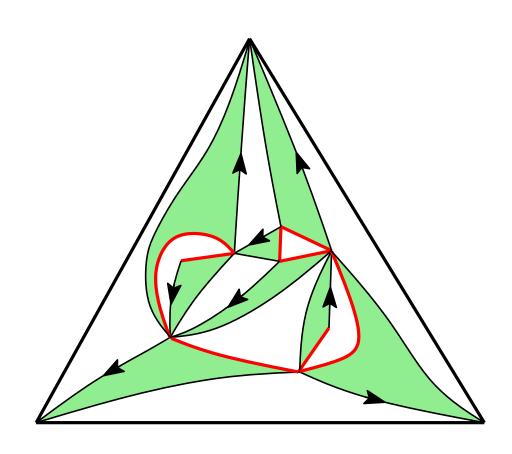
From outer-triangular plane graphs to eulerian triangulations



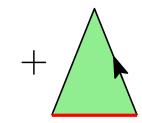
Canonical orientation:

3 outgoing edges outer-accessibility no clockwise circuit

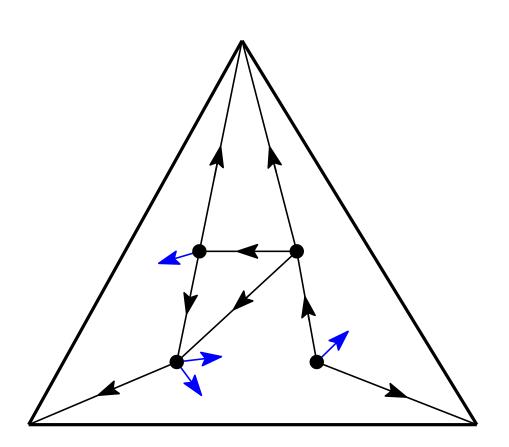




Canonical orientation:

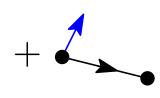


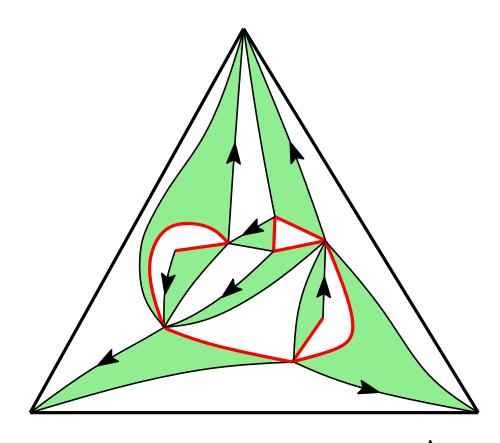
From outer-triangular plane graphs to eulerian triangulations



Canonical orientation:

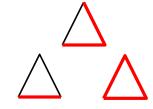
3 outgoing edges outer-accessibility no clockwise circuit



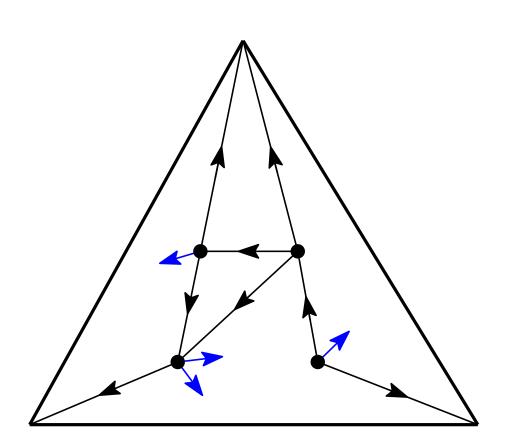


Face of the plane graph: \wedge

Inner node of: the plane graph

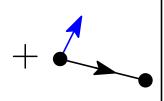


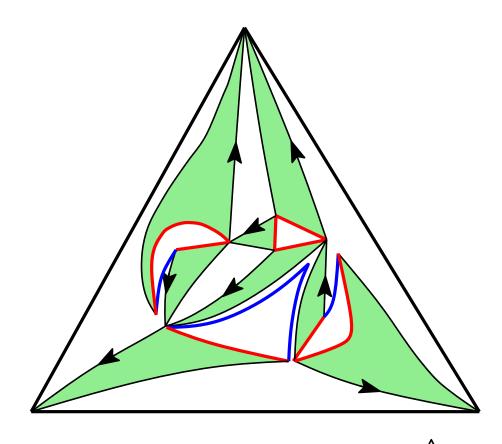
From outer-triangular plane graphs to eulerian triangulations



Canonical orientation:

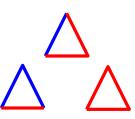
3 outgoing edges outer-accessibility no clockwise circuit



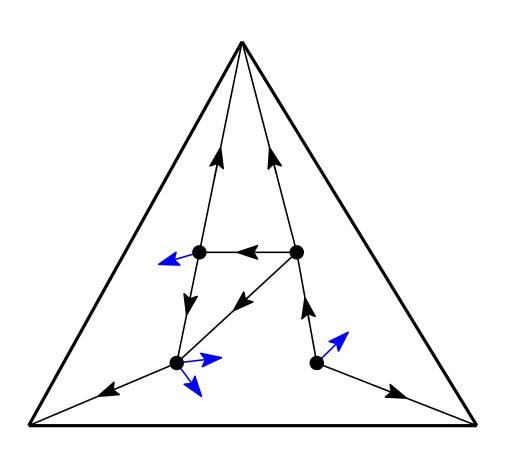


Face of the plane graph: /

Inner node of: the plane graph

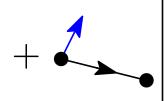


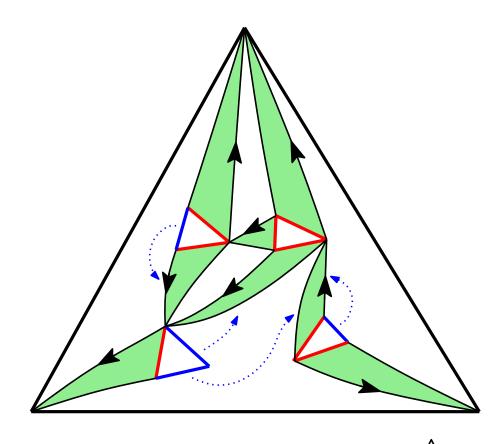
From outer-triangular plane graphs to eulerian triangulations



Canonical orientation:

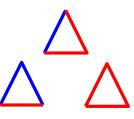
3 outgoing edges outer-accessibility no clockwise circuit





Face of the plane graph: /

Inner node of: the plane graph



Theorem [Bernardi, C., Fusy'13]:

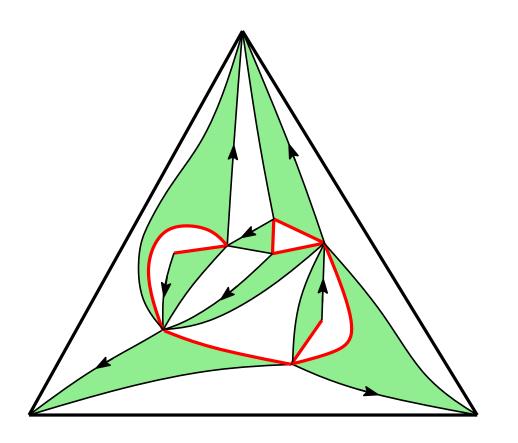
There is a bijection between outertriangular plane graphs with n+2 edges and face-pointed eulerian triangulations with 2n faces.

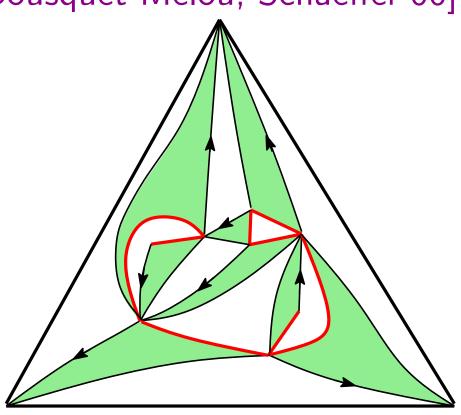
Remark:

- \rightarrow We obtain M. Noy's formula.
- → Eulerian triangulations that arise are much easier to enumerate and generate.

From eulerian triangulations to oriented binary trees

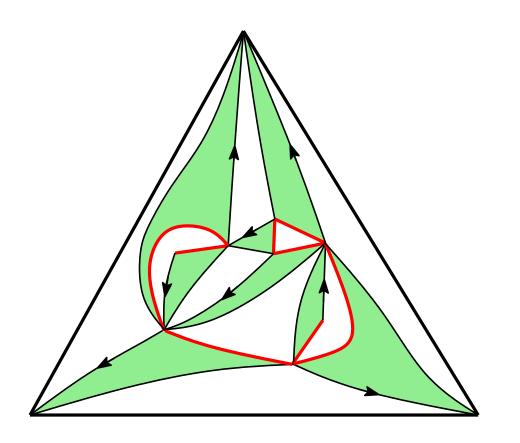
[Bousquet-Mélou, Schaeffer'00]

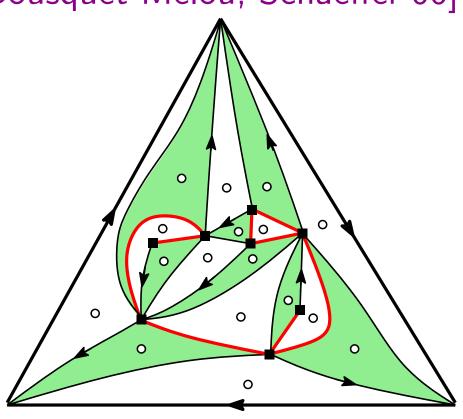




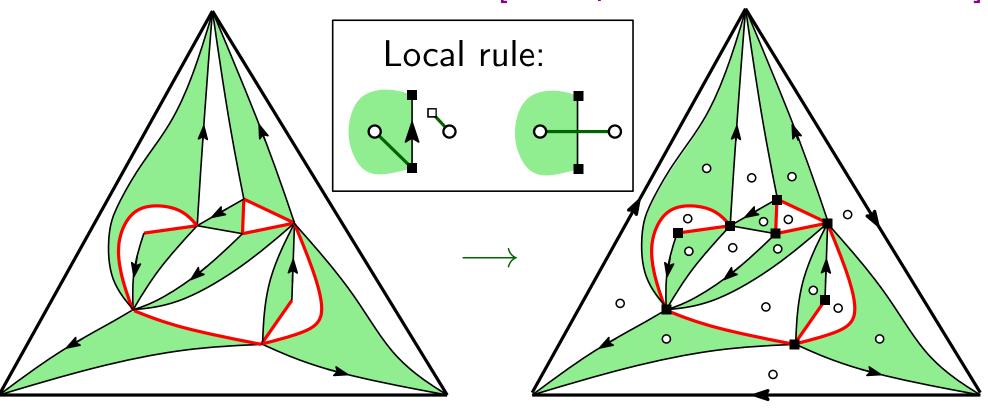
From eulerian triangulations to oriented binary trees

[Bousquet-Mélou, Schaeffer'00]

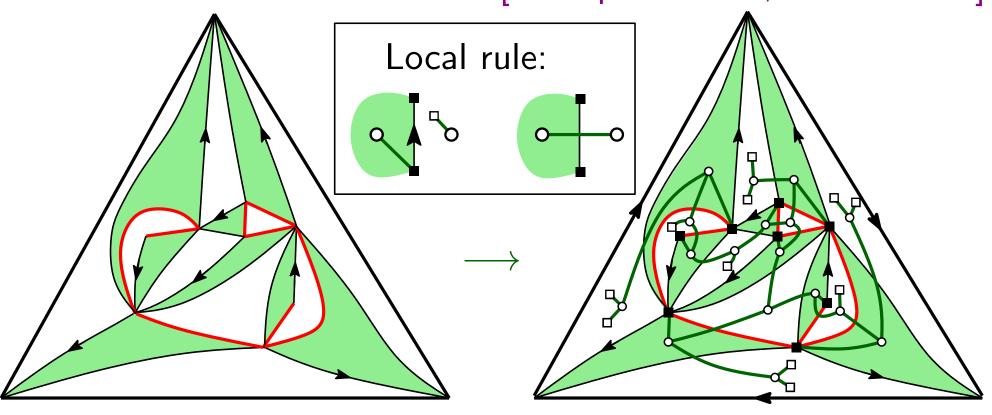




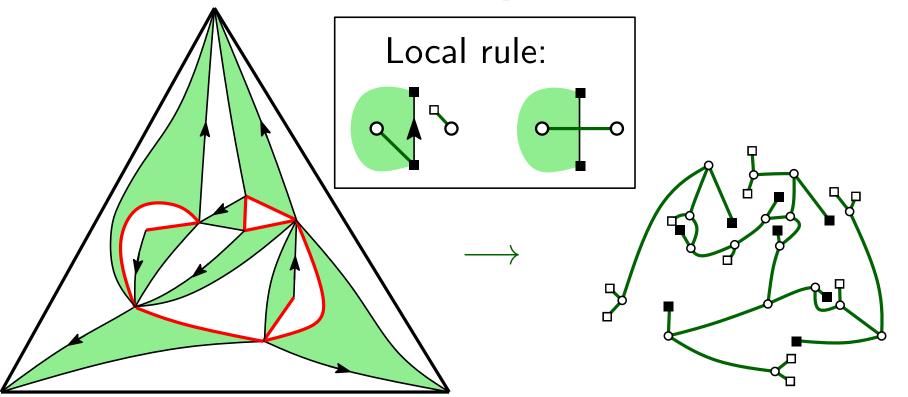
From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]

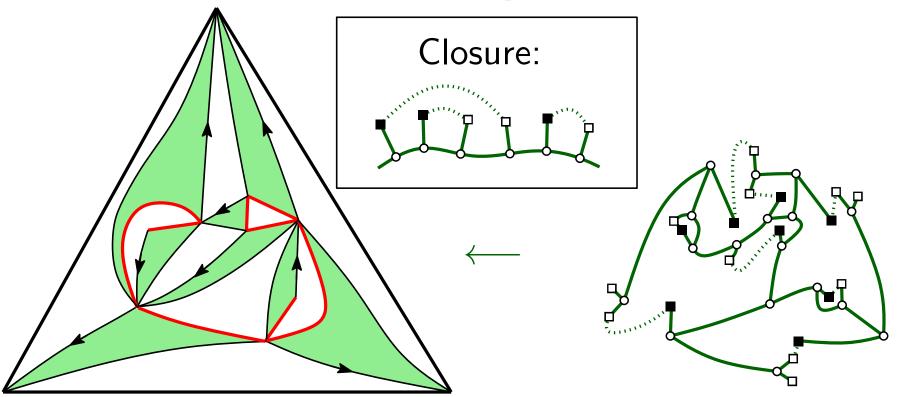


From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



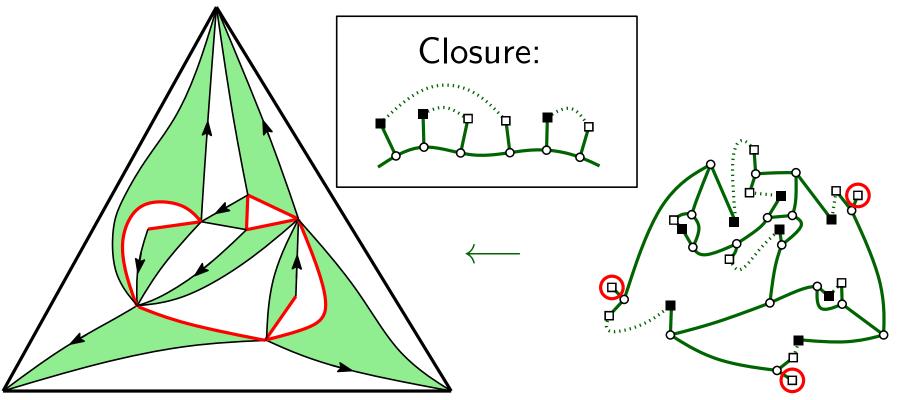
Binary tree with bicolored leaves ■ and □

From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



Binary tree with bicolored leaves ■ and □

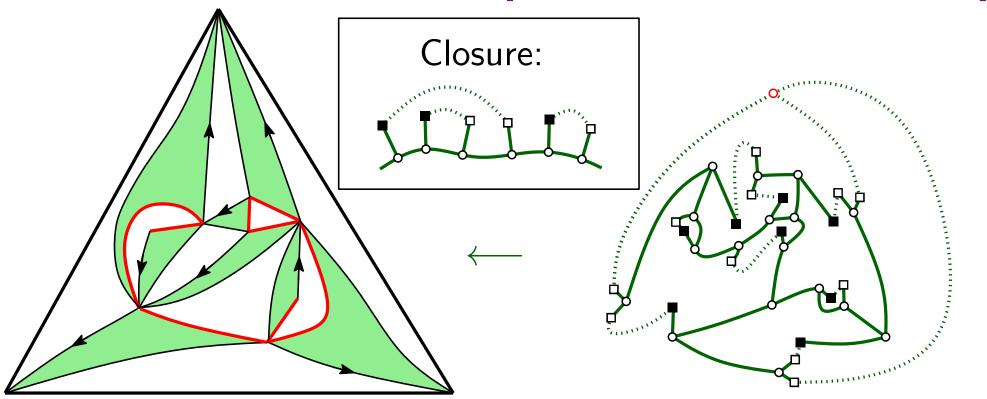
From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



Binary tree with bicolored leaves ■ and □

3 unmatched leaves

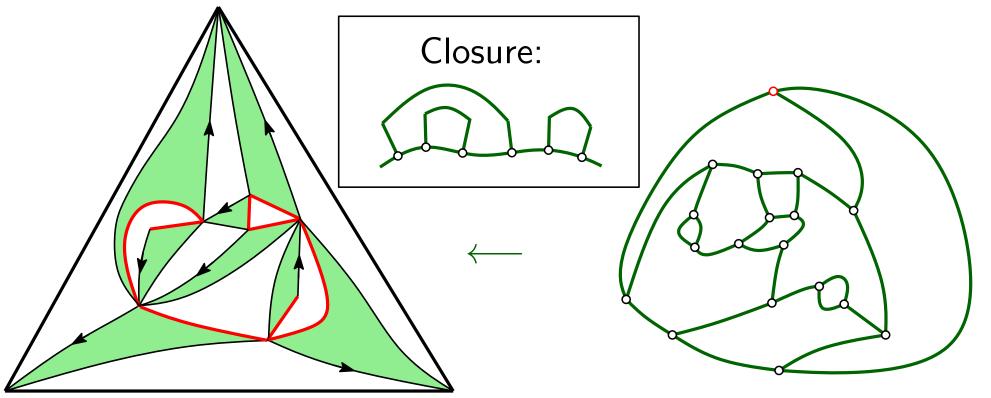
From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



Binary tree with bicolored leaves ■ and □

3 unmatched leaves

From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



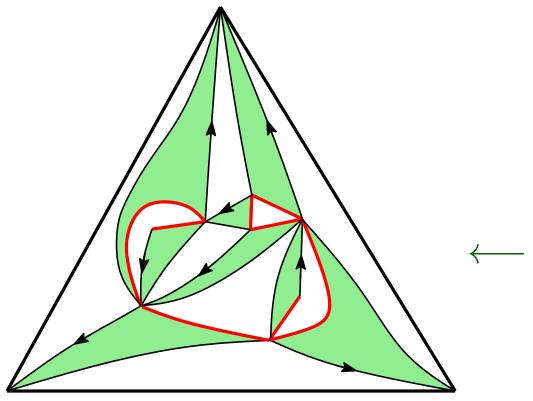
Eulerian triangulation

1 distinguished face

Dual bicubic map

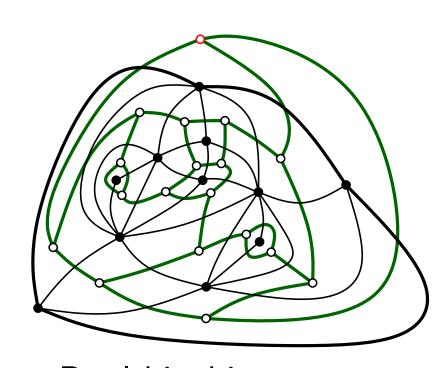
1 distinguished vertex

From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



Eulerian triangulation

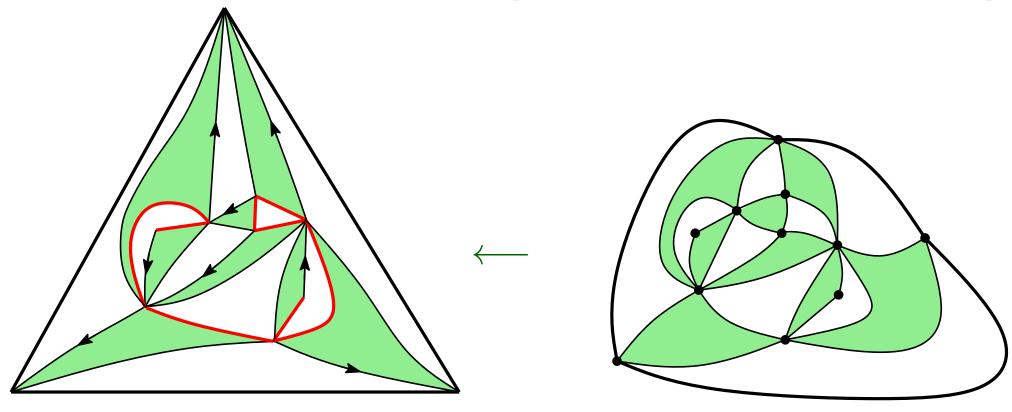
1 distinguished face



Dual bicubic map

1 distinguished vertex

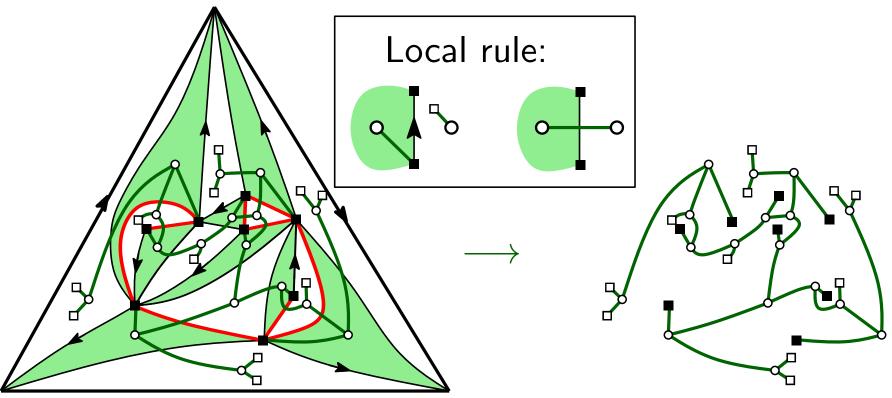
From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



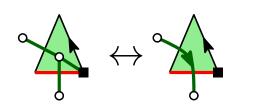
Remark:

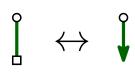
The operations of closure and duality can be done in linear time according the number of edges in the tree.

From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



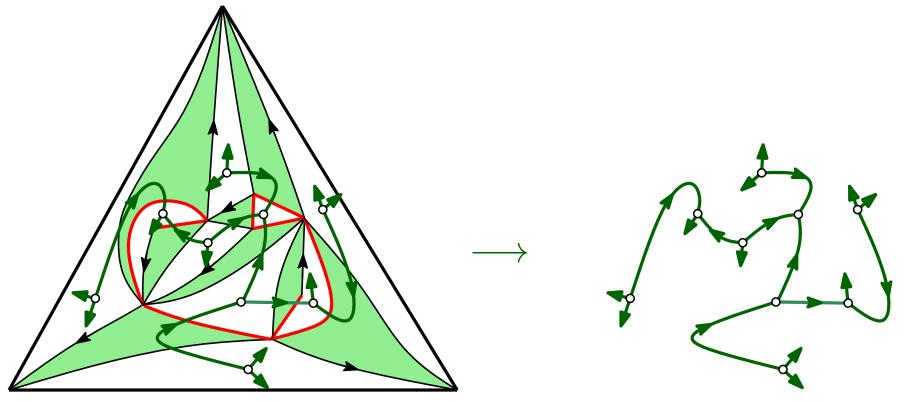
Reformulation with orientation:



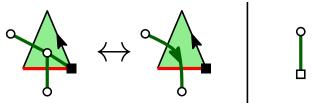


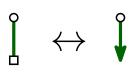
Binary tree with bicolored leaves ■ and □

From eulerian triangulations to oriented binary trees [Bousquet-Mélou, Schaeffer'00]



Reformulation with orientation:

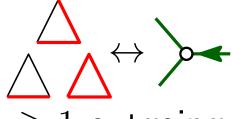




Binary tree with oriented edges:

 $\triangle \leftrightarrow \longrightarrow$

3 outgoing



 ≥ 1 outgoing

Corollaire [Bernardi, C., Fusy'13]:

There is a bijection between outertriangular plane graphs with n+2 edges and oriented binary trees with n inner nodes.

Remark:

→ One can track vertices and faces of the associated plane graph on the binary tree:

face \leftrightarrow source vertex

vertex ↔ non-source vertex

$$C_{n+2} = \frac{3}{n+2} 2^{n-1} Cat(n)$$
 rooting on an unmatched leaf orientation of the unmatched leaf
$$n-1 \text{ inner edges}$$

Random generation

Random sampler for plane graphs [Bernardi, C., Fusy'13]

One can build a random sampler in exact size for the rooted plane graphs according to edges in linear time.

Method:

- → Sample a binary tree in exact size and orient inner edges
- ightarrow Obtain the outertriangular plane graph by tree closure and duality.
- \rightarrow If the root vertex has degree 2, return the plane graph obtained by removing the root vertex.

$$\overbrace{M} \in \mathcal{C}_{n+2} \longrightarrow \underbrace{} \in \mathcal{M}_n \Rightarrow \mathcal{M}_n \subset \mathcal{C}_{n+2}$$

Random generation

Random sampler for plane graphs [Bernardi, C., Fusy'13]

One can build a random sampler in exact size for the rooted plane graphs according to edges in linear time.

Method:

- → Sample a binary tree in exact size and orient inner edges
- → Obtain the outertriangular plane graph by tree closure and duality.
- \rightarrow If the root vertex has degree 2, return the plane graph obtained by removing the root vertex.
- \rightarrow Otherwise reject and repeat: Probability of success $=\frac{M_n}{C_{n+2}}\longrightarrow_{n\to\infty}0,177$

Random generation

Random sampler for plane graphs [Bernardi, C., Fusy'13]

One can build a random Boltzmann sampler for rooted plane graphs according to edges and vertices in approximate size, in linear time.

Method:

 \rightarrow Use the bivariate series U(x,z) and V(x,z) of rooted oriented trees, according to edges and non-source vertices:

x : non-source vertices

z: edges

$$\Rightarrow \begin{cases} U(x,z) &= (z+V)^2 + x(2U(z+V) + U^2) \\ V(x,z) &= x(z+U+V)^2 \end{cases}$$

$$\Rightarrow M(x,z) = \frac{x^2z + x^3U(1-V/z)}{1-xz-xU(1-V/z)}$$

Profile of distances in the plane graph

Let G be a plane graph rooted at e_0 uniform with n edges $\forall e \in E_G : d(e) = \text{length of the shortest path from } e_0 \text{ to } e$

Profile: $(f_k)_{k\geq 1}$, where $f_k = \frac{1}{n} \# \{e \in E_G : d(e) \leq k\}$

Radius : $r(G) = max(d(e), e \in E)$

Conjecture : $f_{k/n^{1/4}} \xrightarrow{(d)}$ profile of the ISE

 $r/n^{1/4} \xrightarrow{(d)}$ width of the ISE

Sketch of the proof:

- Chassaing–Schaeffer for eulerian triangulations.
- Bousquet-Mélou-Schaeffer: canonical path of eulerian triangulation = geodesic (with green triangles lying at the left).
- Our bijection preserves canonical paths for edges.
- Addario-Berry-Albenque for plane graphs: canonical path are near-geodesic.