Central limit theorem for random Young diagrams with respect to Jack measure (joint work with Valentin Féray)

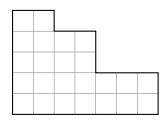
Maciej Dołęga

LIAFA, Université Paris Diderot, Instytut Matematyczny, Uniwersytet Wrocławski

04 XII 2013

Definition

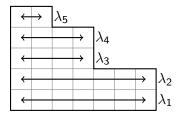
A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .



Definition

Definition

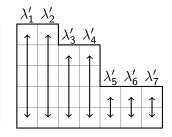
A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .



Definition

Definition

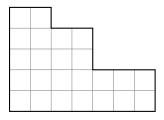
A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .



Definition

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .

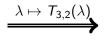


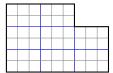
Definition

Simple operations on generalized Young diagrams

Dilation:

 $T_{s,t}(\lambda)$ - generalized Young diagram obtained by stretching λ horizontally by a factor s and vertically by a factor t, where $s, t \in \mathbb{R}_+$.





Examples

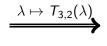
Special cases

- Blowing of Young diagram: $D_s(\lambda) := T_{s,s}(\lambda)$, for $s \in \mathbb{R}_+$;
- α -anisotropic Young diagram: $\lambda^{(\alpha)} := T_{\sqrt{\alpha},\sqrt{\alpha}^{-1}}(\lambda)$ for $\alpha \in \mathbb{R}_+$;

Simple operations on generalized Young diagrams

Dilation:

 $T_{s,t}(\lambda)$ - generalized Young diagram obtained by stretching λ horizontally by a factor s and vertically by a factor t, where $s, t \in \mathbb{R}_+$.



Examples

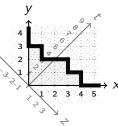
Special cases:

- Blowing of Young diagram: $D_s(\lambda) := T_{s,s}(\lambda)$, for $s \in \mathbb{R}_+$;
- α -anisotropic Young diagram: $\lambda^{(\alpha)} := T_{\sqrt{\alpha},\sqrt{\alpha}^{-1}}(\lambda)$ for $\alpha \in \mathbb{R}_+$;

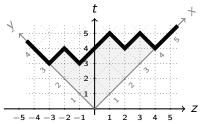
Two conventions of drawing Young diagrams

Conventions of drawing Young diagrams:

• French convention:



Russian convention:



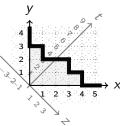
Definition

A profile of a generalized Young diagram λ is a function $\omega(\lambda): \mathbb{R} \to \mathbb{R}_+$ such that its graph is a profile of λ drawn in Russian convention.

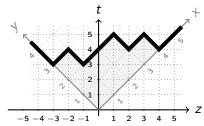
Two conventions of drawing Young diagrams

Conventions of drawing Young diagrams:

• French convention:



• Russian convention:



Definition

A profile of a generalized Young diagram λ is a function $\omega(\lambda): \mathbb{R} \to \mathbb{R}_+$ such that its graph is a profile of λ drawn in Russian convention.

Problem

Definition

A continuous Young diagram is a function $\omega: \mathbb{R} \to \mathbb{R}_+$ such that

- $\omega(x) |x|$ has compact support;
- $|\omega(x_1) \omega(x_2)| \le |x_1 x_2|$ for any $x_1, x_2 \in \mathbb{R}$.

Problem

Definition

A continuous Young diagram is a function $\omega : \mathbb{R} \to \mathbb{R}_+$ such that

- $\omega(x) |x|$ has compact support;
- $|\omega(x_1) \omega(x_2)| \le |x_1 x_2|$ for any $x_1, x_2 \in \mathbb{R}$.

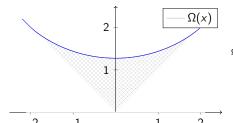
Problem

- \mathbb{Y}_n the set of Young diagrams of size n $(|\lambda| := \lambda_1 + \lambda_2 + \cdots = n);$
- \mathbb{P}_n probability measure defined on the set \mathbb{Y}_n .

Let $\lambda_{(n)}$ be a sequence of Young diagrams of size n. Does exist some continuous Young diagram ω such that, as $n \to \infty$, in probability

$$\left\|\omega(D_{\sqrt{n}^{-1}}(\lambda_{(n)}))-\omega\right\|\to 0?$$

Vershik-Kerov, Logan-Shepp limit shape



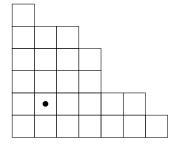
$$\Omega(x) = \begin{cases} |x| & \text{if } |x| \ge 2; \\ \frac{2}{\pi} \left(x \cdot \arcsin \frac{x}{2} + \sqrt{4 - x^2} \right) & \text{otherwise.} \end{cases}$$

Theorem (Vershik-Kerov, Logan-Shepp '77)

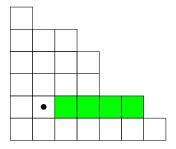
Let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Plancherel measure $\mathbb{P}_n^{(1)}$. Then, in probability, as $n \to \infty$

$$\left\|\omega\left(D_{1/\sqrt{n}}(\lambda_{(n)})\right)-\Omega\right\|\to 0.$$

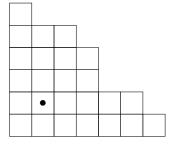
990



 $a(\bullet) =$ number of boxes to the right of the given box



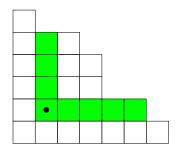
$$a(\bullet) = 4$$



 $\ell(ullet)=$ number of boxes above the given box



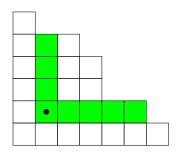
$$\ell(\bullet) = 3$$



$$\mathbb{P}_n^{(1)}(\lambda) = \frac{\dim(\lambda)^2}{n!},$$

where (hook formula:)

$$\dim(\lambda) = \frac{n!}{\prod_{\square \in \lambda} (a(\square) + \ell(\square) + 1)}.$$



$$\mathbb{P}_n^{(1)}(\lambda) = \frac{\dim(\lambda)^2}{n!},$$

where (hook formula:)

$$\dim(\lambda) = \frac{n!}{\prod_{\square \in \lambda} (a(\square) + \ell(\square) + 1)}.$$

$$\mathbb{P}_n^{(1)}(\lambda) = \frac{n!}{\prod_{\square \in \lambda} (a(\square) + \ell(\square) + 1)^2}.$$

Jack measure

• Jack measure is a probability measure on the set \mathbb{Y}_n defined by

$$\mathbb{P}_n^{(\alpha)}(\lambda) := \frac{\alpha^n n!}{\prod_{\square \in \lambda} (\alpha a(\square) + \ell(\square) + 1)(\alpha a(\square)) + \ell(\square) + \alpha)},$$

where $\alpha \in \mathbb{R}_+$;

ullet for lpha=1 Jack measure \equiv Plancherel measure.

Theorem (D., Féray)

Let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Jack measure $\mathbb{P}_n^{(\alpha)}$. Then, in probability, as $n \to \infty$

$$\left\|\omega\left(D_{1/\sqrt{n}}(\lambda_{(n)}^{(\alpha)})\right)-\Omega\right\|\to 0.$$

Central limit theorem

- $\Delta(\lambda)(x) := \sqrt{n} \frac{\omega(D_{1/\sqrt{n}}(\lambda))(x) \Omega(x)}{2}$;
- $u_k(x) = U_k(x/2) = \sum_{0 \le j \le \lfloor k/2 \rfloor} (-1)^j {k-j \choose j} x^{k-2j};$
- $u_k(2\cos(\theta)) = \frac{\sin((k+1)\theta)}{\sin(\theta)}$;
- $u_k(\lambda) = \int_{\mathbb{R}} u_k(x) \Delta(\lambda)(x) dx$.

Theorem (Kerov, 1993)

Choose a sequence $(\Xi_k)_{k=2,3,...}$ of independent standard Gaussian random variables and let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Plancherel measure. As $n \to \infty$, we have:

$$(u_k(\lambda_{(n)}))_{k=1,2,\dots} \xrightarrow{d} \left(\frac{\Xi_{k+1}}{\sqrt{k+1}}\right)_{k=1,2,\dots}.$$

Central limit theorem

Theorem (D. Féray)

Choose a sequence $(\Xi_k)_{k=2,3,...}$ of independent standard Gaussian random variables and let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Jack measure. As $n \to \infty$, we have:

$$\left(u_k^{(\alpha)}(\lambda_{(n)})\right)_{k=1,2,\dots} \xrightarrow{d} \left(\frac{\Xi_{k+1}}{\sqrt{k+1}} - \frac{\gamma}{k+1} \left[k \text{ is odd}\right]\right)_{k=1,2,\dots},$$

where $u_k^{(\alpha)}(\lambda) = \int_{\mathbb{R}} u_k(x) \Delta(\lambda^{(\alpha)})(x) dx$, $\gamma := \sqrt{\alpha} - \sqrt{\alpha}^{-1}$, and we use the usual notation [condition] for the indicator function of the corresponding condition.

Symmetric vs shifted-symmetric functions

Symmetric functions:

- $f = (f_1, f_2, ...)$ such that $f_i \in R[x_1, ..., x_i]$;
- $f_{i+1}(x_1,...,x_i,0) = f_i(x_1,...,x_i);$
- $f_i(x_1, \ldots, x_i)$ is symmetric in x_1, \ldots, x_i ;
- $\left(J_{\mu}^{(\alpha)}\right)_{\mu}$ linear basis of

Shifted symmetric functions:

- $f = (f_1, f_2, \dots)$ such that $f_i \in R[x_1, \dots, x_i]$;
- $f_{i+1}(x_1, \ldots, x_i, 0) = f_i(x_1, \ldots, x_i);$
- $f_i(x_1 1/\alpha, x_2 2/\alpha, ..., x_i i/\alpha)$ is symmetric in $x_1, ..., x_i$;
- $\left(\mathsf{Ch}_{\mu}^{(\alpha)}\right)_{\mu}$ linear basis of

Symmetric vs shifted-symmetric functions

Symmetric functions:

• $f = (f_1, f_2, ...)$ such that $f_i \in R[x_1, ..., x_i]$;

•
$$f_{i+1}(x_1,...,x_i,0) = f_i(x_1,...,x_i);$$

- $f_i(x_1,...,x_i)$ is symmetric in $x_1,...,x_i$;
- $\left(J_{\mu}^{(\alpha)}\right)_{\mu}$ linear basis of Jack symmetric functions

Shifted symmetric functions:

- $f = (f_1, f_2, ...)$ such that $f_i \in R[x_1, ..., x_i];$
- $f_{i+1}(x_1,\ldots,x_i,0) = f_i(x_1,\ldots,x_i);$
- $f_i(x_1 1/\alpha, x_2 2/\alpha, \dots, x_i i/\alpha)$ is symmetric in x_1, \dots, x_i ;
- $\left(\mathsf{Ch}_{\mu}^{(\alpha)}\right)_{\mu}$ linear basis of

Reduction for graded algebras

- Proving some properties of the elements $(u_k)_k$, which form a basis of the algebra A HARD;
- Proving same properties of the elements $(M_k)_k$, which form a basis of the algebra A EASY;
- Define gradation on algebra A such that

$$u_k = M_k + \text{ terms of lower degree};$$

• Deducing required proporties of the elements $(u_k)_k$.

Reduction for graded algebras

- $\Lambda_{\star}^{(\alpha)} \subset \left(\Lambda_{\star}^{(\alpha)}\right)^{\text{ext}}$ localisation over the $(\sqrt{\mathsf{Ch}_{(1)}^{(\alpha)}});$
- $\mathsf{Ch}_{(1)}^{m/2} \widetilde{\mathsf{Ch}}_{\mu}^{(\alpha)} := \mathsf{Ch}_{(1)}^{m/2} \prod_{i=1}^{\ell} \mathsf{Ch}_{(\mu_i)}^{(\alpha)}$ linear basis of $\left(\Lambda_{\star}^{(\alpha)} \right)^{\mathsf{ext}}$, where $m_1(\mu) = 0$, $m \in \mathbb{Z}$;
- $\operatorname{deg}\left(Ch_{(1)}^{m/2}\widetilde{Ch}_{\mu}^{(\alpha)}\right) = m + |\mu|;$
- $\bullet \left(\Lambda_{\star}^{(\alpha)}\right)^{\text{ext}} \ni u_{k}^{(\alpha)} = \frac{\mathsf{Ch}_{(k+1)}^{(\alpha)}}{(k+1)\mathsf{Ch}_{(1)}^{(k+1)/2}} \frac{\gamma}{k+1}[k \text{ is odd}]$
- + terms of negative degree;

Reduction for graded algebras

Theorem (D., Féray)

Choose a sequence $(\Xi_k)_{k=2,3,...}$ of independent standard Gaussian random variables. As $n \to \infty$, we have:

$$\left(\frac{\mathsf{Ch}_{(k)}^{(\alpha)}(\lambda_{(n)})}{\sqrt{k}n^{k/2}}\right)_{k=2,3,\dots} \stackrel{d}{\to} (\Xi_k)_{k=2,3,\dots},$$

where the distribution of $\lambda_{(n)}$ is Jack measure of size n and where $\stackrel{d}{\longrightarrow}$ means convergence in distribution of the finite-dimensional law.

$$\mathbb{E}_{\mathbb{P}_n^{(\alpha)}}(\mathsf{Ch}_{\mu}^{(\alpha)}) = \begin{cases} n(n-1)\cdots(n-k+1) & \text{if } \mu = 1^k \text{ for some } k \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

Trick with polynomial interpolation

Theorem (D., Féray)

Let

$$\mathsf{Ch}_{\mu}^{(lpha)}\,\mathsf{Ch}_{
u}^{(lpha)} = \sum_{
ho} g_{\mu,
u;\pi}^{(lpha)}\,\mathsf{Ch}_{\pi}^{(lpha)}\,.$$

Then, structure constants $g_{\mu,\nu;\pi}^{(\alpha)}$ are polynomials in $\gamma:=\alpha^{1/2}-\alpha^{-1/2}$ of degree less than

$$\min_{i=1,2,3} (n_i(\mu) + n_i(\nu) - n_i(\pi)),$$

with rational coefficients, where $n_i(\lambda)$ - natural valued function of λ .

Trick with polynomial interpolation

Let $\mu, \nu, \pi \in \mathbb{Y}_n$.

$$c_{\mu,\nu;\pi}^{(\alpha)} = \frac{\alpha^{d(\mu,\nu;\pi)/2}}{z_{\tilde{\mu}}z_{\tilde{\nu}}} \sum_{0 \leq i \leq m_1(\pi)} g_{\tilde{\mu},\tilde{\nu};\tilde{\pi}1^i}^{(\alpha)} \cdot z_{\tilde{\pi}} \cdot i! \cdot {n-|\tilde{\pi}| \choose i},$$

where

- ullet $ilde{\mu}$ is created from μ by removing all parts equal to 1,
- $z_{\mu} = \mu_1 \mu_2 \cdots m_1(\mu)! m_2(\mu)! \cdots$,
- $m_i(\mu)$ the number of parts equal to i in μ ,
- $d(\mu, \nu; \pi) = |\mu| \ell(\mu) + |\nu| \ell(\nu) (|\pi| \ell(\pi)).$

Trick with polynomial interpolation

Let $\mu, \nu, \pi \in \mathbb{Y}_n$.

$$c_{\mu,\nu;\pi}^{(\alpha)} = \frac{\alpha^{d(\mu,\nu;\pi)/2}}{z_{\tilde{\mu}}z_{\tilde{\nu}}} \sum_{0 \leq i \leq m_1(\pi)} g_{\tilde{\mu},\tilde{\nu};\tilde{\pi}\mathbf{1}^i}^{(\alpha)} \cdot z_{\tilde{\pi}} \cdot i! \cdot {n-|\tilde{\pi}| \choose i},$$

- LHS and RHS of the equation above are polynomials in n;
- knowing $c_{\mu,\nu;\pi}^{(\alpha)}$ one can calculate $g_{\tilde{\mu},\tilde{\nu};\tilde{\pi}1^i}^{(\alpha)}$;
- $c_{\mu,\nu;\pi}^{(\alpha)}$ have combinatorial interpretation for $\alpha=1,2,1/2$.

$\alpha = 1$ - Structure contants of the $Z(\mathbb{C}[\mathfrak{S}_n])$

Let $\mathbb{C}[\mathfrak{S}_n] := \{f : f : \mathfrak{S}_n \to \mathbb{C}\}$ be a group algebra of the symmetric group. This is algebra with the multiplication defined by:

$$f \cdot g(\sigma) := \sum_{\sigma_1 \sigma_2 = \sigma} f(\sigma_1) g(\sigma_2).$$

Let

$$Z(\mathbb{C}[\mathfrak{S}_n]) := \{ f \in \mathbb{C}[\mathfrak{S}_n] : \forall g \in \mathbb{C}[\mathfrak{S}_n], fg = gf \}$$

be the center of that algebra. It has a basis $(f_{\mu})_{|\mu|=n}$, where

$$f_{\mu}(\sigma) = egin{cases} 1 & ext{if } \sigma ext{ has cycle type } \mu, \ 0 & ext{otherwise}. \end{cases}$$

$\alpha=1$ - Structure contants of the $Z(\mathbb{C}[\mathfrak{S}_n])$

Let

$$f_{\mu}f_{
u}=\sum_{|
ho|=n}c_{\mu,
u;
ho}f_{
ho}.$$

Lemma

The structure constant $c_{\mu,\nu;\rho}$ is equal to the number of pairs of permutation (σ_1, σ_2) such that

- σ_1 has cycle type μ ,
- σ_2 has cycle type ν ,
- $\sigma_1 \sigma_2 = \sigma$, where σ is a fixed permutation of the cycle-type ρ .

$\alpha = 1$ - Structure contants of the $Z(\mathbb{C}[\mathfrak{S}_n])$

One has a following relation:

$$c_{\mu,\nu;\rho}^{(1)} = c_{\mu,\nu;\rho}.$$

Remark

From the previous theorem and a relation above one can deduce a classical result of Farahat and Higman: $c_{\mu 1^{n-|\mu|},\nu 1^{n-|\nu|};\rho 1^{n-|\rho|}}$ is a polynomial in n.

Let \mathfrak{S}_{2n} acts on the set $X_n:=\{1,\bar{1},\ldots,n,\bar{n}\}$ by permutations and let

$$\mathfrak{S}_{2n} > H_n := \{ \sigma \in \mathfrak{S}_{2n} : \forall i \in X_n \sigma(\bar{i}) = \bar{\sigma(i)} \}$$

be a hyperoctahedral subgroup.

Hecke algebra $\mathbb{C}[H_n \backslash \mathfrak{S}_{2n}/H_n] < \mathbb{C}[\mathfrak{S}_{2n}]$ of the pair (\mathfrak{S}_{2n}, H_n) is defined by:

$$\mathbb{C}[H_n \backslash \mathfrak{S}_{2n}/H_n] := \{ x \in \mathbb{C}[\mathfrak{S}_{2n}] : hxh' = x \forall h, h' \in H_n \}.$$

Double-cosets: equivalence classes for the relation $x \sim hxh'$ (for $x \in \mathfrak{S}_{2n}$ and $h, h' \in H_n$)

- naturally indexed by partitions of size n;
- $F_{\mu} = \sum_{x \text{ of type } \mu} \delta_x$ linear basis of $\mathbb{C}[H_n \backslash \mathfrak{S}_{2n}/H_n]$.

Let

$$F_{\mu}F_{\nu}=\sum_{|\rho|=n}\mathbf{h}_{\mu,\nu;\rho}F_{\rho}.$$

Then

$$c_{\mu,\nu;\rho}^{(2)}=\frac{h_{\mu,\nu;\rho}}{2^{n}n!}.$$

Remark

From the previous theorem and a relation above one can deduce a result of Tout (2013):

$$\frac{h_{\mu 1^{n-|\mu|},\nu 1^{n-|\nu|};\pi 1^{n-|\pi|}}}{n! \ 2^n}$$

is a polynomial in n.

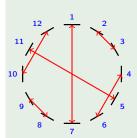
- $\mathcal{F}_{\mathcal{S}}$ the set of all (perfect) matchings on a set \mathcal{S} ;
- $G(F_1, ..., F_k)$ the multigraph with vertex-set S whose edges are formed by the pairs in $F_1, ..., F_k \in \mathcal{F}_S$;
- The components of $G(F_1, F_2)$ are even cycles. Let the list of their lengths in weakly decreasing order be $(2\theta_1, 2\theta_2, \dots) = 2\theta$, and define Λ by $\Lambda(F_1, F_2) = \theta$;
- \mathcal{F}_n the set of all matchings on the set $\{1, 2, \dots, 2n\}$.

Lemma (Goulden, Jackson 1996)

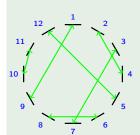
Let F_1, F_2 be two fixed matchings in \mathcal{F}_n such that $\Lambda(F_1, F_2) = \pi$, where $|\pi| = n$. Then, for any μ, ν of size n we have

$$h_{\mu,\nu;\pi} = 2^n n! |\{F_3 \in \mathcal{F}_n : \Lambda(F_1, F_3) = \mu, \Lambda(F_2, F_3) = \nu\}|.$$

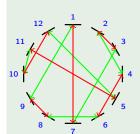
Example



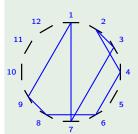
• $F_1 = \{\{1,7\}, \{2,3\}, \{4,6\}, \{5,11\}, \{8,9\}, \{10,12\}\}$



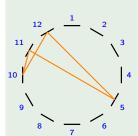
- $F_1 = \{\{1,7\}, \{2,3\}, \{4,6\}, \{5,11\}, \{8,9\}, \{10,12\}\}$
- $F_2 = \{\{1, 9\}, \{2, 4\}, \{3, 7\}, \{5, 12\}, \{6, 8\}, \{10, 11\}\}$



- $F_1 = \{\{1,7\}, \{2,3\}, \{4,6\}, \{5,11\}, \{8,9\}, \{10,12\}\}$
- $F_2 = \{\{1, 9\}, \{2, 4\}, \{3, 7\}, \{5, 12\}, \{6, 8\}, \{10, 11\}\}$
- $\Lambda(F_1, F_2) = (,)$



- $F_1 = \{\{1,7\}, \{2,3\}, \{4,6\}, \{5,11\}, \{8,9\}, \{10,12\}\}$
- $F_2 = \{\{1, 9\}, \{2, 4\}, \{3, 7\}, \{5, 12\}, \{6, 8\}, \{10, 11\}\}$
- $\Lambda(F_1, F_2) = (4,)$



- $F_1 = \{\{1,7\}, \{2,3\}, \{4,6\}, \{5,11\}, \{8,9\}, \{10,12\}\}$
- $F_2 = \{\{1, 9\}, \{2, 4\}, \{3, 7\}, \{5, 12\}, \{6, 8\}, \{10, 11\}\}$
- $\Lambda(F_1, F_2) = (4, 2)$

Main steps in the proof of the main Theorem

- We want to estimate some mixed moments of $Ch_{(k)}^{(\alpha)}$;
- $\mathbb{E}_{\mathbb{P}_n^{(\alpha)}}\left(\mathsf{Ch}_{(k_1)}^{(\alpha)}\cdots\mathsf{Ch}_{(k_l)}^{(\alpha)}\right)$ is a polynomial in n;
- the coefficients of the polynomial above are polynomials in γ ;
- the coefficients of the dominant terms are polynomials in γ of small degree;
- the only interesting coefficients have degree bounded by 2;
- it is enough to calculate $g_{\mu,\nu;\rho}^{(\alpha)}$ for some special partitions and $\alpha = 1, 2, 1/2$;
- it is possible because of the combinatorial interpretation.

The end

Thank you for your attention.

Any questions?