Mots et racines dans

es groupes de Coxeter

- 2,9 et 16 octobre 2013 au LIX -

Christophe Hohlweg, LaCIM, UQAM
(et LIX pour un mois)

Christophe Hohlweg, 2013




Wo = 5152535155351 525351 5253515253

Christophe Hohlweg, 2013



In The last
episode

o W < O(V)FRG <« @ root system in V

@ Separating ® by a (linear) hyperplane we have:

reflections T <—l-l—> dT positive roots
ST

simple reflections S C T «——> A basis of cone(®™)

Theorem. W is generated by S = {s, |a € A}

Christophe Hohlweg, 2013




In the last
episode

Theorem. W is generated by S = {s, |a € A}

Problem: find the relations for W = (S)!

examples: D,, = (s, 82 = ¢ = (st)" = )

3

ST |7',L-2 s (TiTj)Q (T, 1) —crrm e g | > 1)

Christophe Hohlweg, 2013




Length, inversions and relations in FRG

Theorem. W is generated by S = {s, |a € A}

@ any w € W is a word in the alphabet S';
@ Length function £ : W — N with ¢(e) = 0 and
l(w) = min{k|w = s152...8, 5; €S}

How to relate words on S representing w? Is a word
5152 ...5k a reduced expression for w (i.e. k = {(w)) ?

Christophe Hohlweg, 2013
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@ any w € W is a word in the alphabet S ;

@ Length function ¢ : W — N with £(e) = 0 and
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How to relate words on S representing w? Is a word
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Length, inversions and relations in FRG

Theorem. W is generated by S = {s, |a € A}

@ any w € W is a word in the alphabet S';
@ Length function £ : W — N with ¢(e) = 0 and
l(w) = min{k|w = s152...8, 5; €S}
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Length, inversions and relations in FRG

Theorem. W is generated by S = {s, |a € A}

@ any w € W is a word in the alphabet S ;

@ Length function £ : W — N with ¢(e) = 0 and
l(w) = min{k|w = s152...8, 5; €S}

How to relate words on S representing w? Is a word
5152 ...5k a reduced expression for w (i.e. k = {(w)) ?

st ts sts = tst
3

ecb}\
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Length, inversions and relations in FRG

St 1St iStST—.1Sl
3

D 2

PG 3
@ 9
Definition. The inversion set of w € Wis

inv(w) =T Nw H(® ) ={recdt |wl) e d}
and des(w) = inv(w) N A is its descent set.

o If W = §5,, then those “are” the natural inversion and
descent statistics:

inv(o) =He; — ¢ L= s ) e e ) = Pl
des(0) = el A e ) — P |
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Length, inversions and relations in FRG

S=8q L=Sg | Sl ts sts = tst

1 1 2 2 3
@ 6 :

9 @

biy ©
Definition. The inversion set of w € Wis

inv(w) =T Nw H(® ) ={recdt |wl) e d}
and des(w) = inv(w) N A is its descent set.

o If W = §5,, then those “are” the natural inversion and
descent statistics:

inv(c) = {e; = e[ L= 0ey = () =20 (7) |
des(a) E= {67;+1 e ‘ s i T, O'(i B 1) = U(Z)}
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Length, inversions and relations in FRG

S=8q L=Sg | Sl ts sts = tst

1 1 2 2 3
@ 6 :

9 @

biy ©
Definition. The inversion set of w € Wis

inv(w) =T Nw H(® ) ={recdt |wl) e d}
and des(w) = inv(w) N A is its descent set.

o If W = §5,, then those “are” the natural inversion and
descent statistics:

inv{o) =H(2,7) [ TI=G I STy ) T

des(c) ~ {i| | SO o0 R
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Length, inversions and relations in FRG

Proposition. Let w € W and o € ®T, then:
(i) l(wsy) < l(w) if and only if o € inv(w) (i.e. w(a) € 7).
Otherwise, {(wsy) > L(w) if and only if w(a) € .
(ii) If a« € A, then s, is a bijection on &\ {a} and
Hiiing) = { l(w)—1 if a € des(w) i.e. w(a) € d~
K l(w)+1 if o & des(w) i.e. w(a) € O

(iii) €(w) = [inv(w)].

M (—w): PTNw HP7) = dT Nw(d7) is a bijection, so f(w) = £(w™1).
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Length, inversions and relations in FRG

Proposition. Let w € W and a € &, then:
(i) l(wsy) < l(w) if and only if o € inv(w) (i.e. w(a) € 7).
Otherwise, ((wsq) > L(w) if and only if w(a) € O,
(ii) If « € A, then sq is a bijection on &\ {a} and
Hfiiing) = {(w)—1 if o€ des(w) i.e. w(a)
e = l(w)+1 if a & des(w) i.e. w(a)

(iii) {(w) = |inv(w)].

Critical fools for the proof are the following equivalent
statements for a word w =s1...5, € W

@ Exchange condition. if @ € des(w) then w may be
rewritten withs. as the last letter:w = s1...5;... 515,

@ Deletion condition. the word w = s1...5; has a
subword that is a reduced expression for w obtained by
deleting pairs of letters

Christophe Hohlweg, 2013




Length, inversions and relations in FRG

Proposition. Let w € W and o € &, then:
(i) L(wsy) < L(w) if and only if o € inv(w) (i.e. w(a) € 7).
Otherwise, {(wsy) > L(w) if and only if w(a) € .
(ii) If a« € A, then s is a bijection on ®* \ {a} and

pws,) = { Uw)—1 acdes(w)ie wa)c o
. ((w)+1 ifagdes(w) ie. w(a)e dF

(iii) {(w) = |[inv(w)].

And finally

Theorem. W = (S'| (st)™t = e) where Mg = My
is the order of the rotation st (and m.s = 1)

i oo Jiu 9 000 oo
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Conclusion: words and roots in FRG
o W < O(V)FRG <«—> O root systemin V/

@ Separating ® by a (linear) hyperplane we have:

1:1 s

4

‘s

,J‘L‘ / reflections T  <«—> & positive roots ’
) (g B e

simple reflections S C T «——> A basis of cone(®d™)

Theorem. IV is generated by S = {s, |a € A}

@ Length function /(w) «—> inv(w) inversion set

Theorem. W = (S| (st)"s* = e) where Mg = My
is the order of the rotation st (and mss = 1)
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On the Cayley graph of FRG

Theorem. W is generated by S = {s, |a € A}

@ Length function {(w) «—> inv(w
Cayley graph of W = (5):
o vertices W

0 edges w— ws
(s €9)

B

© wikipedia

mversnon set

o
|

e |




On the Cayley graph of FRG

Theorem. W is generated by S = {s, |a € A}

@ Length function {(w) «—> inv(w inversion set

Cayley graph of W =
0 vertices W

D edges w——ws
(s €S)

The Cayley graph is naturally
oriented by the (right)
weak order:

w<ws if L(w) < l(ws)

write: w =5 ws
© wikipedia




On the Cayley graph of FRG

Theorem. W is generated by S = {s, |a € A}

@ Length function /(w) «<—> inv(w) inversion set
Cayley graph of W = (5):
o vertices W

0 edges w—-ws
(s €S)

The Cayley graph is naturally
oriented by the (right)
weak order:

w<ws if l(w) < l(ws)

write: w =5 ws
o—o——o0
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On the Cayley graph of FRG

Theorem. W is generated by S = {s, |a € A}

@ Length function {(w) «—> inv(w)

Theorem. The weak order is
a lattice. Moreover:

0 reduced expression of ware in
bijection with maximal chains in
the interval |6 w].

pulw < Lutw)=~0w)—L(u)

ou<w iff areduced expression
of u is a prefix of a reduced

expression of w.

D Wo is the unique element of
maximal length

inversion set
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On the Cayley graph of FRG

Theorem. W is generated by S = {s, |a € A}

@ Length function /(w) «<—> inv(w) inversion set

Theorem. The weak order is
a lattice. Moreover:

0 reduced expression of ware in
bijection with maximal chains in
the interval |6 w].

pulw < Lutw)=~0w)—L(u)

ou<w iff areduced expression
of u is a prefix of a reduced
expression of w.

O Wo is the unique element of tst = sts = w,
maximal length
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Theorem. The weak order is
a lattice. Moreover:

D reduced expression of ware in
bijection with maximal chains in
the interval [e,w].

nu<w <= f(uw)=~l(w)—L(u) .—.J

obu<w iff areduced expression

of u is a prefix of a reduced o st
expression of w. | \ /5 L

O Wo is the unique element of tst = sts = w,
maximal length e
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On the Cayley graph of FRG

Theorem. W is generated by S = {s, |a € A}

o Length function £(w) «<—>inv(w™ ') inversion set

Theorem. The weak order is
a lattice. Moreover:

oy < < Emviies @ anviwe. )

O Wois the unique element of
maximal length: (w,) = ||

, ¥
(B V£ U; A1 5o i

o Problem: to unders’rand
reduced _expressions as
maxnmal chams in m’rervals oF

tst = sts = w
mversnon se’rs?xCoun’r ’rhem' °

4 @
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Coxeter groups and Reflection groups

Theorem. W = (S| (st)"™** = e) where Mg = My
is the order of the rotation st (and mss =1)

@ So the presentation W = (S| (st)™f = e) is
illustrated with a Coxeter graph 1'g :

o vertices S (i.e. Q)

0 edges for ms > 3

@ A Coxeter system (W,S) is a group W = (5)
obtained from a Coxeter graph (allowing ms = oo if
there is no relation between s and ¢, and mgss = 1)

Christophe Hohlweg, 2013




Coxeter groups and Reflection groups

@ A Coxeter system (W, S) is a group W = (S)
obtained from a Coxeter graph (allowing ms = o
if there is no relation between s and t)

@ Rank 2 Coxetfer groups D <>

0 DS or D(m:2) - FRG

0 A infinite example: the infinite dihedral group

Doo IS ( t ; Infinite number of words: )
S

(ts)P, (st)?, s(ts)?, t(st)P, pe N
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Coxeter groups and Reflection groups

@ A Coxeter system (W, 2

obtained from a Coxel | llowing m; = 0o
Tilings in

spherlcal
| geometry / -ank |S| =n — 1

if there is no relatio \'nd t)
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Coxeter groups and Reflection groups

@ A Coxeter system (W, S) is a group W = (5)
obtained from a Coxeter graph (allowing ms; = oo
if there is no relation between s and t)

Tilings In spherical geometry,
roots and words
0 A = {a, B} simple system;
n 8= v = .0 = 3glk
0 Choose a generic on a tile s.t.
(a,a) >0, (a,8) >0
O [label The corresp. tile by €.
D Then label by acfting ..

-~
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Coxeter groups and Reflection groups

@ A Coxeter system (W, S) is a group W = (5)
obtained from a Coxeter graph (allowing ms; = oo
if there is no relation between s and t)

Tilings In spherical geometry,
roots and words
0 A = {a, B} simple system;
n 8= v = .0 = 3glk
0 Choose a generic on a tile s.t.
(a,a) >0, (a,8) >0
O [abel The corresp. tile by €.
D Then label by acfting ..

=
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Coxeter groups qulabamshemneyeemm—"

The convex hull of
@ A Coxeter system (IV, w(a), w e W

obtained from a CoxefNis a convex polytope called a
if there is no relation permutahedron
Perm® (W) = conv{w(a) |w € W}

4

oA simple system;
0 S ={sy|acA}

©pilaud-Stump

0 Choose a generic on a tile s.t.
(a,a) > 0, Va e A

O [abel The corresp. tile by €.

D Then label by acfting ..

-~
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Coxeter groups and Reflection groups

@ A Coxeter system (W, S) is a group W = (S)
obtained from a Coxeter graph (allowing ms = o
if there is no relation between s and t)

* ® Weak order & Cayley graph!

~S§ — Sa

—
5

o)

€0

P

—)

t o st
\ /Chfy

tst = sts — We
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Coxeter groups and Reflection groups

@ A Coxeter system (W, S) is a group W = (S)
obtained from a Coxeter graph (allowing ms = o
if there is no relation between s and t)

@ Rank 2 Coxetfer groups D <>

0 DS or D(m:2) - FRG

0 A infinite example: the infinite dihedral group

Doo IS ( t ; Infinite number of words: )
S
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Coxeter groups and Reflection groups

@ Rank 3 finite reflection groups: isometry groups of

0 m-gonal regular prisms .
Dm X SQ

0 Regular polyhedra

S4(As)
v CUbe/ 4
SCHIES,
v dodecahedron/

icosahedron

©wikipedia
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Coxeter groups and Reflection groups
0 Regular polyhedra, Permutahedra and ftilings in rk 3

©wikipedia for tilings and polyhedra




Coxeter groups and Reflection groups
0 Regular polyhedra, Permutahedra and tilings in rk 3
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©wikipedia for tilings and polyhedra
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Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond tfo
Finite Reflection groups (FRG)? to Finite Coxeter groups?

world of roots world of words

 Coxeter groups/graphs |

J

Christophe Hohlweg, 2013




Coxeter groups and Reflection groups

How to find all Coxeter graphs that correspond tfo
Finite Reflection groups (FRG)? to Finite Coxeter groups?

world of roots . world of words

4 )

“Reflection groups”? Coxeter groups/graphs

J

Christophe Hohlweg, 2013




Root systems for Coxeter groups ?

An observation

If (W,S)is a Finite Reflection Group with A C &" C & .

@ Dihedral (standard) parabolic subgroups: I = {s,t} C S
o Wi = (I) < W corresponds to the subgraphs:

oy - G

§ = 8q L =54 §=8q t =8
o Wi =D,,_, acts on V; = span(a, 3):
804(5) k= 6 53 2<Oz,6>0&
0 We have: (a,[5) = — cos ( 4 >

Mt
@ the scalar product is given on the basis A by

Christophe Hohlweg, 2013




Root systems for Coxeter groups !

@ Geometric representations of a Coxefer system (7,5)

0 V real vector space with basis A = {as|s € S}

0 B symmetric bilinear form defined by:

;i
—COS( ”) Wiligen. € 5

mst

B(CMS, th) = <

a < —1 1T M — OO

o WactsonV: s(v)=v—2B(v,a)a, se S

0 Root system: & = W (A), & = cone(A) N P
Theorem. (i) W < Op(V) "B-isometries”

(ii) All the properties words/roots for FRG hold in
this case (inversion sets/length, weak order etc).

Christophe Hohlweg, 2013




Root systems for Coxeter groups !
abab = baba
 Meet |

0/\ ' semilattice: !
bab aba g) no join! g) bab

Lattice

A
Francesco Brenti

Figure 3.1. Weak order of dihedral groups. “ataae e

TNIS c€ase (Inversion sers/lengrn, weak




Root systems for Coxeter groups

Infinite
dihedral

Christophe Hohlweg, 2013




Root systems for Coxeter groups
Q ={veV|B(v,v) <0}

Infinite
dihedral

group II

Christophe Hohlweg, 2013




Classification of Finite Reflection Groups

world of roots world of words

- o words

B-Reflection groups | ' | Coxeter groups/graphs

roots

Theorem. The following assertions are equivalent:
(i) (W, S)is a finite Coxeter system;
(i) B is a scalar product and W < O (V);
(iii) W is a finite reflection group.

Christophe Hohlweg, 2013




Classification of Finite Reflection Groups
@ Subgraphs and standard parabolic subgroups

ICS «—> I, ; (W, I)is a Coxeter system
@ W is irreducible iff I's is connected

Dm X DOO X 54 i 2 3 Sn n-1 n

00
(e—¢ o—0 o——0—o O——0——0 -+ O——0

SQXDOOXD3 WIZS:gXSQ

Proposition. If I; Iy corresponds to the connected components of I't (I may

be S ), then
WI i I/VIl > LA VVIk

To classify finite reflection groups, i.e., finite Coxeter
groups, we just have to find all connected Coxeter
graphs that correspond to scalar product!

Christophe Hohlweg, 2013




Classification of Finite Reflection Groups

Theorem. The irreducible FRG are precisely the finite
irreducible Coxeter groups. Their graphs are:

Christophe Hohlweg, 2013




Conclusion

world of roots world of words
x words

B-Reflection groups | ' | Coxeter groups/graphs

roots

signature (p,¢.7) of B €ttt [ (7, allowing oo(a < —1)

e

\_

Problem: Let p,q,r € N, classify all the Coxeter graphs
with signature (p,q,r). Count them?

N.B.: Known for (1n,0,0)- FRG -; (n — 1,0,1) - affine type - and
partially for (n — 1,1,0) - “weakly hyperbolic” type

Christophe Hohlweg, 2013




Selected biblio of Part 1 ...

Donald Coxeter

(London 1907, Toronto 2003)
Professor at University of Toronto Reflaction

(1936-2003) Groups and

Coxeter G rou ps Anders Bjorner

Francesco Brenti

Combinatorics of
Coxeter Groups

&3 Springer

Alexandre V. Borovik
Anna Borovik

The Geometry and Topology
Mirrors and of Coketr Groups Peter Abramenko

Reflections ichaelW. Davs Kenneth S. Brown

L] L]
il Buildings

Mandatory photo credit. Mathematics genius Donald Coxeter is the subject of a public talk by journalist
Siobhan Roberts, The Man Who Saved Geometry, on Sunday, July 31. Photo courtesy of The Banff Centre.
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Part 3 - Roots and Words
Coxeter groups

Christophe Hohlweg, 2013



In the last Episode

world of roots

e

B-Reflection groups

signature (p,¢.7) of B €ttt [ (7, allowing oo(a < —1)

words
N

to
roots

world of words

 Coxeter groups/graphs

The Cayley graph of (W, S) is naturally oriented by the (right)
weak order: w < ws if f(w) < L(ws).

The weak order is a meet-semilattice and

U< e TV (W) NV ()

(inv(w™) = T Nw(®7))

Christophe Hohlweg, 2013




In the last Episode

"ical, euclidean and hyperbolic case, all nnitely
eflection groups are Coxeter fjflj‘&#y ‘models

gje@nme*ir\y exIST In V. or ITS dual; cur
The n\ per n’}@m\gg OT retle t‘rUFb)

N

\

-IniTe case l.e. b IS a Scalar product (

The model IS The unit sphere

@Pilaud—S’rump, Sage, Wikipedia, Casselman
Christophe Hohlweg, 2013




In the last Episode

ln The Spherical, euclidedan and hyperboliC case,
They are all Coxeter groups (models tor these geomefry exist in V

=

or ITS dual; cut® these models by the hyperplanes ot retflect

acheck[2]

OO

=
<>
<>
<>

/\

<>
SO

ATnne case l.e. 5 1S positive degenerare. 17s radical IS a
line: Radlb) = s{ v eV | B(v, ) U. VQ € &} R
The model IS an arnne hyperplane In The aual V/*

1

N.B: retlection hyperplanes leave In the dual here

@Pilaud—S’rump, Sage, Wikipedia, Casselman
Christophe Hohlweg, 2013



In the last Episode
In the spherical, euclidean and hyperbolic case,
they are all Coxeter groups (models for these geometry exist in V.
or its dual; ‘cut’ these models by the hyperplanes of reflections)

4 D)

! /NONININININ/N
m VAVAVAVAVAVAV
/NONININININ/N
\VAVAVAY VavVavi
/NONONININN/N
\VAVAVAVAVAVAV] |
/NONONINININ/N

| VAVAVAVAVAYAY

i positive degenerate.

Hyperbolic case i.e. sgn(B) = (n — 1,1,0) (¥ = V*). Many
models exists: projective (non conformal), hyperboloid or the ball
ALl B = @ W B ) = =11}

> ' I

©Pilaud-$+ump, Sage, Wikipedia, Casselman

Christophe Hohlweg, 2013




In the last Episode

world of roots

e

B-Reflection groups

signature (p,¢.7) of B €ttt [ (7, allowing oo(a < —1)

words
N

to
roots

world of words

 Coxeter groups/graphs

The Cayley graph of (W, S) is naturally oriented by the (right)
weak order: w < ws if f(w) < L(ws).

The weak order is a meet-semilattice and

U< e TV (W) NV ()

(inv(w™) = T Nw(®7))

Christophe Hohlweg, 2013




An Illustration: Words, Roots and

Generalized Associahedra

(W, S) finite Coxeter system, so W < O(V) \* p\e

Permutahedra

o A simple system;
DS:{SQ‘C)&EA};
0 Choose a generic l.e.

(a,a) >0, Va € A
Perm® (W) = conv {w(a) | w € W}

Proposition. Perm® (1) is a simple polytope whose oriented
1-skeleton is the graph of the (right) weak order:

Christophe Hohlweg, 2013




Building Generalized Associahedra

Associahedra (lattices/complexes):

@ |Lattice (Tamari, 1951)

@ Cell complex (Stasheff, 1963)

@ Cluster complex (Fomin-Zelevinsky, 2003)

©@ Cambrian lattices (Reading 2007,
2007 )and more ...

&01

—_
|

)

o —
_ . Associahedra,

Tamari’s associahedron Tamari Lattices ~\\]

and Related

Structures

Associahedra (Convex polytopes):
® Type A (Haiman 1984, Lee, Loday, .. ) =
® Type B - cyclohedra (Bott-Taubes 1994, ...)

@ Weyl groups (Chapoton-Fomin-Zelevinsky,
2003)

@ from permutahedra of finite Coxeter groups
(CH-Lange-Thomas 2011, ...)

Christophe Hohlweg, 2013




Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009)

i .
a0
0 Data: Perm®(WW) and an orientation of I'yy <0> <)

v s, (R Lo

O C Coxeter element associated to this orientation i.e

product without repetition of all the simple reflections;
C o (9130

b crysubword with letters I C S
I = {71,722} ©5 = ¢(1) = 271
o ¢ - word of we: Wo(C) = ¢(K,)C(K,) - - - C(K,) reduced
expressions.t. SO K; DKy D ---D K, # ()
Wo (T1T2T3) = T1T2T3.T1T2-T1 = C(8)C({r1,72})C({m1})

‘wo(7'27'37'1) — 13 LIS )T 3T | =R (o N (BN

Christophe Hohlweg, 2013




Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009)

o ¢ - word of we: Wo(C) = ¢(k,)C(Ky) - - - C(K,) Teduced

expressions.t. SO Ki DKy 2D ---D K, #(

wo(ﬁTng) — T17273.T17T2.T1 = C(S)C({Thm})C({Tl})
wO(TQTng) B 12 137 1% 277 3 LIy C (G

898183828183

O C - singlefons are the prefixes s251535253

5281838281

of wy(c)up to commutations

82818382

€, T27T3, TIT3T1T2T3,
Ty TS Tl TAEET] ToOTL, and
TOM » T2T3T172, @Wo —T2T1T3T2 PP

Proposition. ¢ - singletons form a

distributive sublattice of the weak order.
C = 895153

Christophe Hohlweg, 2013




Building Generalized Associahedra

Hohlweg, C. Lange, H. Thomas (2009)

0 C - generalized associahedron

is the polytope Asso? (V)
obtained from Perm® (W) by
Keeping only the facets

containing a C - singleton

Theorem. The 1-skeleton of

Assog (W)
is N. Readings c¢- Cambrian lattice;
its normal fan is the corresponding
Cambrian fan studied in detailed by
N. Reading & D. Speyer.

TITITTT @

\
\
/ \
TIT3 T2 Q‘ ’,’
\ l,
\ R
T i ) W © 717273
.. A AN

\\
\\‘
" NN e

'I . 131'2 \\ ” ~

I / b A "® 1T

' . i

' N >
\‘\ o

@ TIMT3
en

;e nnT P s
727372 @7
!

]
nenne  __.e tznrmn
Wo @
Q T2T1T3T2

T
\ L
.
~
N
~
~

e ~
A

TTITIT2T] Q

ofﬂﬁ

e ‘L'2‘L'1 772
BT 027

\ e nUTRT

u@

Christophe Hohlweg, 2013




T3 O‘
\ T1T3T2 o‘
\ s
“ TI0Bh --+0 12T \

.
O B3\
Y

~ N
" (0] 17312\\
TIT3T7271 @ ,
\ o . ) T30 T @ \\

A .
‘\ T3 - - O 17273

0 30T

@ 2717273

l
T Tzrarzrl 6 0 13127y /O nt
o BT ‘rlrs‘m'x‘m o
0 T
nEnRT O 15} 1112131/ /

W°°—_ DOHRHT,
__—ommun 3" ° o BBy

TQT3T1T2171 Q Wo 0 R
Q T2T17T37T2

1'2711'31721'1 Q

IHLTBT @<

T @+

W o nnm
o Ny
!

]

1
'l
¥
-@ '521?1 T2
T2TIT3T2T3 @2

o nninnt
wg@ /

Christophe Hohlweg, 2013



Type H

Wo = 5152535152535 52535 525355253

Christophe Hohlweg, 2013




Selected developements on the subject

@ Convex hull of the vertices: brick polyftopes. Barycenter
identical to the permutahedron:

V. Pilaud and C. Stump: ©Pilaud-Stump

1. Brick polytopes of spherical subword
complexes: A new approach fo
generalized associahedra (2012)

2. Vertex barycenter of generalized
associahedra (2012)

@ Classification of isometry classes in term of the lattices
of C—single’rons (N. Bergeron, Hohlweg, C. Lange, H. Thomas, 2009)

@ Recovering the corresponding cluster algebra:

S. Stella, Polyhedral models for generalized associahedra via Coxeter elements (2013)

ASSOCIAHEDRA IN INFINITE CASE ?

Christophe Hohlweg, 2013




ASSOCIAHEDRA IN INFINITE CASE ?

My original motivation (2010): to generalize
this approach in the infinite case ..

@ Infinite case: Cambrian meet-semilattices (sortable Elements

in Infinite Coxeter Groups, N. Reading and D. Speyer, 2011) Are not blg
enough ...

Problem: is it possible to «enlarge>» Coxeter groups to
have reasonable candidates with a weak order that is a
complete lattice ? An answer may lie on the side of
inversion sets!

Christophe Hohlweg, 2013




More on the weak order

Weak order: write N(w) = inv(w™ ') thenu <v <= N(u) C N(v)

Proposition. The map N : W — P(®™) is an injective morphism
of meet-semilattice. Reduced expressions ‘“are’ chains in intervals.

What is Tm(N)?

tst = sts = w,
(I)+

Christophe Hohlweg, 2013
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More on the weak order

Weak order: write N(w) = inv(w™ ') thenu <v <= N(u) C N(v)
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A recap from the other way around

Weak order: write N(w) = inv(w™ ') thenu <v <= N(u) C N(v)

Proposition. The map N : W — P(®™) is an injective morphism
of meet-semilattice. Reduced expressions ‘“are’ chains in intervals.

What is Tm(N)?

tst = sts = w,
(I)+

Christophe Hohlweg, 2013




A ‘weak order lattice’ in general?

Proposition. Im(/N) = {finite Biclosed sets in T}

oA C ®7 is closed if for all a,3 € A, cone(a,8) NP C A;

n AC ®tis biclosed if A, ®" \ A are closed.
o B(W) = {biclosed sets}

tst = sts = w,

(I)+

Christophe Hohlweg, 2013




A ‘weak order lattice’ in general?

Proposition. Im(/N) = {finite Biclosed sets in T}

oA C & is closed if for all a,8 € A, cone(a,5) NP C A;

n AC ®tis biclosed if A, ®" \ A are closed.
o B(W) = {biclosed sets}

Conjecture (M. Dyer, 2011).
(B(W), C)is a lattice (with
minimal element () and maximal
element &)

tst = sts = we

(I)+

Christophe Hohlweg, 2013




The example of the infinite dihedral group

o, =na+ (n+1)8 pn=(n+1l)a+np

The biclosed are:
O the finite ones;

, 0 their complements;
Infinite 0 and two infinite
dihedral ones: the left and

right side of Q!

Christophe Hohlweg, 2013




The example of the infinite dihedral group
o, =na+ (n+1)8 prn = (n+1)a+np
Q= {v e V|B(v,v) = 0}
' More
examples:
"Cut’ otby
Infinite : an affine

dihedral hyperplane

Christophe Hohlweg, 2013




Other examples of infinite root systems?

Affine hyperplane
M={weV| ) v.=1}

acA
Normalized isofropic

cone: Q:=QnNWV;
Normalized roots

(b) B(a, B) = —1.01 < —1

Christophe Hohlweg, 2013



Other examples of infinite root systems ...

Christophe Hohlweg, 2013



Other examples of infinite root systems (with SAGE)

And the
graph is ?

Christophe Hohlweg, 2013



Other examples of infinite root systems (with SAGE)

Christophe Hohlweg, 2013



Other examples of infinite root systems (with SAGE)

Christophe Hohlweg, 2013



Other examples of infinite root systems (with SAGE)

v

= '1 e '1
.
(a) B(a,8) = —1 d | m 2 (b) B(a,8) = —1.01 < —1

Observation: a
dihedral subgroup
group is infinite iff
the associated line
cuts O

Christophe Hohlweg, 2013




Other examples of infinite root systems (with SAGE)

& .
" A dim 3
oo(—l.l)mo(—Ll) / \\\
8a 83 ./ \\!

Christophe Hohlweg, 2013



Other examples of infinite root systems (with SAGE)

| L di \ dim 3
Sa 8 b A
A £ N
a 1 i h ... p2 @ 1 & 7 ] |
: \ oo(—LW(—m ? A
(a) B(a,8) = —1 dllll 2 (b) B(a,8) = —1.01 < —1 /

From joint works
with:
o J.P Labbe and
V. Ripoll (2012)
0 M. Dyer and V.
Ripoll (2013)

Christophe Hohlweg, 2013



Other examples of infinite root systems (with SAGE)

From joint works
with:
o J.P Labbe and
V. Ripoll (2012)
0 M. Dyer and V.
Ripoll (2013)

Problem still there: what can we
say about these pictures that

help understand biclosed sets?
Actually, at this point, not that much about biclosed but...

Christophe Hohlweg, 2013




Illustration of some known
combinatorics on infinite root systems

T

How to see the action of W on @ : Sa - B = sa(B) € L(&, f)
is a barycenter of & and 3.

Depth of a root is dp(p) =1+ min{k|p = Sa,8a, - - - Sa, (Qkt1),
A1y .., O, 11 € A}

Root poset on & : transitive closure of the relation
B < sa(f) = dp(f) <dp(sa(f)); (a€A)

Christophe Hohlweg, 2013




Illustration of some known
combinatorics on infinite root systems

T

How to see the action of W on @ : Sa - B = sa(B) € L(&, f)
is a barycenter of & and 3.

Depth of a root is dp(p) =1+ min{k|p = 54,54, - - - Sa;, (Qr+1),
Olyeeny O, Ot € A}

Root poset on & : transitive closure of the relation
B < sa(f) = dp(f) <dp(sa(f)); (a€A)

Christophe Hohlweg, 2013




Illustration of some known
combinatorics on infinite root systems

Small root: roots obtained from A along a path in the root
poset corresp. to finite dihedral reflection subgroups (i.e. the
lines does not cut Q). ‘

Problem

Theorem (Brink-Howlett, 1993) ” IZyFrom FW |
The set Y of small roots is finite. o

A finite state automaton that
recognize reduced expressions:

0 everything depends of the
combinatorics of the small descent
set Dy(w) =inv(w) N X

0 The nodes of a finite automaton
that recognized the set of reduced
words is: {Dx(w)|w € W}

Christophe Hohlweg, 2013




Illustration of some known
combinatorics on infinite root systems
Small root: roots obtained from A along a path in the root

poset corresp. to finite dihedral reflection subgroups (i.e. the
lines does not cut Q).

(R 2 R
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Illustration of some known
combinatorics on infinite root systems
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lines does not cut Q).

(R 2 R
P*roblwem;“ :

Theorem (Brink-Howlett, 1993) S| from Ty 2

The set X of small roots is finite. o G

A finite state automaton that
recognize reduced expressions:

0 everything depends of the
combinatorics of the small descent
set Dy(w) =inv(w) N X

0 The nodes of a finite automaton
that recognized the set of reduced
words is: {Dx(w)|w € W}
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Francesco Brenti

Combinatorics of
Coxeter Groups

a

START @

b




Illustration of some known
combinatorics on infinite root systems

Small root: roots obtained from A along a path in the root
poset corresp. to finite dihedral reflection subgroups (i.e. the
lines does not cut Q).

A
Problem:

Theorem (Brink-Howlett, 1993) 122 from 'y, 2
The set X of small roots is finite.

For building a finite state automaton

that recognize reduced expressions:
<

Question:
Is it possible o recognize biclosed
sets???
If A is biclosed, properties
OFZ qP(P)2

BeA

Christophe Hohlweg, 2013




What can we say about these pictures?

Obervation: The “size’ of a
generalized root (in red in this
last picture) is decreasing as the
depth of the root is increasing.

dp(p) =1+ min{k|p = Sa;8a, - - - Sax (Qk11),

B0k, a1 € AT

2' °
oo(—l.wv(—u)
8a 8 ‘

/. \
o ®
X
¥ a
"4 \
/ \
/ \
/ X
/ X
/ \
/
a e .

Joint works with

Labbe & Ripoll;
Dyer & Ripoll

Christophe Hohlweg, 2013




Joint works with :

A look at limits of roots .. s
Dyer & Ripoll

Definition/Proposition: the set of limit roots is:

AN

E(®) = Acc(®) C Q Nconv(A)

@ A “fractal phenomenon? How W acts on E(®)?

@ Link with hyperbolic geometry (hyperbolic reflection groups) and

with Apollonian gasket (Kleinian groups) - story in CH, JP-Préaux and V.
Ripoll (2013)




PN

A geomeftric action on E(®) = Acc(P)

Extending the “barycentric’ action W - @

/\

@ New action: w-v = w(v) on the set ® LI E given on E
by: QN L{a, L &~ LHSa L

Theorem (pyer, CH, Ripoll 2013)
Action on E faithful if irreducible
not affine nor finite of rank > 2.

Christophe Hohlweg, 2013




PN

A geomeftric action on E(®) = Acc(P)

Action ¢
not afh

Christophe Hohlweg, 2013



PN

A geomeftric action on E(®) = Acc(P)

Remark: V4 is not stable under W.

/\

@ New action: w-v = w(v) on the set ® LI E given on E
by: QN L{a, L &~ LHSa L

Theorem (pyer, CH, Ripoll 2013)
Action on E faithful if irreducible
not affine nor finite of rank > 2.

Corollary: fo build E ...

Christophe Hohlweg, 2013




Remarkable dense subsets
of E(®) = Acc(P)
Dihedral reflection subgroups: W’ = (s,,s,), p,y € ®F
Associated root system: &' = W' ({p,7 })

Observation: E(®') = OnN L(p,7)

Limits of roots of dihedral reflection subgroups:
® Fy, =W - ES where
ESi= il ] Ela, p)@

acA
pEDT

Theorem (cH, Labbé, Ripoll 2012)
The sets F,; and 'S are dense
in £(®).




The action on E IS minimal

Theorem (pyer, cH, Ripoll 2013)
The closure of W - x is dense in E(®)for x € E(P)

TheoremA (Dyer, CH, Ripoll, 2013) Corollary (oyer, cH, Ripoll, 2013)
B = () SGCOTIV () A first fractal Phenomenon.

Morever, in this case,
sgn(B) = (n,1,0)




A second fractal phenomenon

Theorem (pyer, cH, Ripoll 2013) For irreducible root of
signature (n,1,0) we have: E = conv(F) N Q

Problem (second fractal phenomenon): is it
true for other indefinite types?




Imaginary cone and tiling of conv(E)

Proposition (Dyer, cH, Ripoll 2013). The action of W on E extends
to an action of W on conv(E). So W acts on P | | CODV(E)

@ Imaginary convex body 7 is the 11/ —orbit of the polytope
K ={v € conv(A) | B(v,a) < 0,Va € A}

Theorem (Dyer, 2012). 7 = conv(E)

Theorem (Dyer, CH, Ripoll 2013).

ECWiz VzeT
with equality for sgn (n,1,0)

Problem: prove equality in general!

Christophe Hohlweg, 2013




Imaginary cone and

Problem: prove equality in general!

. 5

stophe Hohlweg, 2013




A step toward biclosed sets: Infinite words, their
inversion sets and limit weak order

@ Thomas Lam & Anne Thomas: in ““Infinite Reduced Words and

the Tits Boundary of a Coxeter Group”

O Limit weak order on infinite words (modulo braid relations) as

the topology of the visual boundary of the Davis complex

Propostion. The inversion sets of
infinite words are biclosed.

N(845880:+: i 10, 80P, Sa RO | i

Work in progress (cH 2013). The imaginary

convex body is a geometric realization

of the Davis complex and E is the visual
boundary. Biclosed and their boundary! © Lam & Thomas

Christophe Hohlweg, 2013
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A step toward biclosed sets: Infinite words, their
inversion sets and limit weak order

Here a rank 5 Coxeter group is
% represented in dim 3:
A'is not a basis but is
postivily independant.

Ball model

Roots and imaginary
convex body model

@ Lam & Thomas

Christophe Hohlweg, 2013




Selected bibliography and other readings

Alexandre V. Borovik mu @@m

Anna Borovik ELEMENTS DE MATHEMATIQUE

Groupes et algébres de Lie
oot The Geometry and Topology

Peter Abramenko Anders Bjorner : of Coxeter Groups
Kenneth S. Brown FAEREQee0 RERnl MI"OI'S a nd Michael W. Davis

Combinatorics of Reflections

B u i I d i n gs Coxeter Groups The Geometry of Finite

Reflection Groups

Reflection

And articles already cited + from .
o Brigitte Brink, Bill Casselman, Fokko du Cloux, Bob

Howlett, Xiang Fu (regarding automaton and comb.)

o Matthew Dyer (imaginary cones, weak order(s))

0 CH & coauthors (Matthew Dyer, Jean-Philippe Labbe,

Jean-Philippe Préaux, Vivien Ripoll). A good start for limit
of roots and imaginary convex bodies is the survey of the case of

Lorentzian spaces (CH, Ripoll, Préaux) sl

o Paolo Pappi and Ken Ito (limit weak order) and Related

Structures
D [ XX ] | |
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