
� �

- 2, 9 et 16 octobre 2013 au LIX -
Christophe Hohlweg, LaCIM, UQAM 

(et LIX pour un mois) 

Mots et racines dans 
les groupes de Coxeter

Christophe Hohlweg, 2013

C someone on the internet



� �

Christophe Hohlweg, 2013

C ?



               FRG                     root system in 

Separating    by a (linear) hyperplane we have: 

In the last 
episode 

W ≤ O(V ) Φ V

Φ

Treflections
1:1

1:1

Φ+ positive roots
βsβ

∆ basis of cone(Φ+)simple reflections S ⊆ T

Theorem.      is generated by W S = {sα |α ∈ ∆}
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In the last 
episode 

D3

Problem: find the relations for            !

Examples: Dm = �s, t | s2 = t2 = (st)m = e�

Sn = �τi | τ2i = (τiτj)
2 = (τiτi+1)

3 = e, 1 ≤ i < n, |j − i| > 1�

m

...

W = �S�

Theorem.      is generated by W S = {sα |α ∈ ∆}

Christophe Hohlweg, 2013
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Length, inversions and relations in FRG

any           is a word in the alphabet   ;

Length function                with            and   

w ∈ W S

� : W → N �(e) = 0

�(w) = min{k |w = s1s2 . . . sk, si ∈ S}

How to relate words on   representing    ? Is a word
              a reduced expression for    (i.e.            ) ?s1s2 . . . sk

w
w k = �(w)

S

Theorem.      is generated by W S = {sα |α ∈ ∆}
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e s = sα t = sβ st ts sts = tst
� 0 1 1 2 2 3
α α −α γ β −γ −β
β β γ −β −γ α −α
γ γ β α −α −β −γ

Theorem.      is generated by W S = {sα |α ∈ ∆}
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any           is a word in the alphabet   ;

Length function                with            and   

w ∈ W S

� : W → N �(e) = 0

�(w) = min{k |w = s1s2 . . . sk, si ∈ S}

How to relate words on   representing    ? Is a word
              a reduced expression for    (i.e.            ) ?s1s2 . . . sk

w
w k = �(w)

S

e s = sα t = sβ st ts sts = tst
� 0 1 1 2 2 3
α α −α γ β −γ −β
β β γ −β −γ α −α
γ γ β α −α −β −γ

�(w) = |{ν ∈ Φ+ |w(ν) ∈ Φ−}|

Theorem.      is generated by W S = {sα |α ∈ ∆}
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D3

e s = sα t = sβ st ts sts = tst
� 0 1 1 2 2 3
α α −α γ β −γ −β
β β γ −β −γ α −α
γ γ β α −α −β −γ

Definition.  The inversion set of          is 

and                           is its descent set.

w ∈ W

inv(w) = Φ+ ∩ w−1(Φ−) = {ν ∈ Φ+ |w(ν) ∈ Φ−}
des(w) = inv(w) ∩∆

If            then those ``are’’ the natural inversion and 
descent statistics:

W = Sn

inv(σ) = {ej − ei | 1 ≤ i < j ≤ n, eσ(j) − eσ(i) ∈ Φ−}
des(σ) = {ei+1 − ei | 1 ≤ i < n, eσ(i+1) − eσ(i) ∈ Φ−}

Length, inversions and relations in FRG
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descent statistics:
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e s = sα t = sβ st ts sts = tst
� 0 1 1 2 2 3
α α −α γ β −γ −β
β β γ −β −γ α −α
γ γ β α −α −β −γ

Definition.  The inversion set of          is 

and                           is its descent set.

w ∈ W

inv(w) = Φ+ ∩ w−1(Φ−) = {ν ∈ Φ+ |w(ν) ∈ Φ−}
des(w) = inv(w) ∩∆

If            then those ``are’’ the natural inversion and 
descent statistics:

W = Sn

inv(σ) � {(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}
des(σ) � {i | 1 ≤ i < n, σ(i) > σ(i+ 1)} 45132

Length, inversions and relations in FRG
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e s = sα t = sβ st ts sts = tst
� 0 1 1 2 2 3
α α −α γ β −γ −β
β β γ −β −γ α −α
γ γ β α −α −β −γ

Length, inversions and relations in FRG

N.B.:
Christophe Hohlweg, 2013
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Critical tools for the proof are the following equivalent 
statements for a word 
 Exchange condition. if              then    may be 

rewritten with    as the last letter: 
 Deletion condition. the word                has a 

subword that is a reduced expression for    obtained by 
deleting pairs of letters

w

w = s1 . . . sk ∈ W

sα w = s1 . . . �si . . . sksα
α ∈ des(w)

w = s1 . . . sk
w

Length, inversions and relations in FRG

Christophe Hohlweg, 2013



And finally

Theorem.                              where
            is the order of the rotation     (and          ) 

W = �S | (st)mst = e� mst = mts

st mss = 1

m ...      is            and     is  

Length, inversions and relations in FRG

Christophe Hohlweg, 2013



Conclusion: words and roots in FRG
               FRG                     root system in 

Separating    by a (linear) hyperplane we have: 

W ≤ O(V ) Φ V

Φ

Treflections
1:1

1:1

Φ+ positive roots
βsβ

∆ basis of cone(Φ+)simple reflections S ⊆ T

Theorem.      is generated by W S = {sα |α ∈ ∆}

Length function                             inversion set inv(w)�(w)
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W = �S | (st)mst = e� mst = mts

st mss = 1
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On the Cayley graph of FRG
Theorem.      is generated by W S = {sα |α ∈ ∆}

Length function                             inversion set inv(w)�(w)

Cayley graph of             : W = �S�

C wikipedia τ3
τ2τ1

 vertices    
 edges            

W

w wss
(s ∈ S)
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Theorem.      is generated by W S = {sα |α ∈ ∆}

Length function                             inversion set inv(w)�(w)

Cayley graph of             : W = �S�

C wikipedia τ3
τ2τ1

 vertices    
 edges            

W

w wss
(s ∈ S)

w < ws �(w) < �(ws)if

w wsswrite:

The Cayley graph is naturally 
oriented by the (right) 

weak order:



e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w◦

On the Cayley graph of FRG
Theorem.      is generated by W S = {sα |α ∈ ∆}

Length function                             inversion set inv(w)�(w)

Cayley graph of             : W = �S�
 vertices    
 edges            

W

w wss
(s ∈ S)

The Cayley graph is naturally 
oriented by the (right) 

weak order:

w < ws �(w) < �(ws)if

w wsswrite:
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= s2s3s2s1s2 = s3s2s3s1s2



Theorem. The weak order is 
a lattice. Moreover:

 reduced expression of   are in 
bijection with maximal chains in 
the interval       . 

 

          iff a reduced expression 
of    is a prefix of a reduced 
expression of   .

     is the unique element of 
maximal length

e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w◦

On the Cayley graph of FRG
Theorem.      is generated by W S = {sα |α ∈ ∆}

Length function                             inversion set inv(w)�(w)

w

[e, w]

u ≤ w ⇐⇒ �(u−1w) = �(w)− �(u)

u ≤ w

u
w

w◦
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On the Cayley graph of FRG
Theorem.      is generated by W S = {sα |α ∈ ∆}
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e

s = sαt = sβ

stts

tst = sts = w◦

Theorem. The weak order is 
a lattice. Moreover:

 reduced expression of   are in 
bijection with maximal chains in 
the interval       . 

 

          iff a reduced expression 
of    is a prefix of a reduced 
expression of   .

     is the unique element of 
maximal length

w
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u ≤ w

u
w
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On the Cayley graph of FRG

Length function                             inversion set inv(w)�(w)

e

s = sαt = sβ

stts

tst = sts = w◦

e s = sα t = sβ st ts sts = tst
� 0 1 1 2 2 3
α α −α γ β −γ −β
β β γ −β −γ α −α
γ γ β α −α −β −γα+ β =

∅

α

α β

β

, γ, γ

Theorem. The weak order is 
a lattice. Moreover:

 reduced expression of   are in 
bijection with maximal chains in 
the interval       . 

 

          iff a reduced expression 
of    is a prefix of a reduced 
expression of   .

     is the unique element of 
maximal length

w

[e, w]

u ≤ w ⇐⇒ �(u−1w) = �(w)− �(u)

u ≤ w

u
w

w◦
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e

s = sαt = sβ

stts

tst = sts = w◦

∅

αβ

On the Cayley graph of FRG
Theorem.      is generated by W S = {sα |α ∈ ∆}

Length function                             inversion set inv(w)�(w)

α β, γ

Theorem. The weak order is 
a lattice. Moreover:

 reduced expression of   are in 
bijection with maximal chains in 
the interval       . 

 

          iff a reduced expression 
of    is a prefix of a reduced 
expression of   .

     is the unique element of 
maximal length

w

[e, w]

u ≤ w ⇐⇒ �(u−1w) = �(w)− �(u)

u ≤ w

u
w

w◦

, γ
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                    so ... ?
 Problem: to understand 

reduced expressions as 
maximal chains in intervals of 
inversion sets? Count them!

Theorem. The weak order is 
a lattice. Moreover:

          

     is the unique element of 
maximal length: 

On the Cayley graph of FRG
Theorem.      is generated by W S = {sα |α ∈ ∆}

Length function                             inversion set �(w) inv(w−1)

u ≤ w ⇐⇒ inv(u−1) ⊆ inv(w−1)

w◦
�(w◦) = |Φ+|

∨ �= ∪; ∧ �= ∩

Christophe Hohlweg, 2013

e

s = sαt = sβ

stts

tst = sts = w◦

∅

αβ

, γ, γ αβ

Φ+



      is            and     is  

Theorem.                              where
            is the order of the rotation     (and          ) 

W = �S | (st)mst = e� mst = mts

st mss = 1

 So the presentation                          is 
illustrated with a Coxeter graph     : 

W = �S | (st)mst = e�

 vertices    (i.e.   )
 edges            for

S ∆
mst mst ≥ 3

m ...

A Coxeter system         is a group            
obtained from a Coxeter graph (allowing            if 
there is no relation between   and  , and            ) 

Coxeter groups and Reflection groups

mss = 1
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 A infinite example: the infinite dihedral group 
       is              (                 ;                     )

      is             or                        - FRGm

...     is                              of rank

A Coxeter system         is a group            
obtained from a Coxeter graph (allowing            
if there is no relation between   and  ) 

Coxeter groups and Reflection groups

|S| = n− 1

Rank 2 Coxeter groups

(m = 2)

Infinite number of words:  
(ts)p, (st)p, s(ts)p, t(st)p, p ∈ N

Christophe Hohlweg, 2013
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...     is                              of rank

A Coxeter system         is a group            
obtained from a Coxeter graph (allowing            
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Coxeter groups and Reflection groups

|S| = n− 1

Rank 2 Coxeter groups

(m = 2)

Infinite number of words:  
(ts)p, (st)p, s(ts)p, t(st)p, p ∈ N

Tilings in 
spherical 
geometry
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      is             or                        - FRGm

...     is                              of rank

A Coxeter system         is a group            
obtained from a Coxeter graph (allowing            
if there is no relation between   and  ) 

Coxeter groups and Reflection groups

|S| = n− 1

Rank 2 Coxeter groups

(m = 2)

Tilings in spherical geometry, 
roots and words 

                simple system;
                           ;
 Choose   generic on a tile s.t.  

 Label the corresp. tile by  .
 Then label by acting ...

e

∆ = {α,β}
S = {s = sα, t = sβ}

�a,α� > 0, �a,β� > 0

a

ea

α β

Hs
Ht

Christophe Hohlweg, 2013
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      is             or                        - FRGm

...     is                              of rank

A Coxeter system         is a group            
obtained from a Coxeter graph (allowing            
if there is no relation between   and  ) 

Coxeter groups and Reflection groups

|S| = n− 1

Rank 2 Coxeter groups

(m = 2)

Tilings in spherical geometry, 
roots and words (general case)  

    simple system;
                      ;
 Choose   generic on a tile s.t.  

 Label the corresp. tile by  .
 Then label by acting ...

α β

Hs
Ht

a

e

e
s = sαt = sβ

st
ts

tst = sts = w◦

|S| = n− 1

The convex hull of

is a convex polytope called a 
permutahedron

w(a), w ∈ W

Permaaa(W ) = conv {w(aaa) |w ∈ W}

∆

S = {sα |α ∈ ∆}

�a,α� > 0, ∀α ∈ ∆

Christophe Hohlweg, 2013

C Pilaud-Stump



 A infinite example: the infinite dihedral group 
       is              (                 ;                     )

      is             or                        - FRGm

...     is                              of rank

A Coxeter system         is a group            
obtained from a Coxeter graph (allowing            
if there is no relation between   and  ) 

Coxeter groups and Reflection groups

|S| = n− 1

Rank 2 Coxeter groups

(m = 2)

Tilings in spherical geometry, 
roots and words 

                simple system;
                           ;
 Choose   generic i.e.  

 Label the corresp. tile by  .
 Then label by acting ...

∆ = {α,β}
S = {s = sα, t = sβ}α β

Hs
Ht

�a,α� > 0, �a,β� > 0

a

e

e
s = sαt = sβ

st
ts

tst = sts = w◦

e

s = sαt = sβ

stts

tst = sts = w◦

∅

αβ

, γ, γ

S

αβ

Weak order & Cayley graph!
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Christophe Hohlweg, 2013



Coxeter groups and Reflection groups
Rank 3 finite reflection groups: isometry groups of

 m-gonal regular prisms m

Dm × S2

 Regular polyhedra

C wikipedia

 tetrahedron

 cube/
octahedron

 dodecahedron/
icosahedron

B3

S4(A3)

Christophe Hohlweg, 2013



Coxeter groups and Reflection groups
 Regular polyhedra, Permutahedra and tilings in rk 3

B3

S4(A3)

C wikipedia for tilings and polyhedra

e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w◦



Coxeter groups and Reflection groups
 Regular polyhedra, Permutahedra and tilings in rk 3

S4(A3)

C wikipedia for tilings and polyhedra

e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w◦

Christophe Hohlweg, 2013



world of roots world of words
Coxeter groups/graphs

Finite 
Reflection 
Groups roots 

to 
words ?Finite Coxeter groups 

How to find all Coxeter graphs that correspond to 
Finite Reflection groups (FRG)? to Finite Coxeter groups?

Coxeter groups and Reflection groups

Christophe Hohlweg, 2013



world of roots world of words
Coxeter groups/graphs

Finite 
Reflection 
Groups roots 

to 
words

``Reflection groups’’?
words 

to 
roots?

?Finite Coxeter groups 

How to find all Coxeter graphs that correspond to 
Finite Reflection groups (FRG)? to Finite Coxeter groups?

Coxeter groups and Reflection groups

Christophe Hohlweg, 2013



Root systems for Coxeter groups ?
An observation

If        is a Finite Reflection Group with                . 

D3

                   corresponds to the subgraphs:                                   

(W,S)

Dihedral (standard) parabolic subgroups:

mst

s = sα t = sβ

or
s = sα t = sβ

I = {s, t} ⊆ S

WI = �I� ≤ W

                acts on                      :WI = Dmst VI = span(α,β)

 We have:                            

sα(β) = β − 2�α,β�α

Christophe Hohlweg, 2013

the scalar product is given on the basis    by ∆

(�α,β�)α,β∈∆ =

�
− cos

�
π

mst

��

s,t∈S

∆ ⊆ Φ+ ⊆ Φ



Root systems for Coxeter groups !
Geometric representations of a Coxeter system 

    real vector space with basis 
     symmetric bilinear form defined by:

(W,S)

V ∆ = {αs | s ∈ S}

B

B(αs,αt) =

�
− cos

�
π

mst

�
if mst < ∞

a ≤ −1 if mst = ∞

    acts on   :
 Root system: 

s(v) = v − 2B(v,α)α, s ∈ SW V

Φ = W (∆), Φ+ = cone(∆) ∩ Φ

Theorem. (i)                   ``  -isometries’’
           (ii) All the properties words/roots for FRG hold in
               this case (inversion sets/length, weak order etc).

W ≤ OB(V ) B

Christophe Hohlweg, 2013



Root systems for Coxeter groups !
Geometric representations of a Coxeter system 

    real vector space with basis 
     symmetric bilinear form defined by:

(W,S)

V ∆ = {αs | s ∈ S}

B

B(αs,αt) =

�
− cos

�
π

mst

�
if mst < ∞

a ≤ −1 if mst = ∞

    acts on   :
 Root system: 

s(v) = v − 2B(v,α)α, s ∈ SW V

Φ = W (∆), Φ+ = cone(∆) ∩ Φ

Theorem. (i)                   ``  -isometries’’
           (ii) All the properties words/roots for FRG hold in
               this case (inversion sets/length, weak order etc).

W ≤ OB(V ) B

Meet 
semilattice: 

no join! 

Lattice



α = ρ1β = ρ�
1

ρ2ρ�
2

ρ3ρ�
3

ρ4ρ�
4

Q

(a) B(α,β ) = −1

= sα(β)
= β + 2α

sβ(α) =
α + 2β =

= sαsβ(α)
= 3α + 2β

ρn = (n + 1)α + nβρ�
n = nα + (n + 1)β

sα(v) = v − 2B(v, α)α.

Root systems for Coxeter groups
Q = {v ∈ V |B(v, v) = 0}

∞(−1)

Infinite 
dihedral 
group I

Φ+

Christophe Hohlweg, 2013



Q−

α = ρ1β = ρ�1

ρ2ρ�2

ρ3ρ�3

ρ4ρ�4

(b) B(α,β ) = −1.01 < −1
sα(v) = v − 2B(v, α)α.

Root systems for Coxeter groups

Infinite 
dihedral 
group II

Q− = {v ∈ V |B(v, v) ≤ 0}

∞(−1, 01)

Christophe Hohlweg, 2013



Classification of Finite Reflection Groups
world of roots world of words

Coxeter groups/graphs

Finite 
Reflection 
Groups roots 

to 
words

  -Reflection groups
words 

to 
roots

Finite 
Coxeter groups 

Theorem. The following assertions are equivalent:
      (i)          is a finite Coxeter system;
      (ii)     is a scalar product and                 ;               
      (iii)     is a finite reflection group.

B

(W,S)
B
W

W ≤ OB(V )

Christophe Hohlweg, 2013



Subgraphs and standard parabolic subgroups 

;             is a Coxeter system
    is irreducible iff      is connected ΓS

...m

S2 ×D∞ ×D3

Dm ×D∞ × S4 1     2      3              n-1     n

To classify finite reflection groups, i.e., finite Coxeter 
groups, we just have to find all connected Coxeter 

graphs that correspond to scalar product!

Classification of Finite Reflection Groups

Christophe Hohlweg, 2013



Theorem. The irreducible FRG are precisely the finite 
irreducible Coxeter groups. Their graphs are:

...

...

...

m

n = |S| = dim(V )

Classification of Finite Reflection Groups

Christophe Hohlweg, 2013



Conclusion
world of roots world of words

Coxeter groups/graphs

Finite 
Reflection 
Groups

roots 
to 

words

  -Reflection groups
words 

to 
rootsB

Problem: Let            , classify all the Coxeter graphs 
with signature         . Count them?

N.B.: Known for          - FRG -;                - affine type - and 
partially for                - ``weakly hyperbolic’’ type

ΓW allowing ∞(a ≤ −1)signature          of (p, q, r) B

p, q, r ∈ N
(p, q, r)

Christophe Hohlweg, 2013

(n, 0, 0) (n− 1, 0, 1)
(n− 1, 1, 0)



Selected biblio of Part 1 ...Donald Coxeter
(London 1907, Toronto 2003)

Professor at University of Toronto 
(1936-2003)

Christophe Hohlweg, 2013



Part 3 - Roots and Words in infinite 
Coxeter groups 

Christophe Hohlweg, 2013



The Cayley graph of         is naturally oriented by the (right) 
weak order:                                  .

The weak order is a meet-semilattice and 

In the last Episode
world of roots world of words

Coxeter groups/graphs

Finite 
Reflection 
Groups

roots 
to 

words

  -Reflection groups
words 

to 
rootsB

ΓW allowing ∞(a ≤ −1)signature          of (p, q, r) B

Christophe Hohlweg, 2013

w < ws �(w) < �(ws)if
(W,S)

u ≤ w ⇐⇒ inv(u−1) ⊆ inv(w−1)
(inv(w−1) = Φ+ ∩ w(Φ−))



A simple system   , i.e., ∆
• ∆ is a basis of V ;

• B(α,α ) = 1 for all α ∈ ∆;

• B(α,β ) ∈ ]−∞,−1] ∪{− cos
�

π
k

�
, k ≥ 2}, for all α,β ∈ ∆

A B-reflection group    generated 
by                    . 

W

S := {sα |α ∈ ∆}

Root system: Φ = W (∆)

Theorem (Vinberg, 1971)

  (a)         is a Coxeter system;
  (b) the order of       is   (or    ) if
                            (or                ) 
  (c)                        is a positive
      root system:                  . 

(W,S)
sαsβ k ∞

B(α,β) = − cos(π
k ) B(α,β) ≤ −1

Φ+ := cone(∆) ∩ Φ
Φ = Φ+ � −Φ+

Q−

α = ρ1β = ρ�1

ρ2ρ�2

ρ3ρ�3

ρ4ρ�4

(b) B(α,β ) = −1.01 < −1

∞(−1, 01)

In the spherical, euclidean and hyperbolic case, all finitely 
generated discrete B-reflection groups are Coxeter groups (models 
for these geometry exist in V or its dual; `cut’ these models by 

the hyperplanes of reflections)

C Pilaud-Stump, Sage, Wikipedia, Casselman

Finite case i.e. B is a scalar product (         ): 
the model is the unit sphere

||v||2 = B(v, v) = 1

V = V ∗

Christophe Hohlweg, 2013

In the last Episode



A simple system   , i.e., ∆
• ∆ is a basis of V ;

• B(α,α ) = 1 for all α ∈ ∆;

• B(α,β ) ∈ ]−∞,−1] ∪{− cos
�

π
k

�
, k ≥ 2}, for all α,β ∈ ∆

A B-reflection group    generated 
by                    . 

W

S := {sα |α ∈ ∆}

Root system: Φ = W (∆)

Theorem (Vinberg, 1971)

  (a)         is a Coxeter system;
  (b) the order of       is   (or    ) if
                            (or                ) 
  (c)                        is a positive
      root system:                  . 

(W,S)
sαsβ k ∞

B(α,β) = − cos(π
k ) B(α,β) ≤ −1

Φ+ := cone(∆) ∩ Φ
Φ = Φ+ � −Φ+

Q−

α = ρ1β = ρ�1

ρ2ρ�2

ρ3ρ�3

ρ4ρ�4

(b) B(α,β ) = −1.01 < −1

∞(−1, 01)

C Pilaud-Stump, Sage, Wikipedia, Casselman

In the spherical, euclidean and hyperbolic case, 
they are all Coxeter groups (models for these geometry exist in V 
or its dual; `cut’ these models by the hyperplanes of reflections)

Finite case i.e. B is a scalar product 

Affine case i.e. B is positive degenerate. Its radical is a 
line: 
The model is an affine hyperplane in the dual    :

N.B: reflection hyperplanes leave in the dual here.

Rad(B) = {v ∈ V |B(v,α) = 0, ∀α ∈ ∆} = Rx
V ∗

H = {ϕ ∈ V
∗ |ϕ(x) = 1}

sgn(B) = (n, 0, 0)

Christophe Hohlweg, 2013

In the last Episode



A simple system   , i.e., ∆
• ∆ is a basis of V ;

• B(α,α ) = 1 for all α ∈ ∆;

• B(α,β ) ∈ ]−∞,−1] ∪{− cos
�

π
k

�
, k ≥ 2}, for all α,β ∈ ∆

A B-reflection group    generated 
by                    . 

W

S := {sα |α ∈ ∆}

Root system: Φ = W (∆)

Theorem (Vinberg, 1971)

  (a)         is a Coxeter system;
  (b) the order of       is   (or    ) if
                            (or                ) 
  (c)                        is a positive
      root system:                  . 

(W,S)
sαsβ k ∞

B(α,β) = − cos(π
k ) B(α,β) ≤ −1

Φ+ := cone(∆) ∩ Φ
Φ = Φ+ � −Φ+

Q−

α = ρ1β = ρ�1

ρ2ρ�2

ρ3ρ�3

ρ4ρ�4

(b) B(α,β ) = −1.01 < −1

∞(−1, 01)

In the spherical, euclidean and hyperbolic case, 
they are all Coxeter groups (models for these geometry exist in V 
or its dual; `cut’ these models by the hyperplanes of reflections)

C Pilaud-Stump, Sage, Wikipedia, Casselman

Affine case i.e. B is positive degenerate. Finite case i.e. B is a scalar product 
sgn(B) = (n, 0, 0) sgn(B) = (n− 1, 0, 1)

Hyperbolic case i.e.                                           (         ). Many 
models exists: projective (non conformal), hyperboloïd or the ball 
model

sgn(B) = (n− 1, 1, 0) V = V ∗

H
n−1 = {x ∈ V |B(x, x) = −1}

Christophe Hohlweg, 2013

In the last Episode



The Cayley graph of         is naturally oriented by the (right) 
weak order:                                  .

The weak order is a meet-semilattice and 

In the last Episode
world of roots world of words

Coxeter groups/graphs

Finite 
Reflection 
Groups

roots 
to 

words

  -Reflection groups
words 

to 
rootsB

ΓW allowing ∞(a ≤ −1)signature          of (p, q, r) B

Christophe Hohlweg, 2013

w < ws �(w) < �(ws)if
(W,S)

u ≤ w ⇐⇒ inv(u−1) ⊆ inv(w−1)
(inv(w−1) = Φ+ ∩ w(Φ−))



e

s1

s2

s3

s1s2

s2s1

s1s3

s2s3

s3s2
s1s2s1

s1s2s3

s1s3s2

s2s3s1

s2s3s2

s3s2s1
s1s2s3s1

s1s2s3s2

s2s3s1s2

s1s3s2s1

s2s3s2s1 s1s2s3s1s2

s1s2s3s2s1

s2s3s1s2s1

w◦

An Illustration: Words, Roots and 
Generalized Associahedra

 Permutahedra

    simple system;
                      ;
 Choose   generic i.e.  

∆

S = {sα |α ∈ ∆}

 finite Coxeter system, so W ≤ O(V )(W,S)

Permaaa(W ) = conv {w(aaa) |w ∈ W}

Christophe Hohlweg, 2013

C someone on the internet

Proposition.              is a simple polytope whose oriented 
1-skeleton is the graph of the (right) weak order.      

Permaaa(W )

aaa

�aaa,α� > 0, ∀α ∈ ∆



Associahedra (Convex polytopes):
 Type A (Haiman 1984, Lee, Loday, ... ) 
 Type B - cyclohedra (Bott-Taubes 1994, ...)
 Weyl groups (Chapoton-Fomin-Zelevinsky, 

2003)
 from permutahedra of finite Coxeter groups 

(CH-Lange-Thomas 2011, ...)

Building Generalized Associahedra

Christophe Hohlweg, 2013

Associahedra (lattices/complexes):
 Lattice (Tamari, 1951) 
 Cell complex (Stasheff, 1963)
 Cluster complex (Fomin-Zelevinsky, 2003)

 Cambrian lattices (Reading 2007, 
2007 )and more ...



   Coxeter element associated to this orientation i.e 
product without repetition of all the simple reflections; 

     subword with letters 

Building Generalized Associahedra
Hohlweg, C. Lange, H. Thomas (2009) 

c

c(I)

W = S4

c = τ2τ3τ1

I = {τ1, τ2} ⊆ S ⇒ c(I) = τ2τ1

   - word of     :                                     reduced 
expression s.t.  
c w◦ wowowo(c) = c(K1)c(K2) . . . c(Kp)

S ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kp �= ∅
wowowo(τ1τ2τ3) = τ1τ2τ3.τ1τ2.τ1 = c(S)c({τ1,τ2})c({τ1})
wowowo(τ2τ3τ1) = τ2τ3τ1.τ2τ3τ1 = c(S)c(S).

Christophe Hohlweg, 2013

 Data:              and an orientation of Permaaa(W ) ΓW

τ1 τ2 τ3

I ⊆ S



Building Generalized Associahedra
Hohlweg, C. Lange, H. Thomas (2009) 

   - word of     :                                     reduced 
expression s.t.  
c w◦ wowowo(c) = c(K1)c(K2) . . . c(Kp)

S ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kp �= ∅
wowowo(τ1τ2τ3) = τ1τ2τ3.τ1τ2.τ1 = c(S)c({τ1,τ2})c({τ1})
wowowo(τ2τ3τ1) = τ2τ3τ1.τ2τ3τ1 = c(S)c(S).

   - singletons are the prefixes 
of        up to commutations
c

wowowo(c)

Proposition.                - singletons form a 
distributive sublattice of the weak order.

c

Christophe Hohlweg, 2013

e, τ2τ3, τ2τ3τ1τ2τ3,
τ2, τ2τ3τ1, τ2τ3τ1τ2τ1, and
τ2τ1, τ2τ3τ1τ2, wo = τ2τ1τ3τ2τ1τ3.



Theorem. The 1-skeleton of

is N. Reading’s   - Cambrian lattice; 
its normal fan is the corresponding 
Cambrian fan studied in detailed by 
N. Reading & D. Speyer.

Building Generalized Associahedra
Hohlweg, C. Lange, H. Thomas (2009) 

   - generalized associahedron 
is the polytope              
obtained from                by 
keeping only the facets 
containing a   - singleton

c

c

Assoaaac (W )

Permaaa(W )

c

Assoaaac (W )

Christophe Hohlweg, 2013



e

τ1

τ2

τ3

τ1τ2

τ2τ1

τ1τ3

τ2τ3

τ3τ2
τ1τ2τ1

τ1τ2τ3

τ1τ3τ2

τ2τ3τ1

τ2τ3τ2
τ3τ2τ1

τ1τ2τ3τ1

τ1τ2τ3τ2

τ2τ3τ1τ2

τ1τ3τ2τ1

τ2τ3τ2τ1 τ1τ2τ3τ1τ2

τ1τ2τ3τ2τ1

τ2τ3τ1τ2τ1

w◦

e

τ1

τ1τ2

τ1τ2τ1τ1τ2τ3

τ1τ2τ3τ1

τ1τ2τ3τ1τ2
w◦

τ2

τ3

τ1τ3

τ2τ3
τ2τ3τ2

τ1τ2τ3τ2

Type A

Christophe Hohlweg, 2013



e

wo

e

wo

e

wo = τ0τ1τ2τ0τ1τ2τ0τ1τ2

Type B Type H

Christophe Hohlweg, 2013



V. Pilaud and C. Stump:

1. Brick polytopes of spherical subword 
complexes: A new approach to 
generalized associahedra (2012)

2. Vertex barycenter of generalized 
associahedra (2012)

 Convex hull of the vertices: brick polytopes. Barycenter 
identical to the permutahedron:

 Classification of isometry classes in term of the lattices 
of    singletons (N. Bergeron, Hohlweg, C. Lange, H. Thomas, 2009)

 Recovering the corresponding cluster algebra: 

C Pilaud-Stump

c−

S. Stella, Polyhedral models for generalized associahedra via Coxeter elements (2013)

ASSOCIAHEDRA IN INFINITE CASE ?

Selected developements on the subject

Christophe Hohlweg, 2013



e

τ1

τ2

τ3

τ1τ2

τ2τ1

τ1τ3

τ2τ3

τ3τ2
τ1τ2τ1

τ1τ2τ3

τ1τ3τ2

τ2τ3τ1

τ2τ3τ2
τ3τ2τ1

τ1τ2τ3τ1

τ1τ2τ3τ2

τ2τ3τ1τ2

τ1τ3τ2τ1

τ2τ3τ2τ1 τ1τ2τ3τ1τ2

τ1τ2τ3τ2τ1

τ2τ3τ1τ2τ1

w◦

e

τ1

τ1τ2

τ1τ2τ1τ1τ2τ3

τ1τ2τ3τ1

τ1τ2τ3τ1τ2
w◦

τ2

τ3

τ1τ3

τ2τ3
τ2τ3τ2

τ1τ2τ3τ2

My original motivation (2010): to generalize 
this approach in the infinite case ...

 Infinite case: Cambrian meet-semilattices (Sortable Elements 

in Infinite Coxeter Groups, N. Reading and D. Speyer, 2011) are not big 
enough ...

ASSOCIAHEDRA IN INFINITE CASE ?

Problem: is it possible to «enlarge» Coxeter groups to 
have reasonable candidates with a weak order that is a 
complete lattice ? An answer may lie on the side of 
inversion sets!

Christophe Hohlweg, 2013



Weak order: write                      then

More on the weak order

e

s = sαt = sβ

stts

tst = sts = w◦

∅

α
β

, γ, γ αβ

Φ+
D3

N(w) = inv(w−1) u ≤ v ⇐⇒ N(u) ⊆ N(v)

Proposition. The map                     is an injective morphism 
of meet-semilattice. Reduced expressions `are’ chains in intervals.

N : W → P(Φ+)

What is         ?  Im(N)

Christophe Hohlweg, 2013
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Weak order: write                      then

A recap from the other way around 

e

s = sαt = sβ

stts

tst = sts = w◦

∅

α
β

, γ, γ αβ

Φ+
D3

N(w) = inv(w−1) u ≤ v ⇐⇒ N(u) ⊆ N(v)

N : W → P(Φ+)

What is         ?  Im(N)

Proposition. The map                     is an injective morphism 
of meet-semilattice. Reduced expressions `are’ chains in intervals.

Christophe Hohlweg, 2013



A ‘weak order lattice’ in general?

e

s = sαt = sβ

stts

tst = sts = w◦

∅

α
β

, γ, γ αβ

Φ+
D3

Proposition. 

          is closed if for all                                   ; 
          is biclosed if              are closed.
A ⊆ Φ+

A ⊆ Φ+

α,β ∈ A, cone(α,β) ∩ Φ ⊆ A

A, Φ+ \A

Im(N) = {finite Biclosed sets in Φ+}

B(W ) = {biclosed sets}

Christophe Hohlweg, 2013



e

s = sαt = sβ

stts

tst = sts = w◦

∅

α
β

, γ, γ αβ

Φ+

Proposition. 

          is closed if for all                                   ; 
          is biclosed if              are closed.
A ⊆ Φ+

A ⊆ Φ+

α,β ∈ A, cone(α,β) ∩ Φ ⊆ A

A, Φ+ \A

Im(N) = {finite Biclosed sets in Φ+}

B(W ) = {biclosed sets}

Conjecture (M. Dyer, 2011). 
              is a lattice (with 
minimal element    and maximal 
element    .)

(B(W ),⊆)

∅
Φ+

                    so how to 
understand them geometrically?
 Biclosed sets are the candidate 

for «generalized words»

∨ �= ∪; ∧ �= ∩

A ‘weak order lattice’ in general?

Christophe Hohlweg, 2013



ρn = (n + 1)α + nβρ�
n = nα + (n + 1)β

The example of the infinite dihedral group

∞(−1)

Infinite 
dihedral 
group I

α = ρ1β = ρ�
1

ρ2ρ�
2

ρ3ρ�
3

ρ4ρ�
4

Q

(a) B(α,β ) = −1

= sα(β)
= β + 2α

sβ(α) =
α + 2β =

= sαsβ(α)
= 3α + 2β

sα(v) = v − 2B(v, α)α.

Q = {v ∈ V |B(v, v) = 0}

Φ+

Christophe Hohlweg, 2013

The biclosed are:
 the finite ones;
 their complements;
 and two infinite 

ones: the left and 
right side of Q!



ρn = (n + 1)α + nβρ�
n = nα + (n + 1)β

The example of the infinite dihedral group

∞(−1)

Infinite 
dihedral 
group I

α = ρ1β = ρ�
1

ρ2ρ�
2

ρ3ρ�
3

ρ4ρ�
4

Q

(a) B(α,β ) = −1

= sα(β)
= β + 2α

sβ(α) =
α + 2β =

= sαsβ(α)
= 3α + 2β

sα(v) = v − 2B(v, α)α.

Q = {v ∈ V |B(v, v) = 0}

Φ+

Christophe Hohlweg, 2013

= {v ∈ V |
�

α∈∆

vα = 1}

More 
examples: 
`Cut’    by 
an affine 
hyperplane

Φ+



infinite root systems?

α = ρ1β = ρ�
1

ρ2ρ�
2

ρ3ρ�
3

ρ4ρ�
4

Q

(a) B(α,β ) = −1

= sα(β)
= β + 2α

= sαsβ(α)
= 3α + 2β

Q−

α = ρ1β = ρ�1

ρ2ρ�2

ρ3ρ�3

ρ4ρ�4

(b) B(α,β ) = −1.01 < −1

Other examples of

V1 = {v ∈ V |
�

α∈∆

vα = 1}
Affine hyperplane

Normalized isotropic 
cone: �Q := Q ∩ V1

sβ(α) =
α + 2β = � � � �

Normalized roots
�ρ := ρ/

�

α∈∆

ρα

Christophe Hohlweg, 2013



infinite root systemsOther examples of

sβ(α) =
α + 2β =

� � � �

...

finite type of rank 2

. . . . . ..
3 4

Christophe Hohlweg, 2013



sβ(α) =
α + 2β =

� � � � . . . . . ..
3 4

dim 2

And the 
graph is ?

Other examples of infinite root systems (with SAGE)

Christophe Hohlweg, 2013



sβ(α) =
α + 2β =

� � � � . . . . . ..
3 4

dim 2

Affine

Other examples of infinite root systems (with SAGE)

Christophe Hohlweg, 2013



sβ(α) =
α + 2β =

� � � � . . . . . ..
3 4

dim 2

AffineHyperbolique

Other examples of infinite root systems (with SAGE)

Christophe Hohlweg, 2013



Other examples of
� � � �

dim 2

dim 3

dim 3

infinite root systems (with SAGE)

Christophe Hohlweg, 2013

Observation: a 
dihedral subgroup 
group is infinite iff 
the associated line 
cuts Q 



Other examples of
� � � �

dim 2

dim 3 dim 3

dim 4

conv(∆)

infinite root systems (with SAGE)

Christophe Hohlweg, 2013



Other examples of
� � � �

dim 2

dim 3 dim 3

dim 4

conv(∆)

infinite root systems (with SAGE)

(2, 2)Sgn is 

From joint works 
with: 

 J.P Labbé and 
V. Ripoll (2012) 
M. Dyer and V. 
Ripoll (2013)

Christophe Hohlweg, 2013



� � � �

dim 2

dim 3 dim 3

conv(∆)

Other examples of infinite root systems (with SAGE)

From joint works 
with: 

 J.P Labbé and 
V. Ripoll (2012) 
M. Dyer and V. 
Ripoll (2013)

dim 4

Problem still there: what can we 
say about these pictures that 
help understand biclosed sets? 

Christophe Hohlweg, 2013

Actually, at this point, not that much about biclosed but... 

dim 4



Illustration of some known 
combinatorics on infinite root systems

Depth of a root is
α1, . . . ,αk, αk+1 ∈ ∆}.

dp(ρ) = 1 + min{k | ρ = sα1sα2 . . . sαk(αk+1),

How to see the action of     on    :                              
is a barycenter of   and   .

W �Φ sα · β = �sα(β) ∈ L(α̂, β̂)

α̂ β̂

Root poset on     : transitive closure of the relationΦ+

β < sα(β) ⇐⇒ dp(β) < dp(sα(β)); (α ∈ ∆)

Christophe Hohlweg, 2013
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Small root: roots obtained from    along a path in the root 
poset corresp. to finite dihedral reflection subgroups (i.e. the 
lines does not cut Q). 

Theorem (Brink-Howlett, 1993) 

 The set   of small roots is finite.

A finite state automaton that 
recognize reduced expressions:

 everything depends of the 
combinatorics of the small descent 
set 

 The nodes of a finite automaton 
that recognized the set of reduced 
words is: 

Σ

α β

γ

sα sβ∞

sγ

4 -1.5

∆

Illustration of some known 
combinatorics on infinite root systems

{DΣ(w) |w ∈ W}

DΣ(w) = inv(w) ∩ Σ

Problem:
      from     ? |Σ| ΓW

Christophe Hohlweg, 2013

sα(γ)

sγ(α)
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Small root: roots obtained from    along a path on on the root 
poset corresp. to finite dihedral reflection subgroups (i.e. the 
lines does not cut Q). 

Theorem (Brink-Howlett, 1993) 

 The set   of small roots is finite.

For building a finite state automaton 
for Coxeter groups:

 everything depends of the 
combinatorics of the small descent 
set 

 The nodes of a finite automaton 
that recognized the set of reduced 
words is: 

Σ

α β

γ

sα sβ∞

sγ

4 -1.5

∆

Illustration of some known 
combinatorics on infinite root systems

{DΣ(w) |w ∈ W}

DΣ(w) = inv(w) ∩ Σ

∞(−1)



Small root: roots obtained from    along a path in the root 
poset corresp. to finite dihedral reflection subgroups (i.e. the 
lines does not cut Q). 

Theorem (Brink-Howlett, 1993) 

 The set   of small roots is finite.

For building a finite state automaton 
that recognize reduced expressions:

 everything depends of the 
combinatorics of the small descent 
set 

 The nodes of a finite automaton 
that recognized the set of reduced 
words is: 

Σ

α β

γ

sα sβ∞

sγ

4 -1.5

∆

Illustration of some known 
combinatorics on infinite root systems

{DΣ(w) |w ∈ W}

DΣ(w) = inv(w) ∩ Σ

Problem:
      from     ? |Σ| ΓW

Question: 
Is it possible to recognize biclosed 

sets???
If A is biclosed, properties 

of           ? 
     

Christophe Hohlweg, 2013

�

β∈A

qdp(β)



� � � �

dim 2

dim 3 dim 3

dim 4

conv(∆)

Obervation: The `size’ of a 
generalized root (in red in this 
last picture) is decreasing as the 
depth of the root is increasing.

α1, . . . ,αk, αk+1 ∈ ∆}.
dp(ρ) = 1 + min{k | ρ = sα1sα2 . . . sαk(αk+1),

What can we say about these pictures?

Christophe Hohlweg, 2013

Joint works with : 
Labbé & Ripoll;
Dyer & Ripoll



Christophe Hohlweg, 2013

A look at limits of roots

Definition/Proposition: the set of limit roots is:

E(Φ) = Acc(�Φ) ⊆ Q∩ conv(∆)

Joint works with : 
Labbé & Ripoll;
Dyer & Ripoll

dim 4

conv(∆)

dim 3

A `fractal phenomenon’? How     acts on       ?
Link with hyperbolic geometry (hyperbolic reflection groups) and 
with Apollonian gasket (Kleinian groups) - story in CH, JP-Préaux and V. 
Ripoll (2013)

W E(Φ)



A geometric action on  

L(α, x)

x

sα · x

E(Φ) = Acc(�Φ)

New action:               on the set        given on E 

by:

w · v = �w(v)

Theorem (Dyer, CH, Ripoll 2013) 

Action on   faithful if irreducible 
not affine nor finite of rank > 2.

�Q ∩ L(α, x) = {x, sα · x}

Christophe Hohlweg, 2013

�Φ � E

Extending the `barycentric’ action W · �Φ

E



Theorem (Dyer, CH, Ripoll 2013) 

Action on   faithful if irreducible 
not affine nor finite.

E

A geometric action on  
Remark:    is not stable under   .  V1 W

L(α, x)

x

sα · x

E(Φ) = Acc(�Φ)

New action:               on the set        given on E 

by:

w · v = �w(v)
�Q ∩ L(α, x) = {x, sα · x}

Christophe Hohlweg, 2013

�Φ � E



A geometric action on  
Remark:    is not stable under   .  V1 W

L(α, x)

sα · x

E(Φ) = Acc(�Φ)

New action:               on the set        given on E 

by:

w · v = �w(v)
�Q ∩ L(α, x) = {x, sα · x}

Christophe Hohlweg, 2013

�Φ � E

Corollary: to build E ...

Theorem (Dyer, CH, Ripoll 2013) 

Action on   faithful if irreducible 
not affine nor finite of rank > 2.

E



Remarkable dense subsets
   of 

Dihedral reflection subgroups:               ,    
Associated root system: 
Observation: 

Limits of roots of dihedral reflection subgroups:

W � = �sρ, sγ� ρ,γ ∈ Φ+

Φ� = W �({ρ,γ })

Theorem (CH, Labbé, Ripoll 2012) 

 The sets     and    are dense 
in       .  

E2

E(Φ)

E(Φ�) = �Q ∩ L(�ρ, �γ)

E(Φ) = Acc(�Φ)

Christophe Hohlweg, 2013

E◦
2

              where
E◦

2 :=
�

α∈∆
ρ∈Φ+

L(α, �ρ) ∩ �Q
E2 = W · E◦

2



The action on E is minimal

Theorem (Dyer, CH, Ripoll 2013) 

The closure of        is dense in       for W · x E(Φ)

Christophe Hohlweg, 2013

Corollary (Dyer, CH, Ripoll, 2013) 
A first fractal Phenomenon.

L(α, x)

x

sα · x

sα · y

y

Theorem (Dyer, CH, Ripoll, 2013) 

 
Morever, in this case, 

E = Q̂ ⇐⇒ Q̂ ⊆ conv(∆)

x ∈ E(Φ)

sgn(B) = (n, 1, 0)



A second fractal phenomenon

Theorem (Dyer, CH, Ripoll 2013) For irreducible root of 
signature           we have:

Problem (second fractal phenomenon): is it 
true for other indefinite types?

?

(2, 2)Sgn is 

E = conv(E) ∩Q(n, 1, 0)



Imaginary cone and tiling of  

Christophe Hohlweg, 2013

conv(E)

Imaginary convex body   is the      orbit of the polytope

Proposition (Dyer, CH, Ripoll 2013). The action of    on    extends 
to an action of     on           . So     acts on 

W E
W conv(E) W �Φ � conv(E)

K = {v ∈ conv(∆) |B(v,α) ≤ 0, ∀α ∈ ∆}
W−I

Theorem (Dyer, 2012). I = conv(E)

Theorem (Dyer, CH, Ripoll 2013). 

with equality for sgn (n, 1, 0)

Problem: prove equality in general!

E ⊆ W · z, ∀z ∈ I



Imaginary cone and tiling of  

Christophe Hohlweg, 2013

conv(E)

Imaginary convex body   is the      orbit of the polytope

Proposition (Dyer, CH, Ripoll 2013). The action of    on    extends 
to an action of     on           . So     acts on 

W E
W conv(E) W �Φ � conv(E)

K = {v ∈ conv(∆) |B(v,α) ≤ 0, ∀α ∈ ∆}
W−I

Theorem (Dyer, 2012). I = conv(E)

Theorem (Dyer, CH, Ripoll 2013). 

with equality for sgn
E ⊆ W · z, z ∈ I

(n, 1, 0)

Problem: prove equality in general!

I

K

�Φ



A step toward biclosed sets: Infinite words, their 
inversion sets and limit weak order

Thomas Lam & Anne Thomas: in ``Infinite Reduced Words and 
the Tits Boundary of a Coxeter Group’’
Limit weak order on infinite words (modulo braid relations) as 
the topology of the visual boundary of the Davis complex

Propostion. The inversion sets of 
infinite words are biclosed.

Work in progress (CH 2013). The imaginary 
convex body is a geometric realization 
of the Davis complex and E is the visual 
boundary. Biclosed and their boundary! C  Lam & Thomas

Christophe Hohlweg, 2013

N(sαsβsα . . . ) = {α, sα(β), sαsβ(α), . . . }
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α = ρ1β = ρ�
1

ρ2ρ�
2

ρ3ρ�
3

ρ4ρ�
4

Q

(a) B(α,β ) = −1

= sα(β)
= β + 2α

sβ(α) =
α + 2β =

= sαsβ(α)
= 3α + 2β
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A step toward biclosed sets: Infinite words, their 
inversion sets and limit weak order

Thomas Lam & Anne Thomas: in ``Infinite Reduced Words and 
the Tits Boundary of a Coxeter Group’’
Limit weak order on infinite words (modulo braid relations) as 
the topology of the visual boundary of the Davis complex

Propostion. The inversion sets of 
infinite words are biclosed.

Work in progress (CH 2013). The imaginary 
convex body is a geometric realization 
of the Davis complex and E is the visual 
boundary. Biclosed and their boundary! C  Lam & Thomas

Christophe Hohlweg, 2013

N(sαsβsα . . . ) = {α, sα(β), sαsβ(α), . . . }



A step toward biclosed sets: Infinite words, their 
inversion sets and limit weak order

C  Lam & Thomas

Christophe Hohlweg, 2013

∞

K

Here a rank 5 Coxeter group is 
represented in dim 3:

      is not a basis but is 
postivily independant.
∆

Ball model

Roots and imaginary 
convex body model



Selected bibliography and other readings

Christophe Hohlweg, 2013

And articles already cited + from
 Brigitte Brink, Bill Casselman, Fokko du Cloux, Bob 

Howlett, Xiang Fu (regarding automaton and comb.)
 Matthew Dyer (imaginary cones, weak order(s))
 CH & coauthors (Matthew Dyer, Jean-Philippe Labbé, 

Jean-Philippe Préaux, Vivien Ripoll). A good start for limit 
of roots and imaginary convex bodies is the survey of the case of 
Lorentzian spaces (CH, Ripoll, Préaux)
 Paolo Pappi and Ken Ito (limit weak order) 
 ...


