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Arrangements of DP M. Pocchiola Fall 2013

SUMMARY

Arrangements of DP-ribbons
Arrangements of DP-ribbons of genus 1
Connection with the algorithmics of (two-dimensional) visibility graphs

Combinatorics of arrangements of DP-ribbons of genus 1
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Further research and open problems
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DP-RIBBONS

DF 1. A DP-ribbon is a cylinder with a distinguished core circle with a distinguished side.
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ARRANGEMENTS OF DP-RIBBONS
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DF 2. An arrangement of DP-ribbons is a finite family of DP-ribbons pairwise attached as

shown in the above figure.
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ARRANGEMENTS OF DP-RIBBONS

o f [ o
M

. [ -
M

o—~<1—95 o~
b b

PP 1. An arrangement of two DP-ribbons lives in a sphere with 1 crosscap and 5 boundaries
(3 tetragons and 2 digons).
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AN ARRANGEMENT OF THREE DP-RIBBONS

genus

2 — #boundaries 4+ #vertices

10 boundaries
2 digons
6 tetragons
1 octogon
1 dodecagon
12 vertices
double Klein bottle
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ARRANGEMENTS OF DOUBLE PSEUDOLINES

TH 1 (Habert and P. 2006). Arrangements of DP-ribbons of genus 1 are exactly, mod-
ulo the addition of topological disks along their boundaries, the arrangements of double

pseudolines, i.e., the dual arrangements of finite families of pairwise disjoint convex bod-
ies of (real two-dimensional) projective planes.
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CROSS-SURFACES, PSEUDOLINES AND DOUBLE PSEUDOLINES
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PROJECTIVE PLANES

Hilbert 1899, Kolmogoroff 1932, Kéthe 1939, Skornjakov 1954, Salzmann 1955, Freudenthal 1957

. joining line of p and ¢

intersection point of k£ and [

DF. A (real two-dimensional) projective plane is a topological point-line incidence
structure (P, L, €) whose point space P is a cross-surface and whose line space L is a subspace
of the space of pseudolines of P such that (1) any two distinct points are contained in exactly
one line which depends continuously on the two points; (2) any two distinct lines intersect
in exactly one point which depends continuously on the two lines.
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STANDARD PROJECTIVE PLANE

DF'. The standard projective plane is the projective plane whose point space is the stan-
dard cross surface P? and whose line space is the image under the canonical projection
S? — P? of the space of great circles of S°.

10
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STANDARD PROJECTIVE PLANE

DF. The standard projective plane is the projective plane whose point space is the stan-
dard cross surface P? and whose line space is the image under the canonical projection
S? — P? of the space of great circles of S°.

TH (Hilbert, 1899). The standard projective plane is the unique desarguesian projective
plane.

345
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DUALITY IN PROJECTIVE PLANES

O
u

point space line space

TH. The line space of a projective plane is a cross-surface and the dual of a point of a
projective plane (i.e., the pencil of lines through that point) is a pseudoline of its line space.

(P,.L)— (L, P*) — (P, L") ~ (P, L)

12
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DUAL OF A PAIR OF DISJOINT CONVEX BODIES

TH (Habert and P. 2006). Up to homeomorphism, the dual of a pair of disjoint convex bodies
is the unique pair of double pseudolines that intersect transversely in four points and induce
a cellular decomposition of their underlying cross-surface.

13
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ARRANGEMENTS OF DOUBLE PSEUDOLINES

TH 1 (Habert and P. 2006). Arrangements of DP-ribbons of genus 1 are exactly, mod-
ulo the addition of topological disks along their boundaries, the arrangements of double

pseudolines, i.e., the dual arrangements of finite families of pairwise disjoint convex bod-
ies of (real two-dimensional) projective planes.

14
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ALGORITHMICS OF VISIBILITY GRAPHS

TH (Habert & P. 12, Angelier & P. 03, P. & Vegter 96). The k free bitangent line
segments of a planar family of n pairwise disjoint convexr bodies presented by its chirotope
are computable in O(k + nlogn) time and O(n) working space.
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SIMPLE ARRANGEMENTS OF THREE DOUBLE PSEUDOLINES
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ENUMERATION OF ARRANGEMENTS OF DOUBLE PSEUDOLINES

a,(1) = # simple arrangements of n double pseudolines
b,(1) = # simple indexed arrangements of n oriented double pseudolines
n |2 3 4 5

a,(1)|1 13 6570 181403533
bo(1) |1 216 2415112 ne
Ferté, Pilaud and P. 2008
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LR CHARACTERIZATION

TH 2 (Habert and P. 2006). An arrangement of DP-ribbons is of genus 1 if and only if
its subarrangements of size 3, 4 and 5 are of genus 1.

[] mutation

[] separation

SEANP
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LR CHARACTERIZATION

TH 2 (Habert and P. 2006). An arrangement of DP-ribbons is of genus 1 if and only if
its subarrangements of size 3, 4 and 5 are of genus 1.

CJ (P. 2010). An arrangement of 5 DP-ribbons is of genus 1 if and only if its subarrange-
ments of size 4 (hence 3) are of genus 1.

19
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LR CHARACTERIZATION

TH 2 (Habert and P. 2006). An arrangement of DP-ribbons is of genus 1 if and only if
its subarrangements of size 3, 4 and 5 are of genus 1.

CJ (P. 2010). An arrangement of 5 DP-ribbons is of genus 1 if and only if its subarrange-
ments of size 4 (hence 3) are of genus 1.

TH 3 (P. 2013). An arrangement of 5 DP-ribbons whose subarrangements of size 4 are of

genus 1 is of genus 1 or its subarrangements of size 4 belong to a well-defined family of few
tens of arrangements.

20
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ENUMERATION

H/\lw

DO
= 3
e\
= V)

PP 2. There 1s a natural correspondence between indexed arrangements of n oriented DP-

ribbons and the n-tuples of suffles of the n — 1 circular sequences 7775, 7 = 2,3,...,n.
Furthermore ...

21
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ENUMERATION (CONTINUED)

1: 22223333
2: 11113333
3: 12211221

22
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ENUMERATION (CONTINUED)

PP 2. There 1s a natural correspondence between indexed arrangements of n oriented DP-
ribbons and the n-tuples of suffles of the n — 1 circular sequences 7777, 7 = 2,3,...,n.
Furthermore the number b, of indexed arrangements of n oriented DP-ribbons is

dn — 5 "
3,44 ... .4

%slw

and the number a, arrangements of n DP-ribbons 1s bounded from below by

b/ (2"n)).

3
Em& = 140° = 2744000 | [b3/(233!)] = 57167 | a3 = 58042

ﬁ
b= {£(1)} = 184500°
{265

5
W — 10090080007
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ENUMERATION (CONTINUED)

a,(g) = # arrangements of n DP-ribbons of genus g

bn(g) = # indexed arrangements of n oriented DP-ribbons of genus g

g |1 2 3 4 5 6 7 8 9 0 11 12 13

as(g)| 13 20 77 197 674 1127 2707 5173 10073 11943 13633 9115 3290
bs(g) | 216 636 2756 8292 29032 50848 123240 240196 475920 565016 653528 436496 157824

C. Lange and M.P. 2013
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ENUMERATION (CONTINUED)

# arrang. of size 4 and genus g whose subarrangements of size 3 are of genus 1

# indexed and oriented versions

g 1 2 3 4 5 6 7>8
ai(g) 6570 0 455 0 18 0 1 0
bi(g) 2415112 0 135664 0 4560 0 16 0
[bi(g)/2'411| 6200 0 354 0 12 0 1 0

25

C. Lange and M.P. 08/09/2013
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ENUMERATION (END)

a:z(g) = # arrang. of size 5 and genus g whose subarrangements of size 4 are of genus 1
*(9) = # indexed and oriented versions
g | 1 >0
at(g)| 180403533 77
b3(9) 77

26
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ALGORITHMICS OF VISIBILITY GRAPHS

TH (Habert & P. 12, Angelier & P. 03, P. & Vegter 96). The k free bitangent line
segments of a planar family of n pairwise disjoint convexr bodies presented by its chirotope
are computable in O(k + nlogn) time and O(n) working space.

27
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OPEN PROBLEMS

Problem 1. Devise a quadratic time algorithm to compute an arrangement of n double
pseudolines presented by its subarrangements of size 3.

Problem 2. Give asymptotic formulae for the numbers b,(g).

- 4n —5 !
g Y Y VAR

Inb, = O(n’logn)

Inb,(1) = 6O(n?)
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P-RIBBONS

y .

DF 3. A P-ribbon is a crosscap with a distinguished core circle.
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ARRANGEMENTS OF P-RIBBONS

DF 4. An arrangement of P-ribbons is a finite family of P-ribbons pairwise attached as
indicated in the above figure.

PP 3. An arrangement of two P-ribbons lives in a sphere with 1 crosscap and 2 boundaries
(2 digons).

30
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ARRANGEMENTS OF 3 P-RIBBONS

4 trigons 2 hexagons

genus 1 genus 3

31
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LR CHARACTERIZATION

TH 4 (Habert and P. 2013). An arrangement of P-ribbons is of genus 1 if and only if its
subarrangements of size 3 are of genus 1.
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TOWARDS ARRANGEMENTS OF DOUBLE
PSEUDOHYPERPLANES

TH (HP2006). The map that assigns to an isomorphism class of indexed arrangements of
oriented double pseudolines its chirotope is one-to-one. Furthermore its range is the set of
map x on the set of 3-subsets of a finite set I such that for every 3-, 4-, and 5-subset J of

I the restriction of x to the set of 3-subsets of J is the chirotope of an indexed arrangement
of oriented double pseudolines.
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TOWARDS ARRANGEMENTS OF DOUBLE
PSEUDOHYPERPLANES

TH (HP2006). The map that assigns to an isomorphism class of indexed arrangements of
oriented double pseudolines its chirotope is one-to-one. Furthermore its range is the set of
map x on the set of 3-subsets of a finite set I such that for every 3-, 4-, and 5-subset J of
I the restriction of x to the set of 3-subsets of J is the chirotope of an indexed arrangement
of oriented double pseudolines.

TH (Folkman and Lawrence, 1978). The map that assigns to an isomorphism class of
indexed arrangements of oriented d-dimensional pseudohyperplanes its chirotope is one-to-
one. Furthermore its range is the set of map x on the set of d-subsets of a finite set I such
that for every d-, d+1-, and d+ 2-subset J of I the restriction of x to the set of d-subsets of
J 1s the chirotope of an indexed arrangement of oriented d-dimensional pseudohyperplanes.

34
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NOTES
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