ARRANGEMENTS OF DOUBLE PSEUDOLINES

(pocchiola@math.jussieu.fr, http://people.math.jussieu.fr/pocchiola/) Michel Pocchiola, IMJ, U. Pierre & Marie Curie

SUMMARY

- S Arrangements of DP-ribbons
- Standard Arrangements of DP-ribbons of genus 1
- Sonnection with the algorithmics of (two-dimensional) visibility graphs
- **Solution** Combinatorics of arrangements of DP-ribbons of genus 1
- Further research and open problems

DP-RIBBONS

DF 1. A DP-ribbon is a cylinder with a distinguished core circle with a distinguished side.

ARRANGEMENTS OF DP-RIBBONS

shown in the above figure. **DF 2.** An arrangement of DP-ribbons is a finite family of DP-ribbons pairwise attached as

ARRANGEMENTS OF DP-RIBBONS

PP 1. An arrangement of two DP-ribbons lives in a sphere with 1 crosscap and 5 boundaries (3 tetragons and 2 digons).

AN ARRANGEMENT OF THREE DP-RIBBONS

- 10 boundaries
- 2 digons
- 6 tetragons
- 1 octogon
- 1 dodecagon vertices
- 12 vertices double Klein bottle

genus = 2 - #boundaries + #vertices

ARRANGEMENTS OF DOUBLE PSEUDOLINES

ies of (real two-dimensional) projective planes. pseudolines, i.e., the dual arrangements of finite families of pairwise disjoint convex bodulo the addition of topological disks along their boundaries, the arrangements of double TH 1 (Habert and P. 2006). Arrangements of DP-ribbons of genus 1 are exactly, mod-

CROSS-SURFACES, PSEUDOLINES AND DOUBLE PSEUDOLINES

PROJECTIVE PLANES

Hilbert 1899, Kolmogoroff 1932, Köthe 1939, Skornjakov 1954, Salzmann 1955, Freudenthal 1957

in exactly one point which depends continuously on the two lines. $structure\ (\mathcal{P},\mathcal{L},\in)\ whose\ point\ space\ \mathcal{P}\ is\ a\ cross-surface\ and\ whose\ line\ space\ \mathcal{L}\ is\ a\ subspace$ one line which depends continuously on the two points; (2) any two distinct lines intersect of the space of pseudolines of \mathcal{P} such that (1) any two distinct points are contained in exactly **DF.** A (real two-dimensional) projective plane is a topological point-line incidence

STANDARD PROJECTIVE PLANE

 $\mathbb{S}^2 \to \mathbb{P}^2$ of the space of great circles of \mathbb{S}^2 . dard cross surface \mathbb{P}^2 and whose line space is the image under the canonical projection **DF.** The standard projective plane is the projective plane whose point space is the stan-

STANDARD PROJECTIVE PLANE

 $\mathbb{S}^2 \to \mathbb{P}^2$ of the space of great circles of \mathbb{S}^2 . dard cross surface \mathbb{P}^2 and whose line space is the image under the canonical projection **DF.** The standard projective plane is the projective plane whose point space is the stan-

TH (Hilbert, 1899). The standard projective plane is the unique desarguesian projective

DUALITY IN PROJECTIVE PLANES

projective plane (i.e., the pencil of lines through that point) is a pseudoline of its line space **TH.** The line space of a projective plane is a cross-surface and the dual of a point of a

$$(\mathcal{P},\mathcal{L}) \to (\mathcal{L},\mathcal{P}^*) \to (\mathcal{P}^*,\mathcal{L}^*) \approx (\mathcal{P},\mathcal{L})$$

DUAL OF A PAIR OF DISJOINT CONVEX BODIES

a cellular decomposition of their underlying cross-surface. is the unique pair of double pseudolines that intersect transversely in four points and induce **TH** (Habert and P. 2006). Up to homeomorphism, the dual of a pair of disjoint convex bodies

ARRANGEMENTS OF DOUBLE PSEUDOLINES

ies of (real two-dimensional) projective planes. pseudolines, i.e., the dual arrangements of finite families of pairwise disjoint convex bodulo the addition of topological disks along their boundaries, the arrangements of double TH 1 (Habert and P. 2006). Arrangements of DP-ribbons of genus 1 are exactly, mod-

ALGORITHMICS OF VISIBILITY GRAPHS

segments of a planar family of n pairwise disjoint convex bodies presented by its chirotope are computable in $O(k + n \log n)$ time and O(n) working space. TH (Habert & P. 12, Angelier & P. 03, P. & Vegter 96). The k free bitangent line

SIMPLE ARRANGEMENTS OF THREE DOUBLE PSEUDOLINES

ENUMERATION OF ARRANGEMENTS OF DOUBLE PSEUDOLINES

= # simple arrangements of n double pseudolines # simple indexed arrangements of n oriented double pseudolines

	ı	
$b_n(1)$	$a_n(1)$	n
\vdash	\vdash	2
216	13	ಬ
2415112	6570	4
nc	181 403 533	೮٦

Ferté, Pilaud and P. 2008

its subarrangements of size 3, 4 and 5 are of genus 1. TH 2 (Habert and P. 2006). An arrangement of DP-ribbons is of genus 1 if and only if

- mutation
- separation

its subarrangements of size 3, 4 and 5 are of genus 1. TH 2 (Habert and P. 2006). An arrangement of DP-ribbons is of genus 1 if and only if

ments of size 4 (hence 3) are of genus 1. CJ (P. 2010). An arrangement of 5 DP-ribbons is of genus 1 if and only if its subarrange-

its subarrangements of size 3, 4 and 5 are of genus 1. TH 2 (Habert and P. 2006). An arrangement of DP-ribbons is of genus 1 if and only if

CJ (P. 2010). An arrangement of 5 DP-ribbons is of genus 1 if and only if its subarrange-

genus 1 is of genus 1 or its subarrangements of size 4 belong to a well-defined family of few ments of size 4 (hence 3) are of genus 1. tens of arrangements. **TH 3** (P. 2013). An arrangement of 5 DP-ribbons whose subarrangements of size 4 are of

ENUMERATION

 $\begin{array}{ccc}
 1 : & \overline{22222} \\
 2 : & \overline{11111}
 \end{array}$

ribbons and the n-tuples of suffles of the n-1 circular sequences jjjj, $j=2,3,\ldots,n$. Furthermore ... **PP 2.** There is a natural correspondence between indexed arrangements of n oriented DP-

 $\begin{array}{c} 1: \ \, \overline{222233\overline{33}} \\ 2: \ \, \overline{111133\overline{33}} \\ 3: \ \, 1221\overline{1221} \end{array}$

ribbons and the n-tuples of suffles of the n-1 circular sequences $\overline{jj}jj$, $j=2,3,\ldots,n$ Furthermore the number b_n of indexed arrangements of n oriented DP-ribbons is ${\bf PP~2.}$ There is a natural correspondence between indexed arrangements of n oriented DP-

$$\left\{4^{n-2} \left(3, 4, 4, \dots, 4\right)\right\}^n$$

and the number a_n arrangements of n DP-ribbons is bounded from below by

$$b_n/(2^n n!)$$
.

$$b_3 = \left\{ 4^1 \binom{7}{3,4} \right\}^3 = 140^3 = 2744000 \left\| \left[b_3 / (2^3 3!) \right] = 57167 \right\| a_3 = 58042$$

$$b_4 = \left\{ 4^2 \binom{11}{3,4,4} \right\}^4 = 184800^4$$

$$b_5 = \left\{ 4^3 \binom{15}{3,4,4,4} \right\}^5 = 1009008000^5$$

 $a_n(g) =$ # arrangements of n DP-ribbons of genus g

$b_3(g)$	$a_3(g)$	g	
216	13	<u> </u>	
636	20	2	$b_n($
2756	13 20 77	ಬ	$b_n(g) =$
8292	197	4	# inc
29032	674	ರಾ	lexed a
50848	1127	6	rrangen
123240	674 1127 2707	7	nents of
240196	5173	∞	# indexed arrangements of n oriented D
475920	10073	9	ed DP-ri
565016	11943	10	bbons of
653528	13633	11)P-ribbons of genus g
$b_3(g)$ 216 636 2756 8292 29032 50848 123240 240196 475920 565016 653528 436496 157824	073 11943 13633 9115 3290	12	7
157824	3290	13	

C. Lange and M.P. 2013

 $a_4^*(g) = \#$ arrang. of size 4 and genus g : $b_4^*(g) = \#$ indexed and oriented versions # arrang. of size 4 and genus g whose subarrangements of size 3 are of genus 1

$[b_4^*(g)/2^44!]$	$b_4^*(g)$	$a_4^*(g)$	g
6 290	2 415 112	6 5 7 0	<u> </u>
0	0	0	2
354	135664	455	ಬ
0	0	0	4
12	4560	18	೮
0	0	0	6
<u> </u>	16	<u> </u>	7
0	0	0	$ \infty $

C. Lange and M.P. 08/09/2013

ENUMERATION (END)

 $a_5^*(g) = \#$ arrang. of size 5 and genus g , $b_5^*(g) = \#$ indexed and oriented versions # arrang. of size 5 and genus g whose subarrangements of size 4 are of genus 1

$b_5^*(g)$	$a_5^*(g)$	g
??	$180\ 403\ 533$	1
	??	\\ 2

ALGORITHMICS OF VISIBILITY GRAPHS

OPEN PROBLEMS

pseudolines presented by its subarrangements of size 3. **Problem 1.** Devise a quadratic time algorithm to compute an arrangement of n double

Problem 2. Give asymptotic formulae for the numbers $b_n(g)$.

$$\sum_{g} b_n(g) = b_n = \left\{ 4^{n-2} \left(\frac{4n-5}{3, 4, 4, \dots, 4} \right) \right\}^n$$

$$\ln b_n = \Theta(n^2 \log n)$$

$$ln b_n(1) = \Theta(n^2)$$

P-RIBBONS

DF 3. A P-ribbon is a crosscap with a distinguished core circle.

ARRANGEMENTS OF P-RIBBONS

indicated in the above figure. **DF** 4. An arrangement of P-ribbons is a finite family of P-ribbons pairwise attached as

PP 3. An arrangement of two P-ribbons lives in a sphere with 1 crosscap and 2 boundaries (2 digons).

ARRANGEMENTS OF 3 P-RIBBONS

4 trigons genus 1

2 hexagons genus 3

subarrangements of size 3 are of genus 1. TH 4 (Habert and P. 2013). An arrangement of P-ribbons is of genus 1 if and only if its

TOWARDS ARRANGEMENTS OF DOUBLE **PSEUDOHYPERPLANES**

of oriented double pseudolines. map χ on the set of 3-subsets of a finite set I such that for every 3-, 4-, and 5-subset J of oriented double pseudolines its chirotope is one-to-one. Furthermore its range is the set of **TH** (HP2006). The map that assigns to an isomorphism class of indexed arrangements of I the restriction of χ to the set of 3-subsets of J is the chirotope of an indexed arrangement

TOWARDS ARRANGEMENTS OF DOUBLE PSEUDOHYPERPLANES

of oriented double pseudolines. oriented double pseudolines its chirotope is one-to-one. Furthermore its range is the set of map χ on the set of 3-subsets of a finite set I such that for every 3-, 4-, and 5-subset J of **TH** (HP2006). The map that assigns to an isomorphism class of indexed arrangements of I the restriction of χ to the set of 3-subsets of J is the chirotope of an indexed arrangement

that for every d-, d+1-, and d+2-subset J of I the restriction of χ to the set of d-subsets of indexed arrangements of oriented d-dimensional pseudohyperplanes its chirotope is one-toone. Furthermore its range is the set of map χ on the set of d-subsets of a finite set I such TH (Folkman and Lawrence, 1978). The map that assigns to an isomorphism class of J is the chirotope of an indexed arrangement of oriented d-dimensional pseudohyperplanes.

BIBLIOGRAPHY

- [1] Helmut Salzmann, Dieter Betten, Theo Grundhöfer, Hermann Hähl, Rainer Löwen, and ematics. Walter de Gruyter, 1995. Markus Stroppel. Compact projective planes. Number 21 in De Gruyter expositions in math-
- [2] J. E. Goodman, R. Pollack, R. Wenger, and T. Zamfirescu. Arrangements and topological planes. Amer. Math. Monthly, 101(9):866–878, November 1994.
- [3] J. Ferté, V. Pilaud, and M. Pocchiola. On the number of simple arrangements of five double pseudolines. Disc. Comput. Geom. 45 (2): 279-302, 2011. 10.1007/s00454-010-9298-4
- [4] L. Habert and M. Pocchiola. Computing pseudotriangulations via branched covering. Comput. Geom., 48(3):518–579, 2012. 10.1007/s00454-012-9447-z
- [5] L. Habert and M. Pocchiola. LR characterization of chirotopes of finite planar families of 013-9532-y. pairwise disjoint convex bodies. Disc. Comput. Geom., 50 (3): 552-648, 2013. 10.1007/s00454-
- [6] J. Bokowski. Computational Oriented Matroids. Cambridge, 2006
- [7] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented Matroids Cambridge University Press, 2nd edition, 1999.

NOTES