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combinatorics convexity topology

A matroid is a combinatorial abstraction of linear independence.

There are many “cryptomorphic” axiom systems.

independence axioms
A matroid M on a finite set E is a non-empty collection I of subsets of E
called independent sets satisfying,

1. A ⊂ B ∈ I ⇒ A ∈ I.

2. A,B ∈ I and |A| < |B| ⇒ ∃b ∈ B such that A ∪ {b} ∈ I.

ρ(S) := max
A⊂S
{|A| : A ∈ I} (rank function)

rk(M) := ρ(E) (rank of M)
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combinatorics convexity topology

Example 1. A finite vector configuration E of a vector space V :
The independent sets are the linearly independent subsets of E .

Special case: The cycle free subgraphs of a graph.
The maximum independent sets are the spanning forests.

The cycles of the graph are the circuits of the matroid,

that is, the minimal dependent sets.
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combinatorics convexity topology

Example 2. Partition a finite set E into non-empty parts

E1 ∪ E2 ∪ · · · ∪ Ek

Declare S ⊂ E to be independent if and only if |S ∩ Ei | ≤ 1 for every i .

This gives us a partition matroid.

E5E4E3E2E1
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combinatorics convexity topology

An oriented matroid is combinatorial abstraction of finite vector configurations
in a vector space over an ordered field.

A signed subset is an ordered pair X = (X +,X−) of disjoint subsets of E .
Denote: X = X + ∪ X−, −X = (X−,X +). Assume: X 6= ∅.

circuit axioms
An oriented matroid M on a finite set E is a non-empty collection C of signed
subsets of E called circuits satisfying,

1. X ∈ C ⇒ −X ∈ C.

2. X ,Y ∈ C and X ⊂ Y⇒ X = ±Y .

3. X 6= ±Y ∈ C and z ∈ X + ∩ Y− ⇒ ∃Z ∈ C such that
Z + ⊂ X + ∪ Y + \ {z} and Z− ⊂ X− ∪ Y− \ {z}.

{X}X∈C are the circuits of the underlying matroid, M,

rk(M) := rk(M), X = (X +, ∅) ∈ C is called a positive circuit.
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combinatorics convexity topology

Example 1. Every directed graph gives rise to an oriented matroid.
The edges are the ground set E .
The circuits are obtained from the cycles of the underlying graph.

ab

c

d

e

f ({a, f }, {b})
({b, c}, {d})
({a, e, c}, ∅)

({a, f , c}, {d})
({b}, {a, d , e})
({b, c, e}, {f })

The positive circuits are the directed cycles.
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combinatorics convexity topology

Example 2. Finite vector configurations in Rd give rise to an oriented matroid.
The rank is the dimension of the linear span.
The circuits are obtained from the minimal linear dependencies.
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The positive circuits are the minimal sets which contain the origin in their

convex hull.
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combinatorics convexity topology

Carathéodory’s theorem states that given a set P ⊂ Rd and a point x ∈ conv P,
there exists a subset Q ⊂ P such that |Q| ≤ d + 1 and x ∈ conv Q.

In 1982 Bárány gave the following generalization.

colorful carathéodory theorem

Let P1, . . . ,Pd+1 be point sets in Rd . If x ∈
⋂d+1

i=1 conv Pi , then there exists
p1 ∈ P1, . . . , pd+1 ∈ Pd+1 such that x ∈ conv{p1, . . . , pd+1}.



combinatorics convexity topology
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In 1982 Bárány gave the following generalization.

colorful carathéodory theorem
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In 1982 Bárány gave the following generalization.

colorful carathéodory theorem
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combinatorics convexity topology

Around 2007 several people discovered a weakening of the hypothesis in
Bárány’s theorem, resulting in the following.

strong colorful carathéodory theorem

Let P1, . . . ,Pd+1 be point sets in Rd . If x ∈
⋂d+1

1≤i<j conv(Pi ∪ Pj), then there
exists p1 ∈ P1, . . . , pd+1 ∈ Pd+1 such that x ∈ conv{p1, . . . , pd+1}.
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combinatorics convexity topology

theorem
Let M be an oriented matroid, N a matroid with rank function ρ, both on the
same ground set E and satisfying rk(M) < rk(N ).
If every A ⊂ E with ρ(E − A) < rk(M) contains a positive circuit of M,
then M contains a positive circuit which is independent in N .

This is a purely combinatorial version of the previous convexity theorems.

A special case is the “strong colorful Carathéodory theorem”: Take M to be
the oriented matroid of the vector configuration V = P1 ∪ · · · ∪ Pd+1 (rank d)
and N is the partition matroid induced by the color classes (rank d + 1).

Another special case is when the edges of Km, with m ≥ 4, are identified with
points in Rm−2 and the complement of every clique of size m − 2 contains the
origin. Then there exists a spanning tree corresponding to a simplex which
contains the origin.
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M - oriented matroid

N - matroid, ground set E

rk(M) < rk(N )

Independence complex

YN = {T ⊂ E : T independent in N}

Support complex

XM = {S ⊂ E : S contains no positive circuit of M}

Dual support complex

X ?
M = {U ⊂ E : U disjoint from some positive circuit of M}
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X ?
M YN∗

Goal: Find a spanning simplex in the join

contains positive
circuit of M independent in N
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combinatorics convexity topology

Let K be a simplicial complex on vertex set V = V1 ∪ · · · ∪ Vm

A simplex S ∈ K is colorful if |S ∩ Vi | = 1 for all 1 ≤ i ≤ m

meshulam’s condition
If for every 1 ≤ k ≤ m and 1 ≤ i1 < · · · < ik ≤ m,

η(K [Vi1 ∪ · · · ∪ Vik ]) ≥ k,

then K contains a colorful simplex.

K [V ′] : induced subcomplex on V ′ ⊂ V

η(K) := min{ j : H̃j(K) 6= 0}+ 1

η(K ∗ L) = η(K) + η(L)

K?
M YN∗
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For every ∅ 6= S ⊂ E , we must show

η(X ?
M[S ]) + η(YN [S ]) ≥ |S |

Fact: η(YN [S ]) ≥ ρ(S)

Goal: Show η(X ?
M[S ]) ≥ |S | − ρ(S)

If S ∈ X ?
M, then X ?

M[S ] is contractible ⇒ η(X ?
M[S ]) =∞.

If S /∈ X ?
M, then T = E \ S ∈ XM ⇒ H̃i (X ?

M[S ]) ∼= H̃|S|−i−3(lk(T ,XM))

(Last implication uses the fact that E /∈ XM and Alexander duality.)

New goal: Compute H̃j(lk(T ,XM))
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Fact: If rk(M) = r , then

H̃j(XM) = 0 for all j ≥ r

H̃j(lk(T ,XM)) for all j ≥ r − 1 and ∅ 6= T ∈ XM

Follows from the Folkman-Lawrence representation theorem
and the Nerve theorem.

⇒ η(X ?
M) ≥ |E | − r − 1

η(X ?
M[S ]) ≥ |S | − r , for all ∅ 6= S ( E

η(X ?
M) + η(YN ) ≥ |E | − r − 1 + ρ(E) ≥ |E |

η(X ?
M[S ]) + η(YN [S ]) ≥ |S | − r + ρ(S) ≥ |S |

(S /∈ X?
M ⇒ E \ S ∈ XM ⇒ ρ(S) ≥ r)
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Thank you for your attention!
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