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ASSOCIAHEDRA



ASSOCIAHEDRON



POLYTOPAL REALIZATIONS OF THE ASSOCIAHEDRON

polytope = convex hull of a finite set of Rd

= bounded intersection of finitely many half-spaces

face = intersection with a supporting hyperplane

face lattice = all the faces with their inclusion relations

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion



ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion



VARIOUS ASSOCIAHEDRA

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free

sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion

(Pictures by Ceballos-Santos-Ziegler)

Lee (’89), Gel’fand-Kapranov-Zelevinski (’94), Billera-Filliman-Sturmfels (’90), . . . , Ceballos-Santos-Ziegler (’11)

Loday (’04), Hohlweg-Lange (’07), Hohlweg-Lange-Thomas (’12), P.-Santos (’12), P.-Stump (’12+), Lange-P. (’13+)



LODAY’S ASSOCIAHEDRON

Loday’s associahedron = conv {L(T ) | T triangulation of the (n + 3)-gon}
= H ∩

⋂
δ diagonal

of the (n+3)-gon

H≥(δ)

i

j

k

`(T, j)

r(T, j)

δ

B(δ)

L(T ) =
(
`(T, j) · r(T, j)

)
j∈[n+1]

H≥(δ) =

{
x ∈ Rn+1

∣∣∣∣ ∑
j∈B(δ)

xj ≥
(
|B(δ)| + 1

2

)}

Loday, Realization of the Stasheff polytope (’04)



PERMUTAHEDRON
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Permutohedron Perm(n)

= conv {(σ(1), . . . , σ(n + 1)) | σ ∈ Σn+1}
= H ∩

⋂
∅6=J([n+1]

H≥(J)

k-faces of Perm(n)
≡ ordered partitions of [n + 1]

into n + 1− k parts

≡ surjections from [n + 1]

to [n + 1− k]



ASSOCIAHEDRON AND PERMUTAHEDRON

The associahedron is obtained from the permutahedron by removing facets



ASSOCIAHEDRON AND PERMUTAHEDRON

Relevant connections to combinatorial properties:

• the normal fan of Perm(n) refines that of Asso(P )

• it defines a surjection κ : Sn+1 → {triangulations} (connection to linear extensions

and insertion in binary search trees)

• κ defines a lattice homomorphism from the weak order to the Tamari lattice



HOHLWEG & LANGE’S ASSOCIAHEDRA

Can also replace Loday’s (n + 3)-gon by others. . .

4

321

0 + + + 4

321

0 – – –4

3

21

0 + + – 4

3

2

1

0 + – +

. . . to obtain different realizations of the associahedron

Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)



HOHLWEG & LANGE’S ASSOCIAHEDRA

Asso(P ) = conv {HL(T ) | T triangulation of P} = H ∩
⋂

δ diagonal of P

H≥(δ)

i

j

k

`(T, j)

r(T, j)

δ

B(δ)

HL(T )j =

{
`(T, j) · r(T, j) if j down

n + 2− `(T, j) · r(T, j) if j up
H≥(δ) =

{
x

∣∣∣∣ ∑
j∈B(δ)

xj ≥
(
|B(δ)| + 1

2

)}
Hohlweg-Lange, Realizations of the associahedron and cyclohedron (’07)



SPINES

Lange-Pilaud, Using spines to revisit a construction of the associahedron (’13+)
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REM. 1. Spines can be defined without their triangulations. . .

2. Alternative vertex description of Hohlweg-Lange’s associahedra:

a(S)j =

{
|{π maximal path in S with 2 incoming arcs at j}| if j down vertex

|{π maximal path in S with 2 outgoing arcs at j}| if j up vertex



SPINES

Lange-Pilaud, Using spines to revisit a construction of the associahedron (’13+)

8

7

6

5

4

3
2

1

90

8

7

6

5

4

3
2

1

90

5*
2*

1*
3*

4*
6*

8*

7*

5*
2*

1* 3*

4*

6*

8*

7*

REM. 1. Spines can be defined without their triangulations. . .

2. Alternative vertex description of Hohlweg-Lange’s associahedra:

a(S)j =

{
|{π path in S with 2 incoming arcs at j}| if j down vertex

|{π path in S with 2 outgoing arcs at j}| if j up vertex



GRAPH ASSOCIAHEDRA



NESTED COMPLEX AND GRAPH ASSOCIAHEDRON

G graph on ground set V

Tube on V = connected induced subgraph of G

Compatible tubes = nested, or disjoint and non-adjacent

2 3
1

0

8 4 9

5

6 7

2 3
1

0

8 4 9

5

6 7

Nested complex N (G) = simplicial complex of sets of pairwise compatible tubes

= clique complex of the compatibility relation on tubes

G-associahedron = polytopal realization of the nested complex on G

Carr-Devadoss, Coxeter complexes and graph associahedra (’06)



EXM: NESTED COMPLEX



EXM: GRAPH ASSOCIAHEDRON



SPECIAL GRAPH ASSOCIAHEDRA

Path associahedron Cycle associahedron Complete graph associahedron

= associahedron = cyclohedron = permutahedron
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OPEN SUBTREES

For later use, represent tubes by open subtrees:
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compatible tubes ←→ nested or disjoint open subtrees



SIGNED NESTED COMPLEXES



SIGNED CONNECTED STRUCTURES

T tree on the signed ground set V = V− t V+ (negative in white, positive in black)

Open subtree = non-empty subtree Z with leaves excluded (except maybe the leaves of T)

Signed tube = pair (W−,W+) of open subtrees st. ∂W− ⊆ V−∩W+ and ∂W− ⊆ V− ∩W+

Signed building block = B ⊆ V negative convex and with positive convex complement

Z
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1

0

8 4 9
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6 7

W −

W +

2 3
1

0

8 4 9
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6 7

8 4 9

6

B−

B+

2 3
1

0
5

7

z(W ) :=W− ∩W+ ←− [ W = (W−,W+) 7−→ b(W ) := (V− ∩W−) t (V+ rW+)

Unsigned trees ⇒ classical tubes

Signed paths ⇒ diagonals of Hohlweg-Lange’s polygons



SIGNED CONNECTED STRUCTURES
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SIGNED NESTED COMPLEX

W1 = (W−
1 ,W

+
1 ) and W2 = (W−

2 ,W
+
2 ) two signed tubes of T

Define the binary relations

W1 � W2 (“W1 negative nested in W2”) ⇐⇒ W−
1 ⊆ W−

2 and W+
1 ⊇ W+

2

W1 � W2 (“W1 positive nested in W2”) ⇐⇒ W−
1 ⊇ W−

2 and W+
1 ⊆ W+

2

W1 ⊥ W2 (“W1,W2 negative disjoint”) ⇐⇒ W−
1 ∩W−

2 = ∅ and W+
1 ∪W+

2 = V

W1 > W2 (“W1,W2 positive disjoint”) ⇐⇒ W−
1 ∪W−

2 = V and W+
1 ∩W+

2 = ∅

W1 and W2 are signed compatible ⇐⇒ W1 � W2 or W1 � W2 or W1 ⊥ W2 or W1 > W2

Signed nested complex N (T) = simplicial complex of sets of pairwise

signed compatible signed tubes

= clique complex of the signed compatibility relation



EXM: SIGNED NESTED COMPLEX
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ISOMORPHISMS

PROP. T and T′ two signed trees st. T′ is obtained from T by:

(i) changing the sign of a leaf of T

(ii) changing simultaneously the signs of all vertices of T

(iii) relabeling the vertices of T while preserving their signs

(iv) applying a graph automorphism of T to the signs of T

(v) switching two vertices of T, adjacent to each other and of degree at most 2

Then the signed nested complexes N (T) and N (T′) are isomorphic
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SPINES



SIGNED SPINES

Signed spine on T = directed and labeled tree S st

(i) the labels of the nodes of S form a partition of the signed ground set V

(ii) at a node of S labeled by U = U−tU+, the source label sets of the different incoming

arcs are subsets of distinct connected components of TrU−, while the sink label sets

of the different outgoing arcs are subsets of distinct connected components of TrU+
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CONTRACTIONS AND SPINE COMPLEX

LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least

two elements. For any u ∈ U , there exists a signed spine on T whose nodes are labeled

exactly as that of S, except that the label U is partitioned into {u} and U r {u}
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CONTRACTIONS AND SPINE COMPLEX

LEM. Contracting an arc in a signed spine on T leads to a new signed spine on T

LEM. Let S be a signed spine on T with a node labeled by a set U containing at least

two elements. For any u ∈ U , there exists a signed spine on T whose nodes are labeled

exactly as that of S, except that the label U is partitioned into {u} and U r {u}

Signed spine complex S(T) = simplicial complex whose inclusion poset is isomorphic to

the poset of edge contractions on the signed spines of T

CORO. The signed spine complex S(T) is a pure simplicial complex of rank |V|



EXM: SPINE COMPLEX

Signed spine complex S(T) = simplicial complex whose inclusion poset is isomorphic to

the poset of edge contractions on the signed spines of T
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FROM SIGNED NESTED COMPLEXES TO SIGNED NESTED SETS

LEM. For any arc r of a signed spine S ∈ S(T), the source label set sc(r) is a relevant

signed building set of T

LEM. For any signed spine S ∈ S(T), the collection B(S) := {sc(r) | r arc of S} is a

signed nested set of NB(T)

r r' r r' r r'

sc(r) ⊆ sc(r′) sc(r) ⊥ sc(r′) sc(r) > sc(r′)

PROP. The map B is an isomorphism between the signed spine complex S(T) and the

signed nested complex NB(T) on T



FLIPS

S maximal signed spine on T, r arc in S from u to v

i incoming arc at u whose source label set lies in the c.c. of T r {u} containing v

o outgoing arc at v whose sink label set lies in the c.c. of T r {v} containing u

S′ = tree obtained from S reversing r and attaching i to v and o to u

vu

i

o

U V

vu

i

o

U V

vu

i

o

U

u

i

o

U

V

v

V U

o

V

V i

i

u
o

v

U

u v v
o

i

V

v

VU

i

u
o

U

ur

r'

r

r'

r

r'

r

r'

PROP. S′ is a spine on T. S and S′ are the only two max. spines on T refining S/r = S′/r



EXM: FLIPS

On the ground tree:
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we have the flip:
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SPINE FAN



BRAID FAN & PREPOSET CONES

Braid arrangement on RV = collection of hyperplanes
{
x ∈ RV

∣∣ xu = xv
}

for u 6= v ∈ V

Braid fan BF = complete simplicial fan defined by the braid arrangement on

H :=

{
x ∈ RV

∣∣∣∣ ∑
v∈V

xv =

(
|V| + 1

2

)}



BRAID FAN & PREPOSET CONES
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k-dimensional cones of BF ≡ ordered partitions of V into k + 1 parts

≡ surjections from V to [k + 1]



BRAID FAN & PREPOSET CONES

Preposet on V = binary relation R ⊂ V × V which is reflexive and transitive

Exm. Equivalence relation ⇔ symmetric preposet and Poset ⇔ antisymmetric preposet

Any preposet R can be decomposed into

• an equivalence relation ≡R := {(u, v) ∈ R | (v, u) ∈ R} and

• a poset ≺R :=R/≡R on the equivalence classes of ≡R

Braid cone of a preposet R on V = polyhedral cone

C(R) := {x ∈ H | xu ≤ xv, for all (u, v) ∈ R}

C(R) ⊆ C(R′) ⇐⇒ R′ extension of R (ie. R ⊆ R′ as subset of V × V)

The braid cone C(≺) of a poset ≺ on V is the union of the linear extensions of ≺



SPINE FAN

Consider a spine S on T. Its transitive closure is a preposet on V. Consider

C(S) := {x ∈ H | xu ≤ xv, for all arcs u→ v in S}
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THEO. The collection of cones F(T) := {C(S) | S ∈ S(T)} defines a complete simplicial

fan on H, which we call the spine fan

CORO. For any signed tree T, the signed nested complex N (T) is a simplicial sphere



SIGNED TREE ASSOCIAHEDRON



VERTEX AND FACET DESCRIPTIONS

Signed tree associahedron Asso(T) = convex polytope with

(i) a vertex a(S) ∈ RV for each maximal signed spine S ∈ S(T), with coordinates

a(S)v =

{∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}
∣∣ if v ∈ V−

|V| + 1−
∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}

∣∣ if v ∈ V+

where rv = unique incoming (resp. outgoing) arc when v ∈ V− (resp. when v ∈ V+)

Π(S) = set of all (undirected) paths in S, including the trivial paths

(ii) a facet defined by the half-space

H≥(B) :=

{
x ∈ RV

∣∣∣∣ ∑
v∈B

xv ≥
(
|B| + 1

2

)}
for each signed building block B ∈ B(T)



EXM: VERTEX DESCRIPTION
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EXM: FACET DESCRIPTION
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MAIN RESULT

THM. The spine fan F(T) is the normal fan of the signed tree associahedron Asso(T),

defined equivalently as

(i) the convex hull of the points

a(S)v =

{∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}
∣∣ if v ∈ V−

|V| + 1−
∣∣ {π ∈ Π(S) | v ∈ π and rv /∈ π}

∣∣ if v ∈ V+

for all maximal signed spines S ∈ S(T)

(ii) the intersection of the hyperplane H with the half-spaces

H≥(B) :=

{
x ∈ RV

∣∣∣∣ ∑
v∈B

xv ≥
(
|B| + 1

2

)}
for all signed building blocks B ∈ B(T)

CORO. The signed tree associahedron Asso(T) realizes the signed nested complex N (T)



SKETCH OF THE PROOF

STEP 1. We have∑
v∈V

a(S)v =

(
|V| + 1

2

)
and

∑
v∈sc(r)

a(S)v =

(
|sc(r)| + 1

2

)
for any arc r of S. In other words,“each vertex a(S) belongs to the hyperplanes H=(B)

it is supposed to”. Proof by double counting



SKETCH OF THE PROOF

STEP 1. We have∑
v∈V

a(S)v =

(
|V| + 1

2

)
and

∑
v∈sc(r)

a(S)v =

(
|sc(r)| + 1

2

)
for any arc r of S. In other words,“each vertex a(S) belongs to the hyperplanes H=(B)

it is supposed to”. Proof by double counting

STEP 2. If S and S′ are two adjacent maximal spines on T, such that S′ is obtained

from S by flipping an arc joining node u to node v, then

a(S′)− a(S) ∈ R>0 · (eu − ev)

o

Vi

U

u vr

U

V i

u
o

vr'

a(S′)− a(S) = (|U | + 1) · (|V | + 1) · (eu − ev)



SKETCH OF THE PROOF

STEP 1. We have∑
v∈V

a(S)v =

(
|V| + 1

2

)
and

∑
v∈sc(r)

a(S)v =

(
|sc(r)| + 1

2

)
for any arc r of S. In other words,“each vertex a(S) belongs to the hyperplanes H=(B)

it is supposed to”. Proof by double counting

STEP 2. If S and S′ are two adjacent maximal spines on T, such that S′ is obtained

from S by flipping an arc joining node u to node v, then

a(S′)− a(S) ∈ R>0 · (eu − ev)

STEP 3. A general theorem concerning realizations of simplicial fan by polytopes

In other words, a characterization of when is a simplicial fan regular

Hohlweg-Lange-Thomas, Permutahedra and generalized associahedra (’11)

De Loera-Rambau-Santos, Triangulations: Structures for Algorithms and Applications (’10)



FURTHER GEOMETRIC PROPERTIES

PROP. The signed tree associahedron Asso(T) is sandwiched between the permutahe-

dron Perm(V) and the parallelepiped Para(T)∑
u6=v∈V

[eu, ev] = Perm(T) ⊂ Asso(T) ⊂ Para(T) =
∑
u−v∈T

π(u − v) · [eu, ev]
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Common vertices of Asso(T) and Para(T) ≡ orientations of T which are spines on T

Common vertices of Asso(T) and Perm(T) ≡ linear orders on V which are spines on T

⇒ no common vertex of the three polytopes except if T is a signed path
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PROP. Asso(T) and Asso(T′) isometric ⇐⇒ T and T′ isomorphic or anti-isomorphic,

up to the sign of their leaves, ie. ∃ bijection θ : V→ V′ st. ∀u, v ∈ V

• u−v edge in T ⇐⇒ θ(u)−θ(v) edge in T′

• if u is not a leaf of T, the signs of u and θ(u) coincide (resp. are opposite)
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up to the sign of their leaves, ie. ∃ bijection θ : V→ V′ st. ∀u, v ∈ V
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REM. The vertex barycenter of Asso(T) does not necessarily coincide with that of the

permutahedron (but it lies on the linear span of the characteristic vectors of the orbits

of V under the automorphism group of T)
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