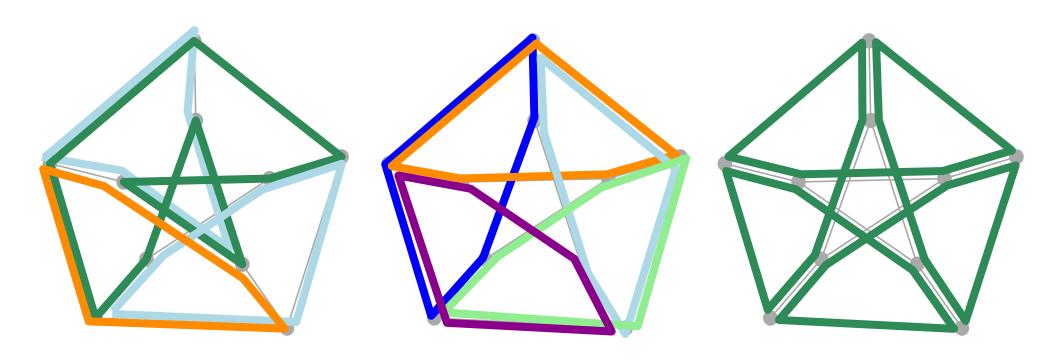
Three Ways to Cover a Graph

Kolja Knauer
Université Montpellier 2

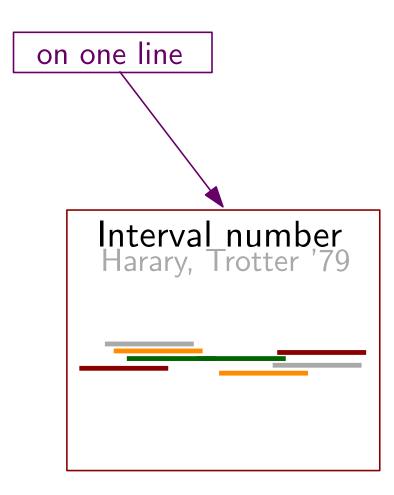
Torsten Ueckerdt Karlsruhe Institute of Technology

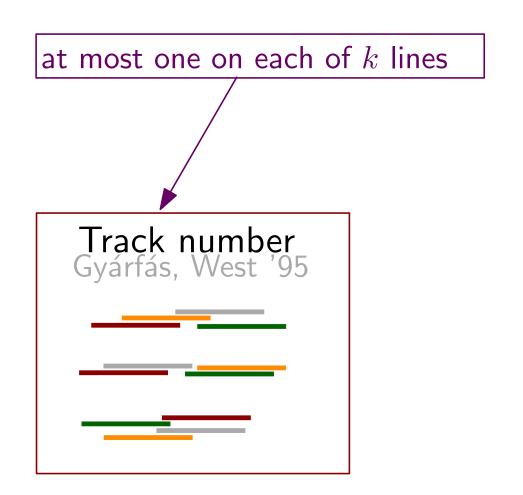


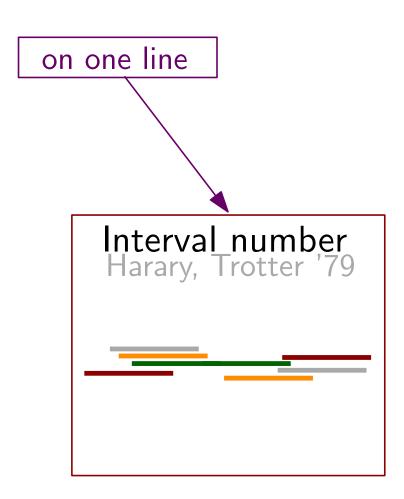
GT Combi du LIX, June 3, 2013

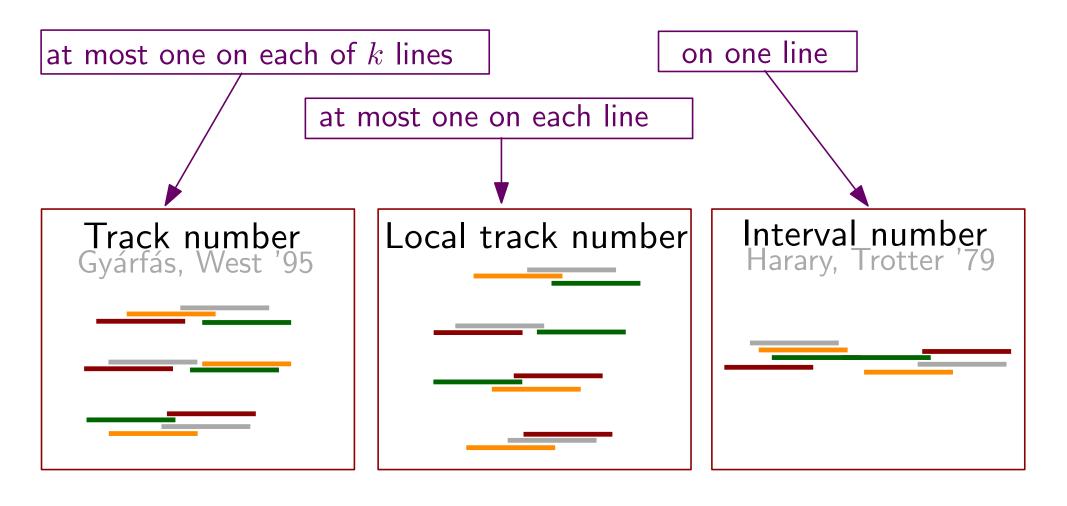
Interval graphs Intersection graphs of intervals

- classical graph class
- efficient recognition
- chordal & perfectmany applications









Some Results

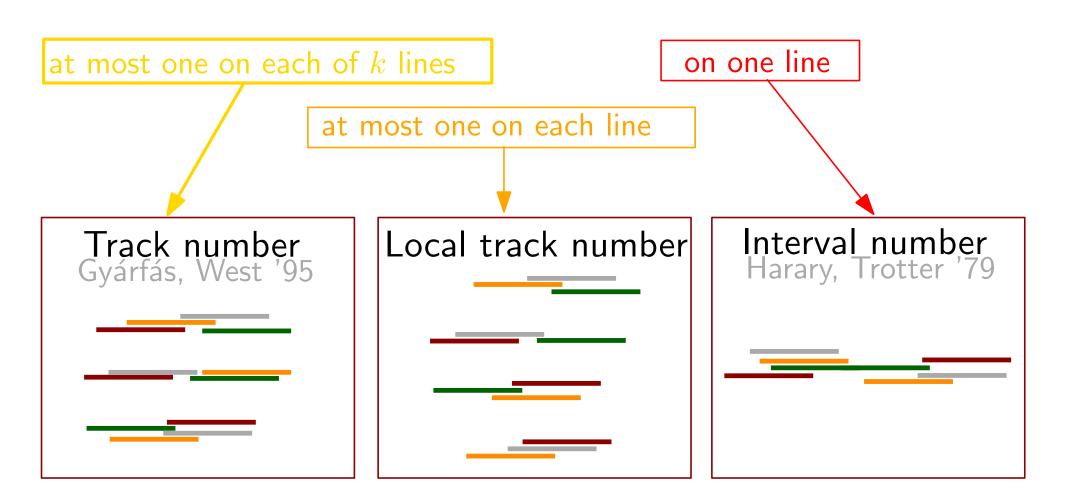
	track nr.	local track nr.	interval nr.
outerplanar	2	2	2
bip. planar	4	3	3
planar	4	?	3
$\mathrm{tw} \leq k$	k+1	k	k
$dg \le k$	2k	k+1	k+1

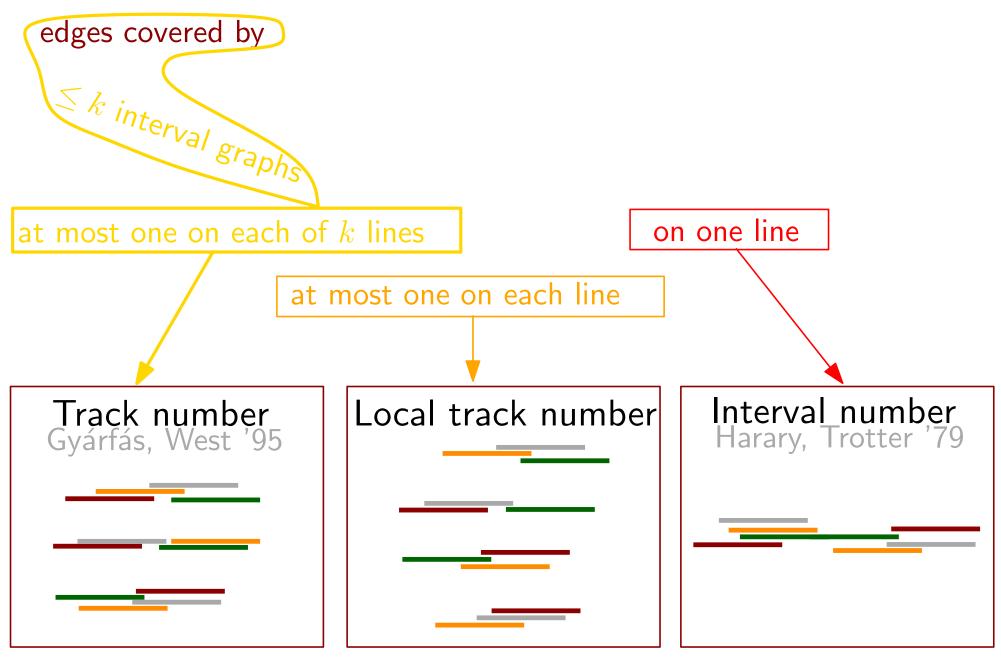
Kostochka, West '99

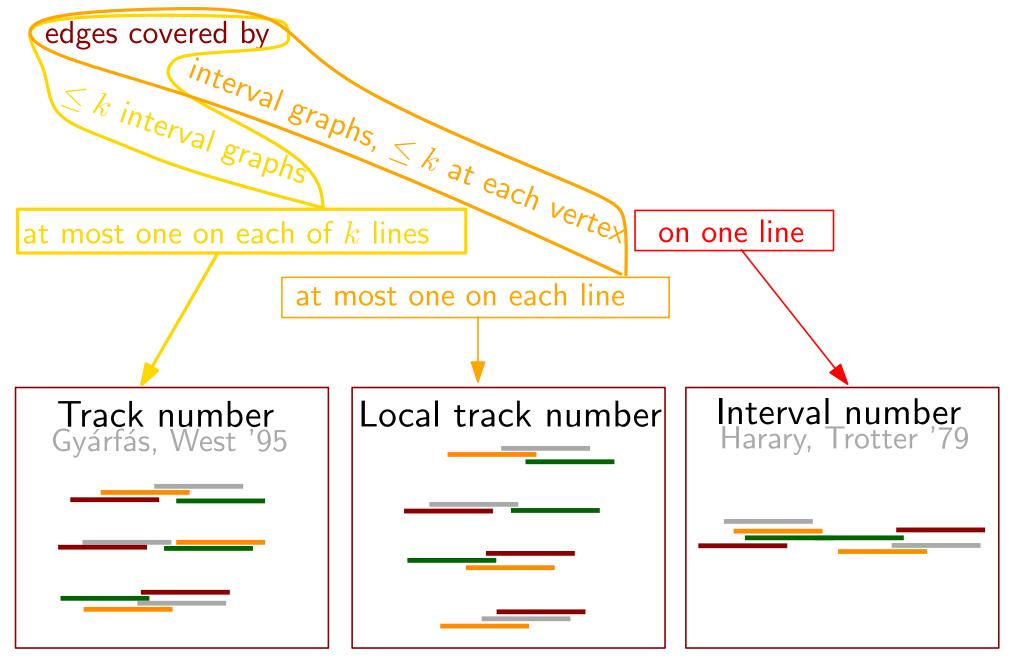
Scheinermann, West '83

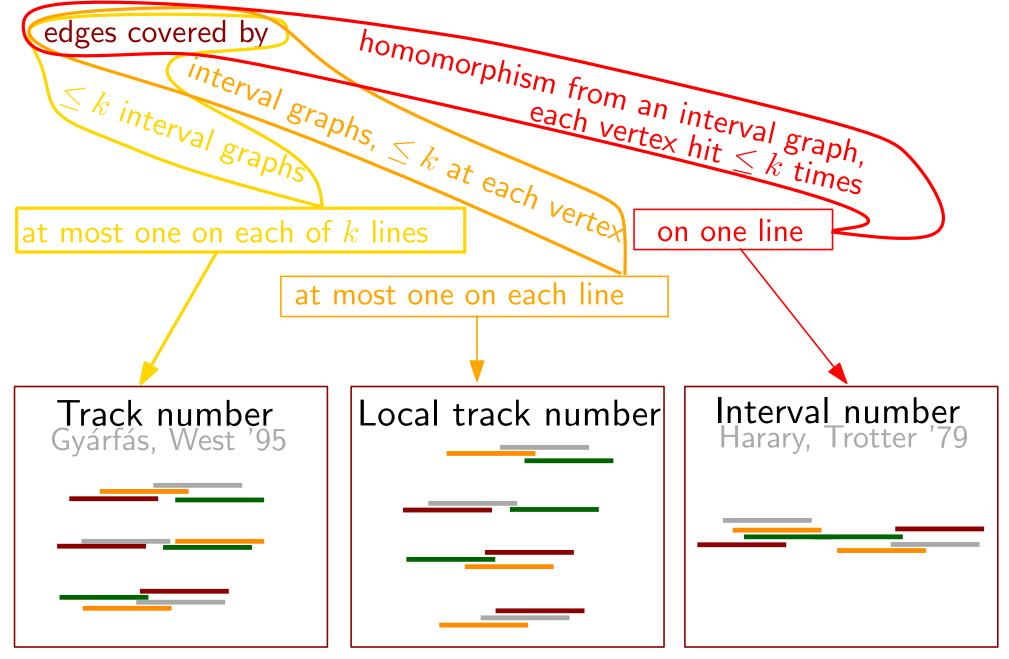
Gonçalves, Ochem '09

KU '12









- Global, Local, and Folded Covers
 - Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 - Templates = Collections of Paths
- Interrelations
 - Templates = Forests, Pseudo-Forests, Star Forests
- What is known and what is open

More Formally

size of $\varphi \qquad \Longleftrightarrow \qquad \#$ template graphs in preimage

More Formally

 $\varphi \text{ cover} \iff \varphi: T_1 \sqcup \cdots \sqcup T_k \to G$ edge-surjective homomorphism $\varphi \text{ injective} \iff \varphi \text{ restricted to each } T_i \text{ injective}$

size of $\varphi \iff \#$ template graphs in preimage

 $c_g^{\mathcal{T}}(G) = \min\{\text{size of } \varphi : \varphi \text{ injective cover of } G\}$

global

local

 $c_{\ell}^{\mathcal{T}}(G) = \min\{\max_{v \in V(G)} |\varphi^{-1}(v)| : \varphi \text{ injective cover of } G\}$

folded

 $c_f^{\mathcal{T}}(G) = \min\{\max_{v \in V(G)} |\varphi^{-1}(v)| : \varphi \text{ cover of } G \text{ of size } 1\}$

Basic Properties

We consider template classes that are closed under disjoint union.

Lemma:

1)
$$c_g^{\mathcal{T}}(G) \ge c_\ell^{\mathcal{T}}(G) \ge c_f^{\mathcal{T}}(G)$$

for every G

define $c_i^{\mathcal{T}}(\mathcal{G}) := \sup\{c_i^{\mathcal{T}}(G) : G \in \mathcal{G}\}$ (\mathcal{G} graph class)

2)
$$c_i^{\mathcal{T}}(\mathcal{G}) \leq c_i^{\mathcal{T}}(\mathcal{G}')$$

$$\mathcal{G}\subseteq\mathcal{G}'$$

3)
$$c_i^{\mathcal{T}}(\mathcal{G}) \ge c_i^{\mathcal{T}'}(\mathcal{G})$$

$$\mathcal{T}\subseteq\mathcal{T}'$$

Global Covering Number

star arboricity arboricity outer-thickness caterpillar arboricity edge-chromatic number clique covering number thickness bipartite dimension

track number

linear arboricity

Unifying Concept

Folded Covering Number

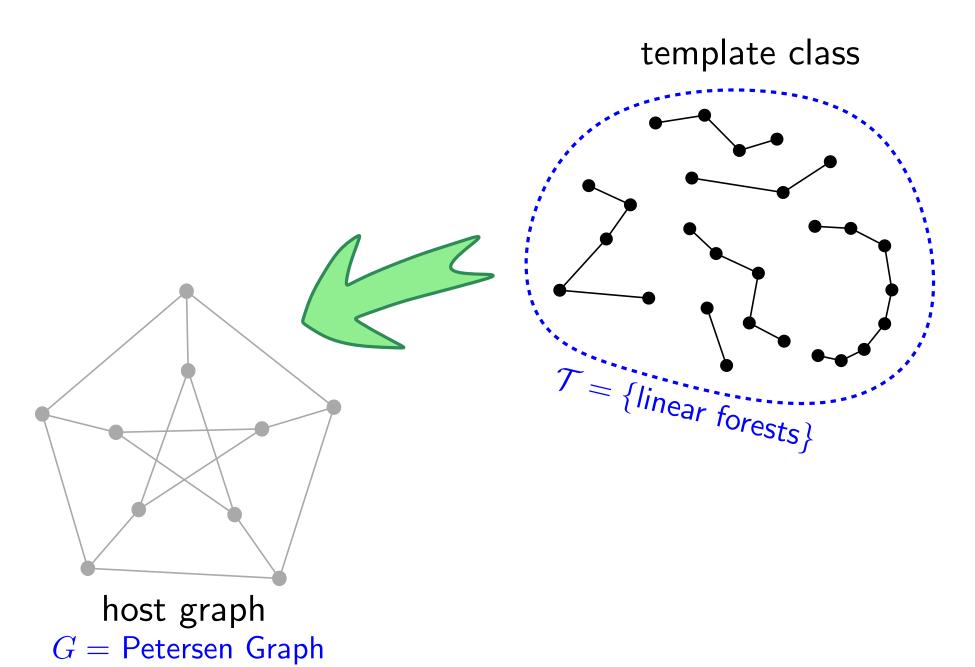
bar visibility number

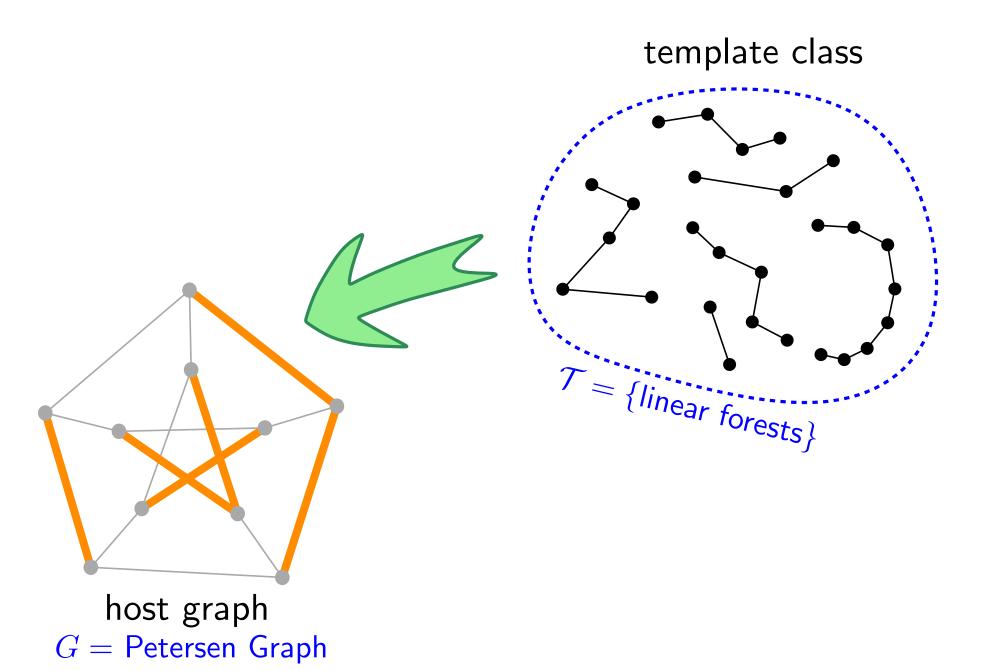
interval number splitting number

Local Covering Number

bipartite degree

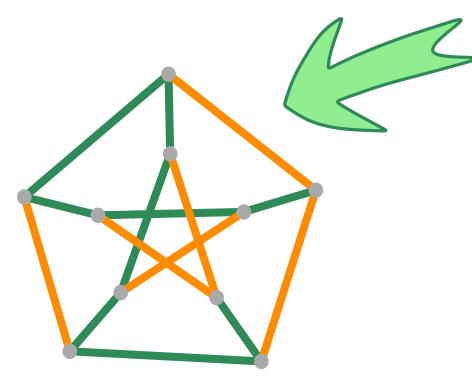
- Global, Local, and Folded Covers
 - Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 - Templates = Collections of Paths
- Interrelations
 - Templates = Forests, Pseudo-Forests, Star Forests
- What is known and what is open



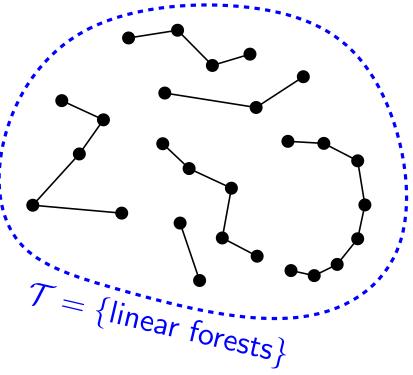


linear arboricity

$$c_g^{\mathcal{T}}(G) = \operatorname{la}(G) = 2$$



template class

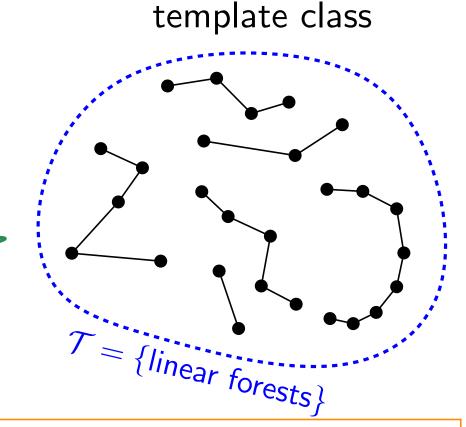


host graph

G =Petersen Graph

linear arboricity

$$c_q^{\mathcal{T}}(G) = \operatorname{la}(G) = 2$$



host graph

G =Petersen Graph

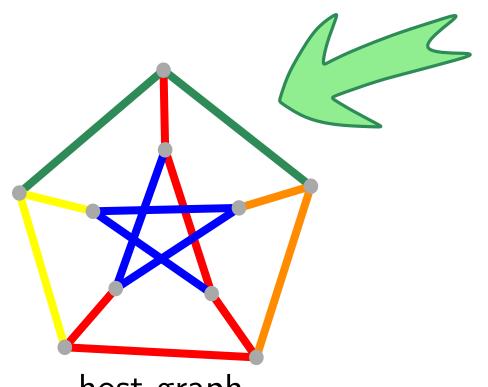
Akiyama et. al. '80

Linear Arboricity Conjecture

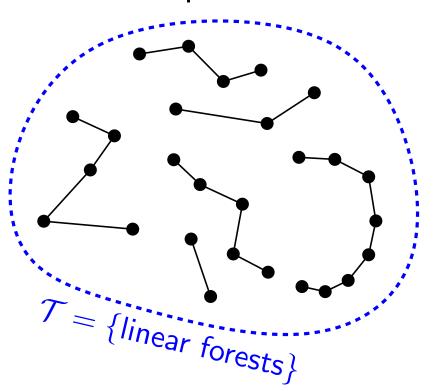
$$\operatorname{la}(G) \le \lceil \frac{\Delta+1}{2} \rceil$$

local linear arboricity

$$c_{\ell}^{\mathcal{T}}(G) = \mathrm{la}_{\ell}(G) = 2$$



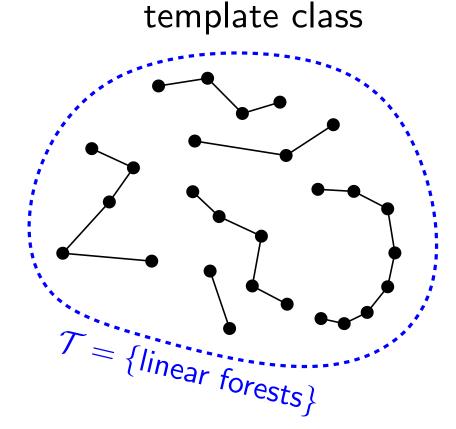
template class



host graph G =Petersen Graph

local linear arboricity

$$c_{\ell}^{\mathcal{T}}(G) = \mathrm{la}_{\ell}(G) = 2$$



host graph

G =Petersen Graph

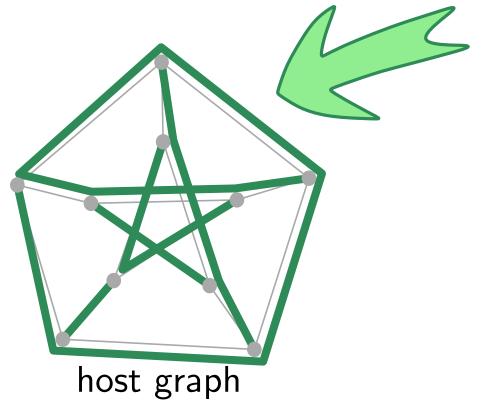
Local Linear Arboricity Conjecture

$$\operatorname{la}_{\ell}(G) \leq \lceil \frac{\Delta+1}{2} \rceil$$

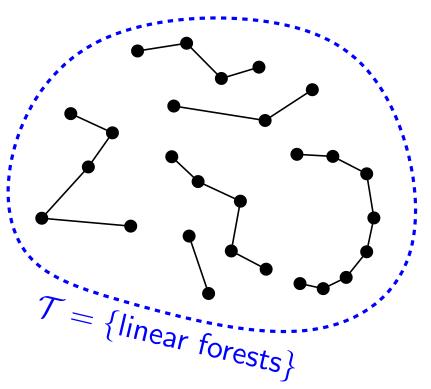
Folded Linear Arboricity

folded linear arboricity

$$c_f^{\mathcal{T}}(G) = \mathrm{la}_f(G) = 2$$



template class

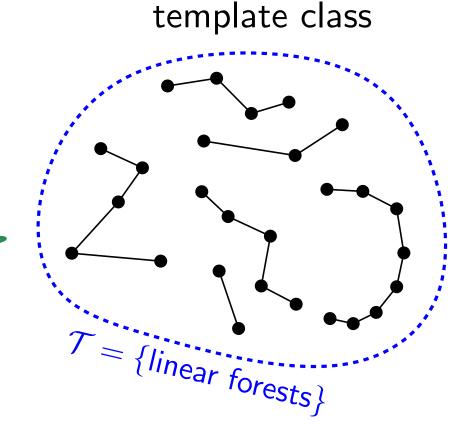


G =Petersen Graph

Folded Linear Arboricity

folded linear arboricity

$$c_f^{\mathcal{T}}(G) = \mathrm{la}_f(G) = 2$$



host graph

G =Petersen Graph

Folded Linear Arboricity Theorem[KU]

$$\operatorname{la}_f(G) \le \lceil \frac{\Delta+1}{2} \rceil$$

Folded Linear Arboricity Theorem[KU]

$$\operatorname{la}_f(G) \le \lceil \frac{\Delta+1}{2} \rceil$$

Folded Linear Arboricity Theorem[KU]

$$\operatorname{la}_f(G) \le \lceil \frac{\Delta+1}{2} \rceil$$

Proof: (easy)

Δ even:

- add vertices and edges to obtain Eulerian
- take Eulertour
- \circ all visited $\leq \frac{\Delta}{2}$ times
- start-vertex once more

$$\circ \ 1 + \frac{\Delta}{2} = \left\lceil \frac{\Delta + 1}{2} \right\rceil$$

Folded Linear Arboricity Theorem[KU]

$$\operatorname{la}_f(G) \leq \lceil \frac{\Delta+1}{2} \rceil$$

Proof: (easy)

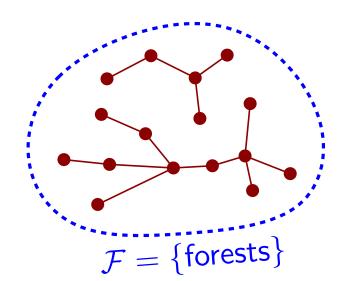
Δ even:

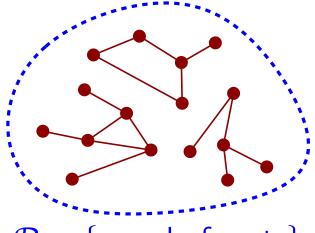
- add vertices and edges to obtain Eulerian
- take Eulertour
- \circ all visited $\leq \frac{\Delta}{2}$ times
- start-vertex once more
- $\circ \ 1 + \frac{\Delta}{2} = \left\lceil \frac{\Delta + 1}{2} \right\rceil$

Δ odd:

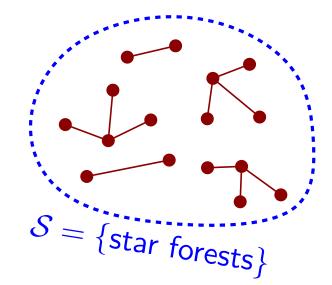
- add vertices and edges to obtain Eulerian
- take Eulertour
- \circ all visited $\leq \frac{\Delta+1}{2}$ times
- start-vertex once more
- start on added vertex
- $\circ \left\lceil \frac{\Delta+1}{2} \right\rceil$

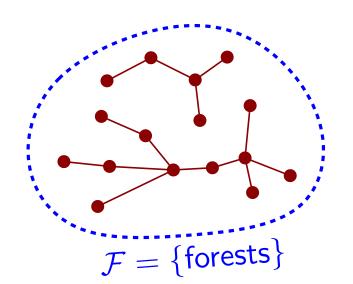
- Global, Local, and Folded Covers
 - Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 - Templates = Collections of Paths
- Interrelations
 - Templates = Forests, Pseudo-Forests, Star Forests
- What is known and what is open

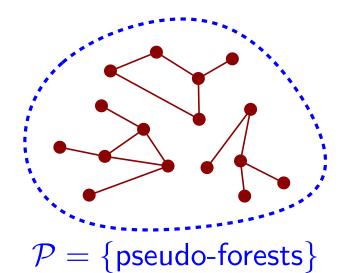


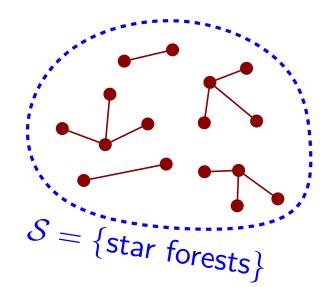


$$\mathcal{P} = \{\mathsf{pseudo}\text{-}\mathsf{forests}\}$$





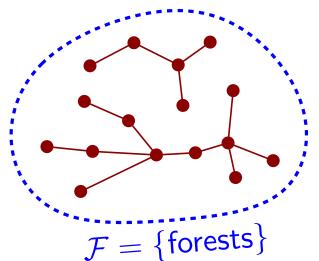


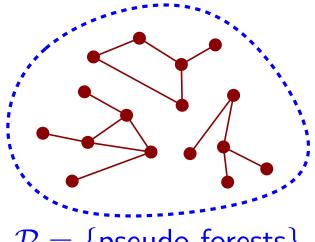


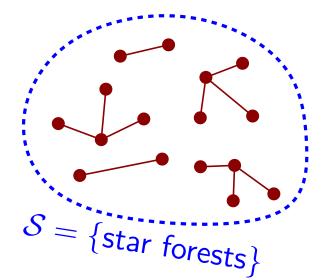
$$c_g^{\mathcal{F}}(G) = a(G)$$

[Nash-Williams '64]

$$a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil$$







 $\mathcal{P} = \{ pseudo-forests \}$

$$c_q^{\mathcal{F}}(G) = a(G)$$

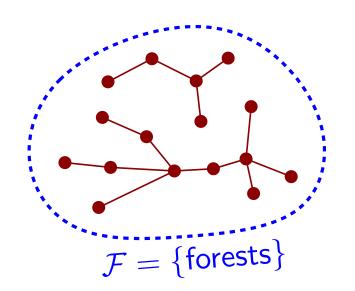
Pseudo-Arboricity

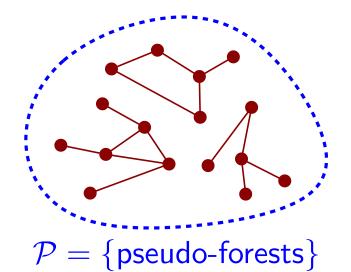
$$c_g^{\mathcal{P}}(G) = p(G)$$

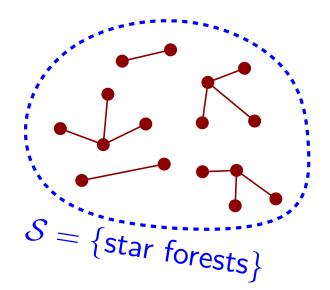
[Nash-Williams '64] [Picard et al. '82]

$$a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$

$$p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$







$$c_g^{\mathcal{F}}(G) = a(G)$$

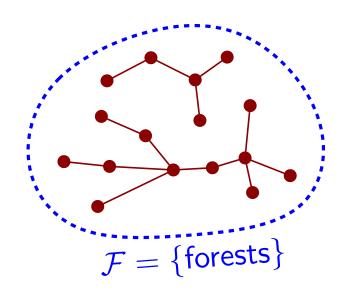
Pseudo-Arboricity

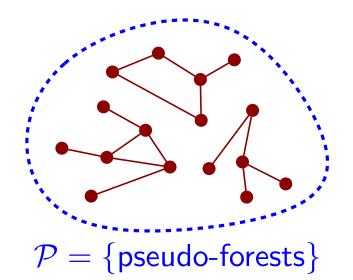
$$c_g^{\mathcal{P}}(G) = p(G)$$

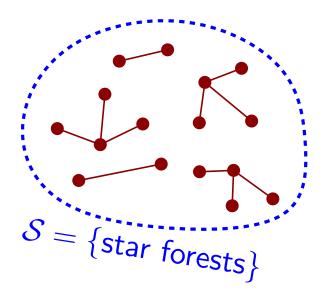
[Nash-Williams '64] [Picard et al. '82]

$$a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$

$$p(G) \le a(G) \le p(G) + 1$$







$$c_g^{\mathcal{F}}(G) = a(G)$$

Pseudo-Arboricity

$$c_g^{\mathcal{P}}(G) = p(G)$$

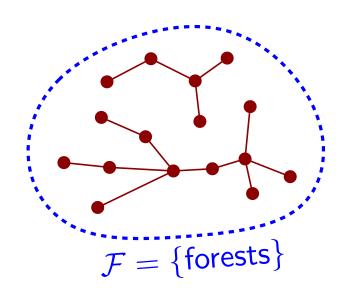
Star Arboricity

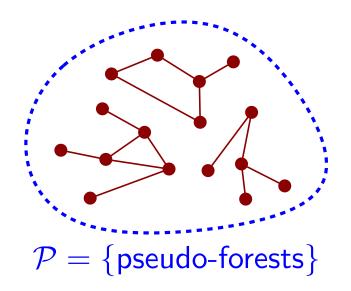
$$c_q^{\mathcal{S}}(G) = \operatorname{sa}(G)$$

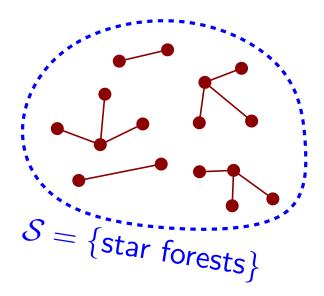
[Nash-Williams '64] [Picard et al. '82]

$$a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$

$$p(G) \le a(G) \le p(G) + 1$$







$$c_g^{\mathcal{F}}(G) = a(G)$$

Pseudo-Arboricity

$$c_g^{\mathcal{P}}(G) = p(G)$$

Star Arboricity

$$c_g^{\mathcal{S}}(G) = \operatorname{sa}(G)$$

[Nash-Williams '64] [Picard et al. '82]

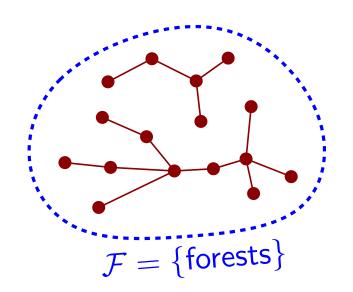
$$a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$

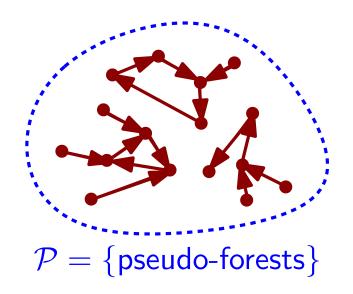
$$p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$

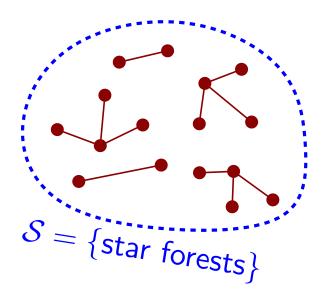
Local **Star Arboricity**

$$c_{\ell}^{\mathcal{S}}(G) = \mathrm{sa}_{\ell}(G)$$

$$p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1$$







$$c_g^{\mathcal{F}}(G) = a(G)$$

Pseudo-Arboricity

$$c_g^{\mathcal{P}}(G) = p(G)$$

Star Arboricity

$$c_q^{\mathcal{S}}(G) = \operatorname{sa}(G)$$

[Nash-Williams '64] [Picard et al. '82]

$$a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$

$$p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$$

Local **Star Arboricity**

$$c_{\ell}^{\mathcal{S}}(G) = \mathrm{sa}_{\ell}(G)$$

$$p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1$$

Thm.: We have
$$p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G) + 1$$
.

(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- \circ outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- \circ outdeg(v) = p(G) only if $\deg(v) = p(G)$

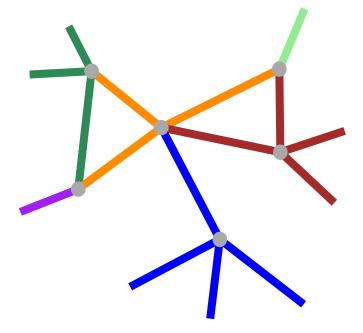
$$p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1.$$

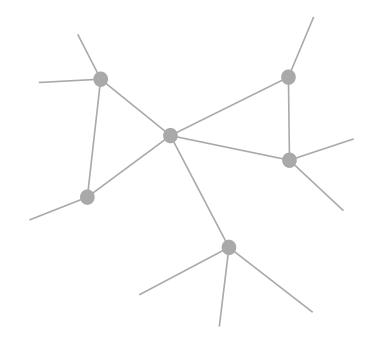
(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\circ \operatorname{outdeg}(v) \leq p(G) \text{ for every } v \in V(G)$
- outdeg(v) = p(G) only if deg(v) = p(G)

Proofsketch:





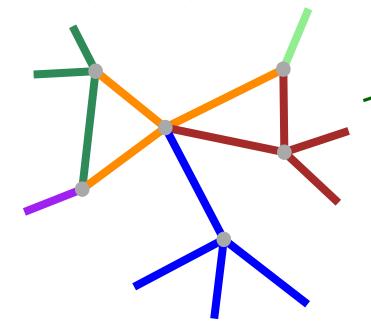
$$p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1.$$

(where any of these inequalites can be strict)

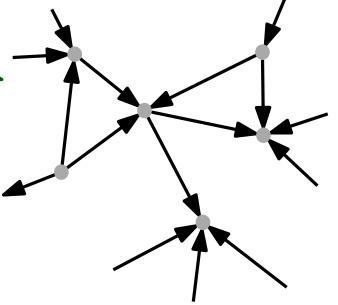
Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\circ \operatorname{outdeg}(v) \leq p(G) \text{ for every } v \in V(G)$
- outdeg(v) = p(G) only if deg(v) = p(G)

Proofsketch:



orient edges towards center



$$p(G) \le \operatorname{sa}_{\ell}(G)$$

 $\operatorname{outdeg}(v) \le \operatorname{sa}_{\ell}(G)$

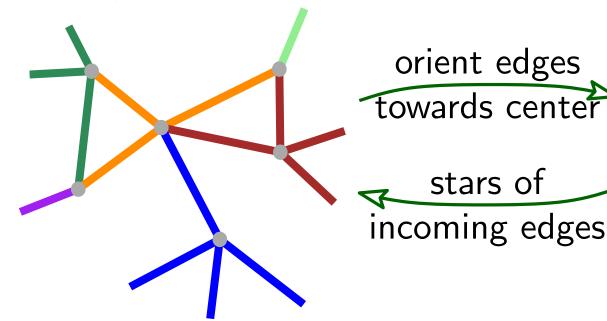
$$p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1.$$

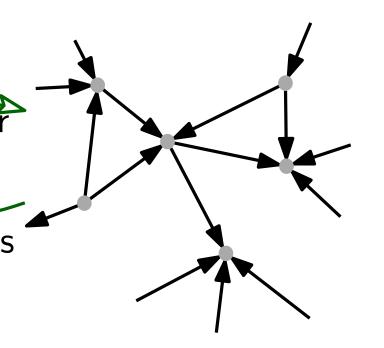
(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\circ \operatorname{outdeg}(v) \leq p(G) \text{ for every } v \in V(G)$
- outdeg(v) = p(G) only if deg(v) = p(G)

Proofsketch:





$$p(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1$$

Thm.: We have
$$p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G) + 1$$
.

(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- \circ outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- \circ outdeg(v) = p(G) only if $\deg(v) = p(G)$

Remains to show $a(G) \leq \operatorname{sa}_{\ell}(G)$:

- \circ W.l.o.g. $p(G) = \mathrm{sa}_{\ell}(G)$
- \circ Orientation with max outdeg p(G)attained only at degree-p(G) vertices
- Remove degree-p(G) vertices
- $p(G') \leq p(G) 1$, thus $a(G') \leq p(G)$
- \circ Reinsert degree-p(G) vertices
- $\circ \ a(G) \leq p(G) = \operatorname{sa}_{\ell}(G)$

$$p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1.$$

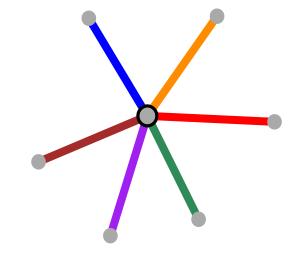
(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\circ \text{ outdeg}(v) \leq p(G) \text{ for every } v \in V(G)$
- \circ outdeg(v) = p(G) only if $\deg(v) = p(G)$

Remains to show $a(G) \leq \operatorname{sa}_{\ell}(G)$:

- W.I.o.g. $p(G) = \operatorname{sa}_{\ell}(G)$
- \circ Orientation with max $\operatorname{outdeg}\ p(G)$ attained only at degree-p(G) vertices
- Remove degree-p(G) vertices
- $p(G') \leq p(G) 1$, thus $a(G') \leq p(G)$
- Reinsert degree-p(G) vertices
- $\circ \ a(G) \leq p(G) = \operatorname{sa}_{\ell}(G)$



every edge into a different forest

Conclusions (concerning local star arboricity)

Theorem

We have
$$p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G) + 1$$
.

Corollary

Local star arboricity can be computed in polynomial time.

[Hakimi, Mitchem, Schmeichel '96]

Deciding $sa(G) \leq 2$ is NP-complete.

[Alon, McDiarmid, Reed '92]

 $\operatorname{sa}(G) \leq 2a(G)$ and this is best possible.

- Global, Local, and Folded Covers
 - Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 - Templates = Collections of Paths
- Interrelations
 - Templates = Forests, Pseudo-Forests, Star Forests
- What is known and what is open

What else is known

	Star Forests		Caterpillar Forests		
	g	$\ell = f$	g	ℓ	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$\mathrm{tw} \leq k$	k+1	k+1	k+1	k+1	k+1
$dg \le k$	2k	k+1	2k	k+1	k+1

What else is known

	Star Forests		Caterpillar Forests		
	g	$\ell = f$	g	ℓ	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$tw \le k$	k+1 $k+1$		k+1	k+1	k+1
$dg \le k$	2k	k+1	2k	k+1	k+1

What else is known

	Star Forests		Caterpillar Forests		
	g	$\ell = f$	g	ℓ	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$tw \le k$	k+1	k+1	k+1	k+1	k+1
$dg \le k$	2k	k+1	2k	k+1	k+1

Kostochka, West '99

Algor, Alon '89 Alon et. al. '92

Scheinermann, West '83

Ding et. al. '98

Gonçalves '07 KU '12 Hakimi et. al. '96

What is open

Local

Linear Arboricity Conjecture

$$\operatorname{la}_{\ell}(G) \leq \lceil \frac{\Delta+1}{2} \rceil$$

Local track number of planars

$$3 \le t_{\ell} \le 4$$

How much can $c_\ell^{\mathcal{T}}(G)$ and $c_f^{\mathcal{T}}(G)$ differ?

Are there \mathcal{T} and k, where $c_g^{\mathcal{T}}(G) \leq k$ is poly, but $c_\ell^{\mathcal{T}}(G) \leq k$ or $c_f^{\mathcal{T}}(G) \leq k$ NP-hard?

What is open

Local

Linear Arboricity Conjecture

$$\operatorname{la}_{\ell}(G) \leq \lceil \frac{\Delta+1}{2} \rceil$$

Local track number of planars

$$3 \le t_{\ell} \le 4$$

How much can $c_\ell^{\mathcal{T}}(G)$ and $c_f^{\mathcal{T}}(G)$ differ?

Are there \mathcal{T} and k, where $c_g^{\mathcal{T}}(G) \leq k$ is poly, but $c_\ell^{\mathcal{T}}(G) \leq k$ or $c_f^{\mathcal{T}}(G) \leq k$ NP-hard?

...three ways to pack a graph