A combinatorial setting for the colourful simplicial depth

Frédéric Meunier – Ecole des Ponts April 8th, 2012

Talk based on join works with Antoine Deza (McMaster University, Hamilton) and Pauline Sarrabezolles (Ecole des Ponts).

(ロ) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The colourful Carathéodory Theorem

[Bárány 1982] Let S_1, \ldots, S_{d+1} be sets of points in \mathbb{R}^d . If a point $p \in \bigcap_{i=1}^{d+1} \operatorname{conv}(S_i)$, then there is a $T \subseteq \bigcup_{i=1}^{d+1} S_i$ such that $|T \cap S_i| \leq 1$ for $i = 1, \ldots, d+1$ and $p \in \operatorname{conv}(T)$.

 $T \subseteq \bigcup_{i=1}^{d+1} S_i$ such that $|T \cap S_i| \le 1$ for i = 1, ..., d+1 is *colourful*.

- Algorithmic questions.
- Counting questions.

Algorithmic questions.

Colourful linear programming

Colourful linear programming, defined by Bárány and Onn in 1997.

Input. S_1, \ldots, S_k sets of points in \mathbb{R}^d and an additional point p**Question.** Is there a colourful T such that $p \in \text{conv}(T)$?

Complexity status: NP-complete (Bárány and Onn, 1997).

If $S_1 = \ldots = S_k$: usual linear programming.

Colourful linear programming, special TFNP case

Input. S_1, \ldots, S_{d+1} sets of points in \mathbb{R}^d and an additional point p such that $p \in \bigcap_{i=1}^{d+1} \operatorname{conv}(S_i)$.

Task. Find a colourful *T* such that $p \in \text{conv}(T)$.

Complexity status: unknown.

Colourful linear programming, special PPAD case

[Deza and M., 2012] If S_1, \ldots, S_{d+1} are sets of points in \mathbb{R}^d such that $|S_i| = 2$, then there is an even number of colourful T such that $p \in \text{conv}(T)$.

Input. S_1, \ldots, S_{d+1} sets of points in \mathbb{R}^d such that $|S_i| = 2$, and a colourful *T* such that $p \in \text{conv}(T)$.

Task. Find a colourful $T' \neq T$ such that $p \in \text{conv}(T')$.

Complexity status: unknown.

Counting questions.

Let *S* be a set of points in \mathbb{R}^d .

Let *S* be a set of points in \mathbb{R}^d .

Simplicial depth of a point p = number of *d*-simplices generated by *S* and containing p.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let *S* be a set of points in \mathbb{R}^d .

Let *S* be a set of points in \mathbb{R}^d .

Let *S* be a set of points in \mathbb{R}^d .

Let *S* be a set of points in \mathbb{R}^d .

Let *S* be a set of points in \mathbb{R}^d .

Let S_1, \ldots, S_{d+1} be (d + 1) sets of points in \mathbb{R}^d .

Colourful simplicial depth of a point p is: depth_{S1,...,Sd+1}(p) = number of colourful *d*-simplices generated by $\bigcup_{i=1}^{d+1} S_i$ and containing p.

Let S_1, \ldots, S_{d+1} be (d + 1) sets of points in \mathbb{R}^d .

Colourful simplicial depth of a point p is: depth_{S1,...,Sd+1}(p) = number of colourful *d*-simplices generated by $\bigcup_{i=1}^{d+1} S_i$ and containing p.

Let S_1, \ldots, S_{d+1} be (d + 1) sets of points in \mathbb{R}^d .

Colourful simplicial depth of a point p is: depth_{S1,...,Sd+1}(p) = number of colourful *d*-simplices generated by $\bigcup_{i=1}^{d+1} S_i$ and containing p.

A lower bound on simplicial depth

For $S \cup \{p\}$ in general position

[Bárány1982]

$$\max_{p} \operatorname{depth}_{\mathcal{S}}(p) \geq \frac{1}{(d+1)^{d+1}} \binom{n}{d+1} \quad \text{with } n = |\mathcal{S}|.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof combines the Tverberg theorem and the colourful Carathéodory theorem.

A lower bound on simplicial depth

For $S \cup \{p\}$ in general position

[Bárány1982]

$$\max_{\rho} \operatorname{depth}_{\mathcal{S}}(\rho) \geq \frac{\mu(d)}{(d+1)^{d+1}} \binom{n}{d+1} \quad \text{with } n = |\mathcal{S}|.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof combines the Tverberg theorem and the colourful Carathéodory theorem.

A new lower bound for simplicial depth

$$\mu(d) = \min_{\substack{S_1, \dots, S_{d+1} \\ p \in \bigcap_{i=1}^{d+1} \operatorname{conv}(S_i)}} \#\{T : T \text{ colourful and } p \in \operatorname{conv}(T)\}.$$

Strong version of Colourful Carathéodory Theorem: each point in $\bigcup_{i=1}^{d+1} S_i$ is part of a colourful simplex containing the *p*.

$$\max_{oldsymbol{
ho}} ext{depth}_{oldsymbol{\mathcal{S}}}(oldsymbol{
ho}) \geq rac{\mu(oldsymbol{d})}{(oldsymbol{d}+1)} inom{n}{oldsymbol{d}+1} \quad ext{with } n = |oldsymbol{S}|.$$

What is the exact value of $\mu(d)$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A new lower bound for simplicial depth

$$\mu(d) = \min_{\substack{S_1, \dots, S_{d+1} \\ p \in \bigcap_{i=1}^{d+1} \operatorname{conv}(S_i)}} \#\{T : T \text{ colourful and } p \in \operatorname{conv}(T)\}.$$

Strong version of Colourful Carathéodory Theorem: each point in $\bigcup_{i=1}^{d+1} S_i$ is part of a colourful simplex containing the *p*.

$$\max_{oldsymbol{
ho}} ext{depth}_{oldsymbol{\mathcal{S}}}(oldsymbol{
ho}) \geq rac{d+1}{(d+1)^{(d+1)}} inom{n}{d+1} \quad ext{with } n=|oldsymbol{S}|.$$

What is the exact value of $\mu(d)$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Upper bound on the colourful simplicial depth

Unfortunately, [Deza et al., 2006]

Gromov's bound

$$\max_{\boldsymbol{\rho}} \operatorname{depth}_{\boldsymbol{\mathcal{S}}}(\boldsymbol{\rho}) \geq \frac{\mu(\boldsymbol{d})}{(\boldsymbol{d}+1)^{(\boldsymbol{d}+1)}} \binom{n}{\boldsymbol{d}+1} \quad \text{with } n = |\boldsymbol{\mathcal{S}}|,$$

with $\mu(d) = d^2 + 1$ at best.

[Gromov, 2010]

$$\max_{p} \operatorname{depth}_{\mathcal{S}}(p) \geq rac{2d}{(d+1)!(d+1)} inom{n}{d+1} \quad ext{with } n = |\mathcal{S}|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

(simplification by Karasev, 2012).

The conjecture

Conjecture.

$$\mu(d)=d^2+1.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The successive improvements

	Lower bound	Conjecture true
	for $\mu(d)$	for d up to
Bárány, 1982	d + 1	1
Deza et al., 2006	2d	2
Bárány and Matoušek, 2007	$\max(3d, \frac{1}{5}d^2 + \frac{1}{5}d)$	3
Stephen and Thomas, 2008	$\frac{1}{4}d^{2} + d + 1$	Ø
Deza, Stephen, and Xie, 2011	$\frac{1}{2}d^2 + d + \frac{1}{2}$	Ø
Deza, Meunier, and S., 2012	$\frac{1}{2}d^2 + \frac{7}{2}d - 8$	4

A combinatorial counterpart: octahedral systems

An octahedral system Ω in an *n*-partite hypergraph (V_1, \ldots, V_n, E) satisfying parity condition: for any $X \subseteq \bigcup_{i=1}^n V_i$ such that $|X \cap V_i| = 2$ for all *i*, the number of edges of Ω induced by X is even.

Octahedral systems *without isolated vertex* generalize colourful configurations.

An octahedral system

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Two main properties for the geometrical approach

Octahedral Lemma

 $X \subseteq S$, $|X \cap S_i| = 2$ for all $i \longrightarrow$ an even number of colourful simplices.

Strong colourful Carathéodory Theorem

If $p \in \text{conv}(S_i)$ for all *i*, each point is part of some colourful simplices containing *p*.

Two main properties for the geometrical approach

Octahedral Lemma

 $X \subseteq S$, $|X \cap S_i| = 2$ for all $i \longrightarrow$ an even number of colourful simplices.

Strong colourful Carathéodory Theorem

If $p \in \text{conv}(S_i)$ for all *i*, each point is part of some colourful simplices containing *p*.

Combinatorial approach

Vertex set: $V = V_1 \cup \cdots \cup V_{d+1}$.

Edge set: E.

Parity condition: The number of edges induced by *X*, with $|X \cap V_i| = 2$ for all *i*, is even.

Octahedral systems without isolated vertex: Every point in $\bigcup_{i=1}^{d+1} V_i$ is in at least one edge.

Geometrical approach

A colourful configuration $S = S_1 \cup \cdots \cup S_{d+1}$.

Colourful simplices containing *p*.

Octahedral Lemma: The number of colourful simplices containing *p* generated by points in *X*, with $|X \cap S_i| = 2$ for all *i*, is even.

Strong Colourful

Carathéodory Theorem: Every point in $\bigcup_{i=1}^{d+1} S$ is part of some colourful simplex containing *p*.

If Ω realizes a colourful configuration, the number of edges |E| is the number of colourful simplices containing *p*.

Definition (ν)

 $\nu(d)$ is the minimal number of edges of an octahedral system without isolated vertex with $|V_i| = d + 1$ for i = 1, ..., d + 1.

 $\nu(d) \leq \mu(d)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lower bounds

Theorem (Deza, Meunier, S.)

$$\nu(d)\geq \frac{1}{2}d^2+\frac{7}{2}d-8$$

Lower bounds

Theorem (Deza, Meunier, S.)

$$\nu(d)\geq \frac{1}{2}d^2+\frac{7}{2}d-8$$

$$\mu(d)\geq \frac{1}{2}d^2+\frac{7}{2}d-8$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Idea of the proof: induction

Inductive approach.

Given an octahedral system $\Omega = (V, E)$ without isolated vertex and one of its vertices v, use the bound for $\Omega' = (V', E') = \Omega \setminus \{v\}$:

$$|E| = |E'| + \deg_{\Omega}(v).$$

For any such Ω' , parity condition automatically satisfied.

We would like to ensure that Ω' is again without isolated vertex.

Main Idea. Delete the vertices one after another until reaching an octahedral system whose number of edges can be estimated.

Idea of the proof: graph $D(\Omega)$

Octahedral system $\Omega = (V_1, \ldots, V_n, E)$.

Directed graph $D(\Omega) = (V, A)$ with $V = \bigcup_{i=1}^{n} V_i$ and arc $(u, v) \in A$ if every edge in *E* containing *v* contains *u* as well.

Idea. If *u* is removed from Ω , the vertex *v* becomes isolated.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Transitivity of $D(\Omega)$

 $D(\Omega)$ is *transitive*:

Arc $(u, v) \in A$: every edge in *E* containing *v* contains *u* as well.

Arc $(v, w) \in A$: every edge in *E* containing *w* contains *v* as well.

 \Rightarrow

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Arc $(u, w) \in A$: every edge in *E* containing *w* contains *u* as well.

Looking for complete subgraphs without outneighbour

In a transitive directed graph, there is always a complete subgraph without outneighbour.

Let Ω be an octahedral system without isolated vertex. If X induces a complete subgraph without outneighbour in $D(\Omega)$, then $\Omega' = \Omega \setminus X$ is an octahedral system without isolated vertex.

If |X| = 1

lower bound for $\Omega \geq \text{lower bound for } \Omega \setminus X + \deg_{\Omega}(X)$.

If $|X| \ge 2$

lower bound for
$$\Omega \geq \sim \min_{i=1,...,n} |V_i|^2$$
.

(日) (日) (日) (日) (日) (日) (日)

An octahedral system with n = 5, $|V_1| = ... = |V_5| = 5$ and without isolated vertex has at least 17 edges.

Proposition

$$\mu(4) = 17.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Computational approach "branch-and-bound" $\mu(4) \ge 14$, (Deza, Stephen, and Xie, 2012).

$$n=5, |V_1|=\ldots=|V_5|=5 \implies |E|\geq 17.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

$$n=5, |V_1|=\ldots=|V_5|=5 \implies |E|\geq 17.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

$$n=5, |V_1|=\ldots=|V_5|=5 \implies |E|\geq 17.$$

$|E| \ge 5$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$n=5, |V_1|=\ldots=|V_5|=5 \implies |E|\geq 17.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

28/34

$$n=5, |V_1|=\ldots=|V_5|=5 \implies |E|\geq 17.$$

・ロ・・聞・・ヨ・・ヨ・ シック・

$$n=5, |V_1|=\ldots=|V_5|=5 \implies |E|\geq 17.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$n=5, |V_1|=\ldots=|V_5|=5 \implies |E|\geq 17.$$

Realisability

Is any octahedral system Ω with $|V_i| = d + 1$ for i = 1, ..., d + 1and without isolated vertex the combinatorial counterpart of sets of points $S_1, ..., S_{d+1}$ in \mathbb{R}^d ?

No.

Counting the number of distinct octahedral systems

Given n disjoint finite sets V_1, \ldots, V_n , we have

number of octahedral systems on $V_1, \ldots, V_n = 2^{\prod_{i=1}^n |V_i| - \prod_{i=1}^n (|V_i| - 1)}$.

Idea of the proof

Identification *n*-partite hypergraph \cong subspace of $\mathcal{H} = \mathbb{F}_2^{V_1} \otimes \ldots \otimes \mathbb{F}_2^{V_n}$.

Define $\mathcal{X} = F_1 \otimes \ldots \otimes F_n$ where F_i =vectors of $\mathbb{F}_2^{V_i}$ with an even number of 1.

$$\psi: \begin{array}{ccc} \mathcal{H} &
ightarrow & \mathcal{X}^* \ H & \mapsto & \langle H, \cdot
angle \end{array}$$

 ψ is surjective, $\ker\psi$ is identified with the set of all octahedral systems

 $\dim \ker \psi = \dim \mathcal{H} - \dim \mathcal{X}.$

A D F A 同 F A E F A E F A Q A

Counting the number of distinct octahedral systems $\mathcal{H} = \mathbb{F}_2^{V_1} \otimes \ldots \otimes \mathbb{F}_2^{V_n} \text{ thus }$

 $\dim \mathcal{H} = \prod_{i=1}^n |V_i|.$

 $\mathcal{X} = F_1 \otimes \ldots \otimes F_n$ where F_i =vectors of $\mathbb{F}_2^{V_i}$ with an even number of 1 thus

 $\dim \mathcal{X} = \prod_{i=1}^n (|V_i| - 1).$

 \Rightarrow

Given n disjoint finite sets V_1, \ldots, V_n , we have

number of octahedral systems on $V_1, ..., V_n = 2^{\prod_{i=1}^{n} |V_i| - \prod_{i=1}^{n} (|V_i| - 1)}$.

Open questions

- Complexity status of colourful linear programming under Bárány's conditions.
- Complexity status of colourful linear programming, PPAD version.
- $\mu(d) \stackrel{?}{=} d^2 + 1.$
- Non-realisable octahedral systems for $d \ge 3$?
- Number of non-isomorphic octahedral systems (using Polya's theory?).

(日) (日) (日) (日) (日) (日) (日)

• Monotony of $\nu(m_1, \ldots, m_n)$.

Thank you.

