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The colourful Carathéodory Theorem

[Bárány 1982]
Let S1, . . . ,Sd+1 be sets of points in Rd . If a point
p ∈

⋂d+1
i=1 conv(Si), then there is a T ⊆

⋃d+1
i=1 Si such that

|T ∩ Si | ≤ 1 for i = 1, . . . ,d + 1 and p ∈ conv(T ).

T ⊆
⋃d+1

i=1 Si such that |T ∩ Si | ≤ 1 for i = 1, . . . ,d + 1 is
colourful.
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Questions

• Algorithmic questions.
• Counting questions.
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Algorithmic questions.
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Colourful linear programming

Colourful linear programming, defined by Bárány and Onn in
1997.

Input. S1, . . . ,Sk sets of points in Rd and an additional point p

Question. Is there a colourful T such that p ∈ conv(T ) ?

Complexity status: NP-complete (Bárány and Onn, 1997).

If S1 = . . . = Sk : usual linear programming.
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Colourful linear programming, special TFNP case

Input. S1, . . . ,Sd+1 sets of points in Rd and an additional point
p such that p ∈

⋂d+1
i=1 conv(Si).

Task. Find a colourful T such that p ∈ conv(T ).

Complexity status: unknown.
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Colourful linear programming, special PPAD case

[Deza and M., 2012]
If S1, . . . ,Sd+1 are sets of points in Rd such that |Si | = 2, then
there is an even number of colourful T such that p ∈ conv(T ).

Input. S1, . . . ,Sd+1 sets of points in Rd such that |Si | = 2, and
a colourful T such that p ∈ conv(T ).

Task. Find a colourful T ′ 6= T such that p ∈ conv(T ′).

Complexity status: unknown.
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Counting questions.
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Original motivation: simplicial depth

Let S be a set of points in Rd .

Simplicial depth of a point p = number of d-simplices generated
by S and containing p.
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Original motivation: simplicial depth

Let S1, . . . ,Sd+1 be (d + 1) sets of points in Rd .

Colourful simplicial depth of a point p is:
depthS1,...,Sd+1

(p) = number of colourful d-simplices generated
by
⋃d+1

i=1 Si and containing p.

µ(d) = min
S1,...,Sd+1,p

depthS1,...,Sd+1
(p).
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A lower bound on simplicial depth

For S ∪ {p} in general position

[Bárány1982]

max
p

depthS(p) ≥ 1
(d + 1)d+1

(
n

d + 1

)
with n = |S|.

Proof combines the Tverberg theorem and the colourful
Carathéodory theorem.
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A new lower bound for simplicial depth

µ(d) = min
S1,...,Sd+1

p∈
⋂d+1

i=1 conv(Si )

#{T : T colourful and p ∈ conv(T )}.

Strong version of Colourful Carathéodory Theorem: each point
in
⋃d+1

i=1 Si is part of a colourful simplex containing the p.

max
p

depthS(p) ≥ µ(d)

(d + 1)(d+1)

(
n

d + 1

)
with n = |S|.

What is the exact value of µ(d)?
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Upper bound on the colourful simplicial depth

Unfortunately,
[Deza et al., 2006]

µ(d) ≤ d2 + 1.
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Gromov’s bound

max
p

depthS(p) ≥ µ(d)

(d + 1)(d+1)

(
n

d + 1

)
with n = |S|,

with µ(d) = d2 + 1 at best.

[Gromov, 2010]

max
p

depthS(p) ≥ 2d
(d + 1)!(d + 1)

(
n

d + 1

)
with n = |S|.

(simplification by Karasev, 2012).
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The conjecture

Conjecture.
µ(d) = d2 + 1.
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The successive improvements

Lower bound Conjecture true
for µ(d) for d up to

Bárány, 1982 d + 1 1

Deza et al., 2006 2d 2

Bárány and Matoušek, 2007 max(3d , 1
5 d2 + 1

5 d) 3

Stephen and Thomas, 2008 1
4 d2 + d + 1 ∅

Deza, Stephen, and Xie, 2011 1
2 d2 + d + 1

2 ∅

Deza, Meunier, and S., 2012 1
2 d2 + 7

2 d − 8 4
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A combinatorial counterpart: octahedral systems

An octahedral system Ω in an n-partite hypergraph
(V1, . . . ,Vn,E) satisfying parity condition: for any X ⊆

⋃n
i=1 Vi

such that |X ∩ Vi | = 2 for all i , the number of edges of Ω
induced by X is even.

Octahedral systems without isolated vertex generalize colourful
configurations.
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An octahedral system
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Two main properties for the geometrical approach

Octahedral Lemma

X ⊆ S, |X ∩ Si | = 2 for all i −→ an even number of colourful
simplices.

Strong colourful Carathéodory Theorem
If p ∈ conv(Si) for all i , each point is part of some colourful
simplices containing p.
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Combinatorial approach

Vertex set: V = V1 ∪ · · · ∪Vd+1.

Edge set: E .

Parity condition: The number
of edges induced by X , with
|X ∩ Vi | = 2 for all i , is even.

Octahedral systems without
isolated vertex: Every point in⋃d+1

i=1 Vi is in at least one edge.

Geometrical approach

A colourful configuration
S = S1 ∪ · · · ∪ Sd+1.

Colourful simplices
containing p.

Octahedral Lemma: The
number of colourful simplices
containing p generated by
points in X , with |X ∩ Si | = 2 for
all i , is even.

Strong Colourful
Carathéodory Theorem: Every
point in

⋃d+1
i=1 S is part of some

colourful simplex containing p.
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If Ω realizes a colourful configuration, the number of edges |E |
is the number of colourful simplices containing p.

Definition (ν)
ν(d) is the minimal number of edges of an octahedral system
without isolated vertex with |Vi | = d + 1 for i = 1, . . . ,d + 1.

ν(d) ≤ µ(d)
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Lower bounds

Theorem (Deza, Meunier, S.)

ν(d) ≥ 1
2

d2 +
7
2

d − 8
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Idea of the proof: induction
Inductive approach.

Given an octahedral system Ω = (V ,E) without isolated vertex
and one of its vertices v , use the bound for
Ω′ = (V ′,E ′) = Ω \ {v}:

|E | = |E ′|+ degΩ(v).

For any such Ω′, parity condition automatically satisfied.

We would like to ensure that Ω′ is again without isolated vertex.

Main Idea. Delete the vertices one after another until reaching
an octahedral system whose number of edges can be
estimated.
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Idea of the proof: graph D(Ω)

Octahedral system Ω = (V1, . . . ,Vn,E).

Directed graph D(Ω) = (V ,A) with V =
⋃n

i=1 Vi and arc
(u, v) ∈ A if every edge in E containing v contains u as well.

Idea. If u is removed from Ω, the vertex v becomes isolated.
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Transitivity of D(Ω)

D(Ω) is transitive:

Arc (u, v) ∈ A: every edge in E containing v contains u as well.

Arc (v ,w) ∈ A: every edge in E containing w contains v as
well.

⇒

Arc (u,w) ∈ A: every edge in E containing w contains u as
well.

25/34



Looking for complete subgraphs without outneighbour

In a transitive directed graph, there is always a complete
subgraph without outneighbour.

Let Ω be an octahedral system without isolated vertex. If X
induces a complete subgraph without outneighbour in D(Ω),
then Ω′ = Ω \X is an octahedral system without isolated vertex.

If |X | = 1

lower bound for Ω ≥ lower bound for Ω \ X + degΩ(X ).

If |X | ≥ 2
lower bound for Ω ≥∼ min

i=1,...,n
|Vi |2.
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Small instances

An octahedral system with n = 5, |V1| = . . . = |V5| = 5 and
without isolated vertex has at least 17 edges.

Proposition

µ(4) = 17.

Computational approach “branch-and-bound” µ(4) ≥ 14, (Deza, Stephen, and Xie, 2012).
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Small instances

n = 5, |V1| = . . . = |V5| = 5 =⇒ |E | ≥ 17.

|E | ≥ 3
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Realisability

Is any octahedral system Ω with |Vi | = d + 1 for i = 1, . . . ,d + 1
and without isolated vertex the combinatorial counterpart of
sets of points S1, . . . ,Sd+1 in Rd?

No.

Counterexample.
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Counting the number of distinct octahedral systems

Given n disjoint finite sets V1, . . . ,Vn, we have

number of octahedral systems on V1, . . . ,Vn = 2Πn
i=1|Vi |−Πn

i=1(|Vi |−1).
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Idea of the proof

Identification
n-partite hypergraph ∼= subspace of H = FV1

2 ⊗ . . .⊗ FVn
2 .

Define X = F1 ⊗ . . .⊗ Fn where Fi =vectors of FVi
2 with an even

number of 1.

ψ : H → X ∗
H 7→ 〈H, ·〉

ψ is surjective, kerψ is identified with the set of all octahedral
systems

dim kerψ = dimH− dimX .
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Counting the number of distinct octahedral systems
H = FV1

2 ⊗ . . .⊗ FVn
2 thus

dimH = Πn
i=1|Vi |.

X = F1 ⊗ . . .⊗ Fn where Fi =vectors of FVi
2 with an even

number of 1 thus

dimX = Πn
i=1(|Vi | − 1).

⇒

Given n disjoint finite sets V1, . . . ,Vn, we have

number of octahedral systems on V1, . . . ,Vn = 2Πn
i=1|Vi |−Πn

i=1(|Vi |−1).
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Open questions

• Complexity status of colourful linear programming under
Bárány’s conditions.
• Complexity status of colourful linear programming, PPAD

version.
• µ(d)

?
= d2 + 1.

• Non-realisable octahedral systems for d ≥ 3?
• Number of non-isomorphic octahedral systems (using

Polya’s theory?).
• Monotony of ν(m1, . . . ,mn).
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Thank you.
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