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A General Principle

» In discrete structures, there exists a TRANSITION
between the non-existence and the existence of certain
patterns.

» Furthermore this transition is, in general, ABRUPT.

Threshold Phenomena



In This Talk...

1.— Definitions

2.— Linear Systems of Equation. Our Results
3.— Trivial and Degenerated Solutions

4.— The Probabilistic Method

5.— Further Research



Definitions



Random sets in [n]

Two models:

» A C [n] a subset chosen UNIFORMLY at random among
all the subsets with the same size.

» A C [n] a subset of elements chosen INDEPENDENTLY
at random in [n]:

p(k € A)=p=p(n)

EQUIVALENCE: these two models are “equivalent” iff

IA]

n



What is a threshold?

Let P a combinatorial property.

A € P iff A satisfies the property P.

p = o(t(n)),then limp(A € P) — 0

t(n)is a threshold { t(n) = o(p), then limp(A € P) — 1

Threshold=abrupt transition



Observations and results

Thresholds are NOT defined uniquely.

A property P is monotone increasing iff

ACB Ae P=BeP

THEOREM (Bollobas, Thomason):

A monotone increasing property ALWAYS has a threshold.



Linear Systems of Equation.
Our Results



Some definitions and codification
Many natural conditions in additive combinatorics can be
codified via linear systems of equations:

» Free SET of k-AP: avoids

T1 + T3 = 279
Tgp—2 + Tk = 2x% 1
» Sidon SET: avoids
T1+ T2 =23+ 24
» Bylg] SET: avoids

Tyl + ot Thy =T12+ 0+ Th2

Tlg—1+ -+ Thg-1 =Tlg+ -+ Thy
Ti,gt+ +Thg = Tlg4l + -+ Tp g1

TRIVIAL solutions are NOT allowed!



The General Problem

Constructing dense subsets which exclude and arithmetical
condition is a very involved problem, which requires ad hoc
arguments.

Y

We study common properties instead of extremal properties.

Let M -x =0 be a linear system of r equations and m variables
and let A be a random set in [n].

I

Py M -x=0has NON TRIVIAL solutions in A™



What do we study?

Questions we study:

» Location of the position of the threshold.

» Nature of the threshold.

And...how do we do this?

By means of GENERAL arguments



Our Results (1)

» Location of the threshold

(R., Zumalacarregui) Let r < m and M - x = 0 be a linear
system of r equations and m variables:

» maximum rank.

» with a solution with pairwise different positive coordinates.

Then p = nm~1is a threshold for the property Pjy.



Our Results (and 11)

» Nature of the threshold

(R., Zumalacarregui) If p = cnm ', then

_ Vol(Pm) om

lim p(A€ Py)=1—e *#um

n—oo

» M -x=0,x € [0,1]™ defines a polytope Pys with volume
Vol(Pwm).

> s is a symmetry factor of the matrix M.

(The distribution of the number of solutions is a Poisson...)



Examples: k-AP
The system under study is the following;:

T, + x3 = 229

Tp—2 + T = 221

| v m| p  E[A] | Vol(Py) pm

k—AP [ k=2 k [n " o201 gl 1

Let us compare with the extremal values:

(logn)*/4 - (loglogn)®
n-———— < max{|A|: Aavoiding 3— AP} < n.-——"
oo < JEpytiAl - Aavolding J log n
(logn)(2logk)71 o L aeo
T k) (og s T S ;ngfgl{lAl : Aavoiding k—AP} < n-(loglogn)

The common behavior approximates the extremal one when k£ — oo



Examples: Sidon Sets

The system under study is the following:

T+ To=T3+ T4

m| p  E[A]| Vol(Pa) pu
4

”
Sidon ‘ 1 ‘ n=3/4 pl/t ‘ 8

wing|

There exist Sidon sets of cardinality of order n'/2.



Examples: B)[g| sets
The system under study is the following;:

i1+ o+ Th1 = Tr2+ 0+ Th2

Llg—1+ "+ Thg-1=2Tlg+ -+ Thg
Tig+ -+ Thg =Tigt1+ -+ Thgtr

v om | p E[A] [ Vol(Pu) par
Bulg] | g hg+1) | ni@m T nietn | & (g4 1)l(A)eT]

In the extremal case we have =< n'/"_ and the difficult point is
to compute the constant.
110

Doing g — oo, we recover the extremal estimate.

We GENERALIZE the result of Godbole, Janson, Loncatore
and Rapoport for By[1].



Trivial and Degenerated
Solutions



Two Examples

» 3-AP.
TRIVIAL solutions are the ones with difference 0.

» Sidon Sets. The solutions are:

1.- 4 different components.
— NO TRIVIAL, NO DEGENERATED.

2.- 11 = x2, but x3 # x4 221 = T3 + 24.
— NO TRIVIAL, DEGENERATED.

3.- x1 = x3 i x2 = x4 With two elements we have enough.
— TRIVIAL, DEGENERATED.

We need to define carefully degenerated and trivial.



The Partition associated to a Solution

» Let x = (x1,...,2y) be a solution of the system M -x = 0.
This solution induces a partition of [m] in terms of equality
of components: p(x).

» This solution comes from a subordinate system to M -x =0
by equaling variables in x in terms of the partition.

Many situations may happen in a subordinate system:

» The rank of the system do NOT decrease:
NO TRIVIAL DEGENERATED solution.

» The rank of the system decrease:
TRIVIAL DEGENERATED solution.

This definition generalizes the one posted by Ruzsa in
Solving a linear equation in a set of integers I, I1.



The dynamics of the solutions

By increasin from 0 the density of the random set we observe:

» The first solutions are trivial ones.

» The first NON TRIVIAL solutions are NON
DEGENERATED (pairwise different components).

» NON TRIVIAL DEGENERATED solutions appear
later.

RESUMING:

The threshold is a consequence of NON TRIVIAL NON
DEGENERATED solutions



The probabilistic method



The Ideas (1)

We want to count the (expected) number of solutions of the
system with coordinates in A:

Solution x <> Event Ey

The events must be considered up to symmetry

x=(1,4,2,3), y = (4,1,3,2), and Ey = Ej.

Each event has the following probability:

p(Ex) — pﬁ different components S X = Z ]Ix
xESn

We need to estimate the number of solutions of a linear system
of equations, where components are bounded by n



The Ideas (I1)

The number of solutions of M - x = 0 with coordinates in
[n] U {0} is given by Ehrhart’s theory on polytopes:

Teorema d’Ehrhart (Simplificat)
Let P be a d-dimensional convex polytope defined by a linear
system of equations. Then:

‘n PN Zd‘ — Vol(P)n(1 + o(1)).

EX]= Y p(B) = Tmpm=rym(y 4 o(1)),

228
x € Sy

where o(1) encapsulates both lower order terms and NON
TRIVIAL DEGENERATED solutions.



The Ideas (111)

If p = o(nm 1), then E[X] = 0(1), and X = 0 a.a.s.!

AR
And if nm ! = o(p) ..NOT as simple (X > 0 a.a.s.)...

PHILOSOPHY: Is the r.v. X concentrated around E[X]?

)

Study of the second moment of X



The Ideas (1V)

Just with the information coming from the first moment
and the second moment...we have enough!

(SECOND MOMENT) Let X =1 + --- + I be a sum of
indicator r.v. , where I; is associated to the event FE;.
Let ¢ ~ j if 7 # j and the events E;, F; are dependent.

A= Zp (Ez A E])
i~
If E[X] - 0o and A = o (E[X]Q), X ~ E[X] a.a.s.
In particular, X > 0 a.a.s.

We show that the dominant contribution in A arises
from solutions with pairwise different components.



The Ideas (and V)

! we study

r| N\ E

XES]\{

r _
» For p=cnm

» The events are not independent...but almost!

(JANSON’s INEQUALITY) Let {E;};cs be a set of events. Let
e > 0 such that for all i € I, p(E;) < e. Then

[1»(E) < o\ E) < x5 [ p(Eo).

1€l i€l i€l
As before, the main contribution arises from solutions with
pairwise different components.



Further Research



Far beyond Janson’s Inequality

Using the Brun’s Sieve we obtain the limiting distribution of X
around the threshold:

1 1 ko vouPy) m
lim p(X f— k) e <\/0(7)M)Cm> e }L]WM (&
n—o0 k! I3y,

Obtaining this limiting distribution is based on the fact that
around the threshold the dependence is very weak.

3

It is not common to get a solution, and if it happens, it is very
sparse.

3

We could try to erase some elements in the set in order to kill
these solutions to increase the density!



The Alteration Method: a new Frontier

Once we have a probabilistic construction one has to apply the
Alteration Method, which gives for free better density results.

W
We fix a probability p bigger than the threshold .

» Number of expected elements in A: pn

» Number of expected solutions: p™n™~"

Equaling;:

— _r__1q
m, m—r S p=nm1 1

pn=p'n —1=p

mflnmfrfl

This is what we call the “weak threshold”.



Far beyond the “ weak threshold”

¢

Once we have a density bigger that the one given by the “weak
threshold”, every element in A contributes to several solutions
of the system. Consequently, in this point the dependence is
very important.

HH

The arguments we used for the threshold
(Second moment, Janson) do not work here.

1 ...BUT... |}

The r.v. X is a polynomial of bounded degree of independent
indicator r.v.: Kim-Vu concentration result.

PRINCIPAL QUESTION: Could we find a limiting distribution
for the number of solutions in this regime?
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