Threshold Functions for Systems of Equations on Random Sets

Juanjo Rué, Ana Zumalacárregui

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid

Seminaire Modèles Combinatoires - LIX

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Introduction

Two Examples

$$n = 100; |\mathcal{A}| = 5$$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Not Probable to get a 3-AP

Two Examples

$$n = 100; |\mathcal{A}| = 20$$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Probable to get a 3-AP

A General Principle

- ▶ In discrete structures, there exists a **TRANSITION** between the non-existence and the existence of certain patterns.
- ► Furthermore this transition is, in general, **ABRUPT**.

₩

Threshold Phenomena

In This Talk...

- 1.- Definitions
- 2.- Linear Systems of Equation. Our Results
- **3.-** Trivial and Degenerated Solutions
- 4.- The Probabilistic Method
- 5.- Further Research

Definitions

Random sets in [n]

Two models:

- $\mathcal{A} \subseteq [n]$ a subset chosen **UNIFORMLY** at random among all the subsets with the same size.
- ▶ $\mathcal{A} \subseteq [n]$ a subset of elements chosen **INDEPENDENTLY** at random in [n]:

$$p(k \in \mathcal{A}) = p = p(n)$$

EQUIVALENCE: these two models are "equivalent" iff

$$p = \frac{|\mathcal{A}|}{n}$$

What is a threshold?

Let ${\cal P}$ a combinatorial property.

 $\mathcal{A} \in P$ iff \mathcal{A} satisfies the property P.

$$t(n) \text{ is a threshold} \begin{cases} p = o(t(n)), \text{ then } \lim p(\mathcal{A} \in P) \to 0\\ t(n) = o(p), \text{ then } \lim p(\mathcal{A} \in P) \to 1 \end{cases}$$

Threshold=abrupt transition

Observations and results

Thresholds are **NOT** defined uniquely.

A property P is **monotone increasing** iff

 $\mathcal{A} \subseteq \mathcal{B}, \ \mathcal{A} \in P \Rightarrow \mathcal{B} \in P.$

THEOREM (Bollobás, Thomason):

A monotone increasing property **ALWAYS** has a threshold.

Linear Systems of Equation. Our Results

Some definitions and codification

Many natural conditions in additive combinatorics can be codified via linear systems of equations:

• Free **SET** of k-AP: avoids

$$\begin{cases} x_1 + x_3 = 2x_2 \\ \dots \\ x_{k-2} + x_k = 2x_{k-1} \end{cases}$$

▶ Sidon **SET**: avoids

$$x_1 + x_2 = x_3 + x_4$$

• $B_h[g]$ **SET**: avoids

$$\begin{cases} x_{1,1} + \dots + x_{h,1} = x_{1,2} + \dots + x_{h,2} \\ \dots \\ x_{1,g-1} + \dots + x_{h,g-1} = x_{1,g} + \dots + x_{h,g} \\ x_{1,g} + \dots + x_{h,g} = x_{1,g+1} + \dots + x_{h,g+1} \\ \text{TRIVIAL solutions are NOT allowed!} \end{cases}$$

The General Problem

Constructing *dense* subsets which exclude and arithmetical condition is a very involved problem, which requires *ad hoc* arguments.

We study *common* properties instead of *extremal* properties.

1

Let $M \cdot \mathbf{x} = 0$ be a linear system of r equations and m variables and let \mathcal{A} be a random set in [n].

∜

 $P_M: M \cdot \mathbf{x} = 0$ has NON TRIVIAL solutions in \mathcal{A}^m

What do we study?

Questions we study:

- ▶ Location of the position of the threshold.
- ▶ Nature of the threshold.

And...how do we do this?

By means of GENERAL arguments

Our Results (I)

Location of the threshold

(R., Zumalacárregui) Let r < m and $M \cdot \mathbf{x} = 0$ be a linear system of r equations and m variables:

- ▶ maximum rank.
- ▶ with a solution with pairwise different positive coordinates.

Then $p = n^{\frac{r}{m}-1}$ is a threshold for the property P_M .

Our Results (and II)

► **Nature** of the threshold

(R., Zumalacárregui) If $p = cn^{\frac{r}{m}-1}$, then

$$\lim_{n \to \infty} p\left(\mathcal{A} \in P_M\right) = 1 - e^{-\frac{\operatorname{Vol}(\mathcal{P}_M)}{\mu_M}c^m},$$

- $M \cdot \mathbf{x} = 0, \ \mathbf{x} \in [0,1]^m$ defines a polytope \mathcal{P}_M with volume $\operatorname{Vol}(\mathcal{P}_M)$.
- μ_M is a symmetry factor of the matrix M.

(The distribution of the number of solutions is a **Poisson**...)

Examples: *k*-**AP**

The system under study is the following:

$$\begin{cases} x_1 + x_3 = 2x_2 \\ \dots \\ x_{k-2} + x_k = 2x_{k-1} \end{cases}$$
$$\frac{r \quad m \quad p \quad \mathbb{E}[|\mathcal{A}|] \quad \operatorname{Vol}(\mathcal{P}_M) \quad \mu_M}{k - \operatorname{AP} \quad k - 2 \quad k \quad n^{-2/k} \quad n^{1-2/k} \quad \frac{1}{2(k-1)} \quad 1}$$

Let us compare with the extremal values:

$$n \cdot \frac{(\log n)^{1/4}}{e^{c\sqrt{\log n}}} \ll \max_{\mathcal{A} \subset [n]} \{ |\mathcal{A}| : \mathcal{A} \text{ avoiding } 3 - \mathrm{AP} \} \ll n \cdot \frac{(\log \log n)^5}{\log n}$$
$$n \cdot \frac{(\log n)^{(2\log k)^{-1}}}{e^{c(k)(\log n)^{\log^{-1}k}}} \ll \max_{\mathcal{A} \subset [n]} \{ |\mathcal{A}| : \mathcal{A} \text{ avoiding } k - \mathrm{AP} \} \ll n \cdot (\log \log n)^{-2^{-2^{(k+9)}}}$$

The common behavior approximates the extremal one when $k \to \infty$

Examples: Sidon Sets

The system under study is the following:

$$x_1 + x_2 = x_3 + x_4$$

$$\frac{r m p \mathbb{E}[|\mathcal{A}|] \operatorname{Vol}(\mathcal{P}_M) \mu_M}{\operatorname{Sidon} 1 4 n^{-3/4} n^{1/4} \frac{2}{3} 8}$$

There exist Sidon sets of cardinality of order $n^{1/2}$.

Examples: $B_h[g]$ sets

The system under study is the following:

$$\begin{cases} x_{1,1} + \dots + x_{h,1} = x_{1,2} + \dots + x_{h,2} \\ \dots \\ x_{1,g-1} + \dots + x_{h,g-1} = x_{1,g} + \dots + x_{h,g} \\ x_{1,g} + \dots + x_{h,g} = x_{1,g+1} + \dots + x_{h,g+1} \end{cases}$$

$$\frac{r \quad m}{B_h[g]} \begin{vmatrix} p & \mathbb{E}[|\mathcal{A}|] \\ g & h(g+1) \end{vmatrix} \frac{g}{n^{\overline{h(g+1)}-1}} \frac{g}{n^{\overline{h(g+1)}}} \end{vmatrix} \underbrace{\operatorname{Vol}(\mathcal{P}_M) \qquad \mu_M}{(g+1)!(h!)^{g+1}}$$

In the extremal case we have $\approx n^{1/h}$, and the difficult point is to compute the constant.

110

Doing $g \to \infty$, we recover the extremal estimate.

We **GENERALIZE** the result of Godbole, Janson, Loncatore and Rapoport for $B_h[1]$.

Trivial and Degenerated Solutions

Two Examples

► 3-AP.

TRIVIAL solutions are the ones with difference 0.

▶ Sidon Sets. The solutions are:

1.- 4 different components.

\rightarrow NO TRIVIAL, NO DEGENERATED.

- 2.- $x_1 = x_2$, but $x_3 \neq x_4$: $2x_1 = x_3 + x_4$. \rightarrow NO TRIVIAL, DEGENERATED.
- 3.- $x_1 = x_3$ i $x_2 = x_4$: with two elements we have enough. \rightarrow **TRIVIAL, DEGENERATED.**

We need to define carefully *degenerated* and *trivial*.

The Partition associated to a Solution

- Let $\mathbf{x} = (x_1, \dots, x_m)$ be a solution of the system $M \cdot \mathbf{x} = 0$. This solution induces a partition of [m] in terms of equality of components: $\mathbf{p}(\mathbf{x})$.
- ► This solution comes from a *subordinate* system to $M \cdot \mathbf{x} = 0$ by equaling variables in \mathbf{x} in terms of the partition.

Many situations may happen in a subordinate system:

- The rank of the system do NOT decrease:
 NO TRIVIAL DEGENERATED solution.
- The rank of the system decrease:
 TRIVIAL DEGENERATED solution.

This definition generalizes the one posted by Ruzsa in Solving a linear equation in a set of integers I, II.

The dynamics of the solutions

By increasin from 0 the density of the random set we observe:

- ▶ The first solutions are trivial ones.
- The first NON TRIVIAL solutions are NON DEGENERATED (pairwise different components).
- ► NON TRIVIAL DEGENERATED solutions appear later.

RESUMING:

The threshold is a consequence of NON TRIVIAL NON DEGENERATED solutions

The probabilistic method

The Ideas (I)

We want to count the (expected) number of solutions of the system with coordinates in \mathcal{A} :

Solution $\mathbf{x} \leftrightarrow \text{Event } E_{\mathbf{x}}$

The events must be considered up to symmetry

 $\mathbf{x} = (1, 4, 2, 3), \ \mathbf{y} = (4, 1, 3, 2), \ \text{and} \ E_{\mathbf{x}} = E_{\mathbf{y}}.$

Each event has the following probability:

$$p(E_{\mathbf{x}}) = p^{\sharp \text{ different components}} \to \mathbf{X} = \sum_{\mathbf{x} \in S_M} \mathbb{I}_{\mathbf{x}}$$

We need to estimate the number of solutions of a linear system of equations, where components are bounded by n

The Ideas (II)

The number of solutions of $M \cdot \mathbf{x} = 0$ with coordinates in $[n] \cup \{0\}$ is given by Ehrhart's theory on polytopes:

Teorema d'Ehrhart (Simplificat)

Let \mathcal{P} be a *d*-dimensional convex polytope defined by a linear system of equations. Then:

$$\left| n \cdot \mathcal{P} \cap \mathbb{Z}^d \right| = \operatorname{Vol}(\mathcal{P}) n^d (1 + o(1)).$$

$$\mathbb{E}[\mathbf{X}] = \sum_{\mathbf{x} \in S_M} p(E_{\mathbf{x}}) = \frac{\operatorname{Vol}(\mathcal{P}_M)}{\mu_M} n^{m-r} p^m (1 + o(1)),$$

where o(1) encapsulates both lower order terms and **NON TRIVIAL DEGENERATED** solutions.

The Ideas (III)

If
$$p = o(n^{\frac{r}{m}-1})$$
, then $\mathbb{E}[\mathbf{X}] = o(1)$, and $\mathbf{X} = 0$ a.a.s.!
 $\downarrow \downarrow \downarrow \downarrow$
And if $n^{\frac{r}{m}-1} = o(p) \dots \mathbf{NOT}$ as simple ($\mathbf{X} > 0$ a.a.s.)...

PHILOSOPHY: Is the r.v. **X** concentrated around $\mathbb{E}[\mathbf{X}]$?

 \uparrow

Study of the second moment of ${\bf X}$

The Ideas (IV)

Just with the information coming from the first moment and the second moment...we have enough!

(SECOND MOMENT) Let $\mathbf{X} = \mathbb{I}_1 + \cdots + \mathbb{I}_s$ be a sum of indicator r.v., where \mathbb{I}_i is associated to the event E_i . Let $i \sim j$ if $i \neq j$ and the events E_i , E_j are dependent.

$$\Delta = \sum_{i \sim j} p\left(E_i \wedge E_j\right)$$

If $\mathbb{E}[\mathbf{X}] \to \infty$ and $\Delta = o\left(\mathbb{E}[\mathbf{X}]^2\right)$, $\mathbf{X} \sim \mathbb{E}[\mathbf{X}]$ a.a.s. In particular, X > 0 a.a.s.

We show that the dominant contribution in Δ arises from solutions with pairwise different components.

The Ideas (and V)

• For
$$p = cn^{\frac{r}{m}-1}$$
 we study

$$p\left(\bigwedge_{\mathbf{x}\in S_M}\overline{E_{\mathbf{x}}}\right)$$

▶ The events are not independent...but almost!

(JANSON'S INEQUALITY) Let $\{E_i\}_{i \in I}$ be a set of events. Let $\varepsilon > 0$ such that for all $i \in I$, $p(E_i) \leq \varepsilon$. Then

$$\prod_{i\in I} p(\overline{E_i}) \leq p(\bigwedge_{i\in I} \overline{E_i}) \leq e^{\frac{\Delta}{2(1-\varepsilon)}} \prod_{i\in I} p(\overline{E_i}),$$

As before, the main contribution arises from solutions with pairwise different components.

Further Research

Far beyond Janson's Inequality

Using the *Brun's Sieve* we obtain the limiting distribution of \mathbf{X} around the threshold:

$$\lim_{n \to \infty} p(\mathbf{X} = k) = \frac{1}{k!} \left(\frac{\operatorname{Vol}(\mathcal{P}_{\mathrm{M}})}{\mu_{M}} c^{m} \right)^{k} e^{-\frac{\operatorname{Vol}(\mathcal{P}_{\mathrm{M}})}{\mu_{M}} c^{m}}$$

Obtaining this limiting distribution is based on the fact that around the threshold the *dependence is very weak*.

\\$

It is not common to get a solution, and if it happens, it is very sparse.

₩\$₩

We could try to erase some elements in the set in order to kill these solutions to increase the density!

The Alteration Method: a new Frontier

Once we have a probabilistic construction one has to apply the *Alteration Method*, which gives *for free* better density results.

$\downarrow\downarrow\downarrow\uparrow$

We fix a probability p bigger than the threshold .

- ▶ Number of expected elements in \mathcal{A} : pn
- ▶ Number of expected solutions: $p^m n^{m-r}$

Equaling:

$$pn = p^m n^{m-r} \to 1 = p^{m-1} n^{m-r-1} \to p = n^{\frac{r}{m-1}-1}$$

This is what we call the "weak threshold".

Far beyond the "weak threshold"

Once we have a density bigger that the one given by the "weak threshold", every element in \mathcal{A} contributes to several solutions of the system. Consequently, in this point the dependence is very important.

$\downarrow \Downarrow \downarrow$

The arguments we used for the threshold (Second moment, Janson) do not work here.

$\downarrow\Downarrow ...\mathsf{BUT}...\Downarrow\downarrow$

The r.v. **X** is a polynomial of bounded degree of independent indicator r.v.: **Kim-Vu concentration result**.

PRINCIPAL QUESTION: Could we find a limiting distribution for the number of solutions in this regime?

Merci

Threshold Functions for Systems of Equations on Random Sets

Juanjo Rué, Ana Zumalacárregui

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid

Seminaire Modèles Combinatoires - LIX

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

