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Introduction



Two Examples

n = 100; |A| = 5

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Not Probable to get a 3-AP



Two Examples

n = 100; |A| = 20

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Probable to get a 3-AP



A General Principle

I In discrete structures, there exists a TRANSITION
between the non-existence and the existence of certain
patterns.

I Furthermore this transition is, in general, ABRUPT.

⇓

Threshold Phenomena



In This Talk...

1.− Definitions

2.− Linear Systems of Equation. Our Results

3.− Trivial and Degenerated Solutions

4.− The Probabilistic Method

5.− Further Research



Definitions



Random sets in [n]

Two models:

I A ⊆ [n] a subset chosen UNIFORMLY at random among
all the subsets with the same size.

I A ⊆ [n] a subset of elements chosen INDEPENDENTLY
at random in [n]:

p(k ∈ A) = p = p(n)

EQUIVALENCE: these two models are “equivalent” iff

p =
|A|
n



What is a threshold?

Let P a combinatorial property.

A ∈ P iff A satisfies the property P .

t(n) is a threshold

{
p = o(t(n)), then lim p(A ∈ P ) → 0
t(n) = o(p), then lim p(A ∈ P ) → 1

Threshold=abrupt transition



Observations and results

Thresholds are NOT defined uniquely.

A property P is monotone increasing iff

A ⊆ B, A ∈ P ⇒ B ∈ P.

THEOREM (Bollobás, Thomason):

A monotone increasing property ALWAYS has a threshold.



Linear Systems of Equation.
Our Results



Some definitions and codification
Many natural conditions in additive combinatorics can be
codified via linear systems of equations:

I Free SET of k-AP: avoids
x1 + x3 = 2x2

. . .
xk−2 + xk = 2xk−1

I Sidon SET: avoids

x1 + x2 = x3 + x4

I Bh[g] SET: avoids
x1,1 + · · ·+ xh,1 = x1,2 + · · ·+ xh,2

. . .
x1,g−1 + · · ·+ xh,g−1 = x1,g + · · ·+ xh,g
x1,g + · · ·+ xh,g = x1,g+1 + · · ·+ xh,g+1

TRIVIAL solutions are NOT allowed!



The General Problem

Constructing dense subsets which exclude and arithmetical
condition is a very involved problem, which requires ad hoc
arguments.

⇓

We study common properties instead of extremal properties.

Let M · x = 0 be a linear system of r equations and m variables
and let A be a random set in [n].

⇓

PM : M · x = 0 has NON TRIVIAL solutions in Am



What do we study?

Questions we study:

I Location of the position of the threshold.

I Nature of the threshold.

And...how do we do this?

By means of GENERAL arguments



Our Results (I)

I Location of the threshold

(R., Zumalacárregui) Let r < m and M · x = 0 be a linear
system of r equations and m variables:

I maximum rank.

I with a solution with pairwise different positive coordinates.

Then p = n
r
m
−1 is a threshold for the property PM .



Our Results (and II)

I Nature of the threshold

(R., Zumalacárregui) If p = cn
r
m
−1, then

lim
n→∞

p (A ∈ PM ) = 1− e
−Vol(PM)

µM
cm

,

I M · x = 0, x ∈ [0, 1]m defines a polytope PM with volume
Vol(PM).

I µM is a symmetry factor of the matrix M .

(The distribution of the number of solutions is a Poisson...)



Examples: k-AP
The system under study is the following:

x1 + x3 = 2x2
. . .

xk−2 + xk = 2xk−1

r m p E[|A|] Vol(PM ) µM

k −AP k − 2 k n−2/k n1−2/k 1
2(k−1) 1

Let us compare with the extremal values:

n · (log n)
1/4

ec
√
logn

≪ max
A⊂[n]

{|A| : A avoiding 3−AP} ≪ n · (log log n)
5

log n

n· (logn)
(2 log k)−1

ec(k)(log n)log−1 k
≪ max

A⊂[n]
{|A| : A avoiding k−AP} ≪ n·(log log n)−2−2(k+9)

The common behavior approximates the extremal one when k → ∞



Examples: Sidon Sets

The system under study is the following:

x1 + x2 = x3 + x4

r m p E[|A|] Vol(PM ) µM

Sidon 1 4 n−3/4 n1/4 2
3 8

There exist Sidon sets of cardinality of order n1/2.



Examples: Bh[g] sets
The system under study is the following:

x1,1 + · · ·+ xh,1 = x1,2 + · · ·+ xh,2
. . .

x1,g−1 + · · ·+ xh,g−1 = x1,g + · · ·+ xh,g
x1,g + · · ·+ xh,g = x1,g+1 + · · ·+ xh,g+1

r m p E[|A|] Vol(PM ) µM

Bh[g] g h(g + 1) n
g

h(g+1)
−1

n
g

h(g+1) ♣ (g + 1)!(h!)g+1

In the extremal case we have ≍ n1/h, and the difficult point is
to compute the constant.

⇕↕⇕
Doing g → ∞, we recover the extremal estimate.

We GENERALIZE the result of Godbole, Janson, Loncatore
and Rapoport for Bh[1].



Trivial and Degenerated
Solutions



Two Examples

I 3-AP.

TRIVIAL solutions are the ones with difference 0.

I Sidon Sets. The solutions are:

1.- 4 different components.
→ NO TRIVIAL, NO DEGENERATED.

2.- x1 = x2, but x3 ̸= x4: 2x1 = x3 + x4.
→ NO TRIVIAL, DEGENERATED.

3.- x1 = x3 i x2 = x4: with two elements we have enough.
→ TRIVIAL, DEGENERATED.

We need to define carefully degenerated and trivial.



The Partition associated to a Solution

I Let x = (x1, . . . , xm) be a solution of the system M · x = 0.
This solution induces a partition of [m] in terms of equality
of components: p(x).

I This solution comes from a subordinate system to M · x = 0
by equaling variables in x in terms of the partition.

Many situations may happen in a subordinate system:

I The rank of the system do NOT decrease:
NO TRIVIAL DEGENERATED solution.

I The rank of the system decrease:
TRIVIAL DEGENERATED solution.

This definition generalizes the one posted by Ruzsa in
Solving a linear equation in a set of integers I, II.



The dynamics of the solutions

By increasin from 0 the density of the random set we observe:

I The first solutions are trivial ones.

I The first NON TRIVIAL solutions are NON
DEGENERATED (pairwise different components).

I NON TRIVIAL DEGENERATED solutions appear
later.

RESUMING:

The threshold is a consequence of NON TRIVIAL NON
DEGENERATED solutions



The probabilistic method



The Ideas (I)
We want to count the (expected) number of solutions of the
system with coordinates in A:

Solution x ↔ Event Ex

The events must be considered up to symmetry

x = (1, 4, 2, 3), y = (4, 1, 3, 2), andEx = Ey.

Each event has the following probability:

p(Ex) = p♯different components → X =
∑
x∈SM

Ix

We need to estimate the number of solutions of a linear system
of equations, where components are bounded by n



The Ideas (II)

The number of solutions of M · x = 0 with coordinates in
[n] ∪ {0} is given by Ehrhart’s theory on polytopes:

Teorema d’Ehrhart (Simplificat)
Let P be a d-dimensional convex polytope defined by a linear
system of equations. Then:∣∣∣n · P ∩ Zd

∣∣∣ = Vol(P)nd(1 + o(1)).

E[X] =
∑

x ∈ SM

p(Ex) =
Vol(PM )

µM
nm−rpm(1 + o(1)),

where o(1) encapsulates both lower order terms and NON
TRIVIAL DEGENERATED solutions.



The Ideas (III)

If p = o(n
r
m
−1), then E[X] = o(1), and X = 0 a.a.s.!

⇓↓⇓

And if n
r
m
−1 = o(p) ...NOT as simple (X > 0 a.a.s.)...

PHILOSOPHY: Is the r.v. X concentrated around E[X]?

⇕

Study of the second moment of X



The Ideas (IV)

Just with the information coming from the first moment
and the second moment...we have enough!

(SECOND MOMENT) Let X = I1 + · · ·+ Is be a sum of
indicator r.v. , where Ii is associated to the event Ei.
Let i ∼ j if i ̸= j and the events Ei, Ej are dependent.

∆ =
∑
i∼j

p (Ei ∧ Ej)

If E[X] → ∞ and ∆ = o
(
E[X]2

)
, X ∼ E[X] a.a.s.

In particular, X > 0 a.a.s.

We show that the dominant contribution in ∆ arises
from solutions with pairwise different components.



The Ideas (and V)

I For p = cn
r
m
−1 we study

p

 ∧
x∈SM

Ex


I The events are not independent...but almost!

(JANSON’s INEQUALITY) Let {Ei}i∈I be a set of events. Let
ε > 0 such that for all i ∈ I, p(Ei) ≤ ε. Then∏

i∈I
p(Ei) ≤ p(

∧
i∈I

Ei) ≤ e
∆

2(1−ε)

∏
i∈I

p(Ei),

As before, the main contribution arises from solutions with
pairwise different components.



Further Research



Far beyond Janson’s Inequality

Using the Brun’s Sieve we obtain the limiting distribution of X
around the threshold:

lim
n→∞

p(X = k) =
1

k!

(
Vol(PM)

µM
cm

)k

e
−Vol(PM)

µM
cm

Obtaining this limiting distribution is based on the fact that
around the threshold the dependence is very weak.

⇓↕⇓

It is not common to get a solution, and if it happens, it is very
sparse.

⇓↕⇓

We could try to erase some elements in the set in order to kill
these solutions to increase the density!



The Alteration Method: a new Frontier

Once we have a probabilistic construction one has to apply the
Alteration Method, which gives for free better density results.

↕⇓↕

We fix a probability p bigger than the threshold .

I Number of expected elements in A: pn

I Number of expected solutions: pmnm−r

Equaling:

pn = pmnm−r → 1 = pm−1nm−r−1 → p = n
r

m−1
−1.

This is what we call the “weak threshold”.



Far beyond the “ weak threshold”

Once we have a density bigger that the one given by the “weak
threshold”, every element in A contributes to several solutions
of the system. Consequently, in this point the dependence is
very important.

↓⇓↓

The arguments we used for the threshold
(Second moment, Janson) do not work here.

↓⇓ ...BUT... ⇓↓

The r.v. X is a polynomial of bounded degree of independent
indicator r.v.: Kim-Vu concentration result.

PRINCIPAL QUESTION: Could we find a limiting distribution
for the number of solutions in this regime?



Merci
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