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Graphs

Definition

A graph is given by a set X = {x1, x2, . . . , xn} of vertices and a set
E of edges, consisting of pairs of vertices.

Definition

The adjacency matrix of a graph denoted also by E is given by:
ei ,j is equal to the number of edges between the vertices xi and xj .



An example

6x x

xx1 2

x3
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5

E =





0 1 1 0 1 0
1 0 1 0 0 1
1 1 0 1 0 0
0 0 1 0 1 1
1 0 0 1 0 1
0 1 0 1 1 0







Graphs, conventions

• There are no loops, multiple edges may be allowed

• All graphs are supposed connected

• The degree of a vertex is the number of edges incident to it

di =
n�

j=1

ei ,j

• The number of edges of the graph is denoted m.



Configurations on graphs

• A configuration is an assignment of integers (positive or
negative) to vertices.
Two different writings will be used:

u = (u1, u2, · · · , un) or u =
�n

i=1 uixi

• A configuration u is positive if ui ≥ 0 for all i = 1, n.

• u is a sandpile configuration if ui ≥ 0 for all i = 1, n − 1,
and un may be positive or not.

• The degree of a configuration u is given by :

deg(u) =
n�

i=1

ui
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A game on the graph

• The toppling of vertex xi consists in giving di tokens, one to
each of its neighbors.

• Not necessary to have enough tokens, the number of tokens
may become (or stay) negative.

• In a toppling u becomes v such that:

vi = ui − di and for j �= i vj = uj + ei ,j

•
v = u + (ei ,1, ei ,2, . . . , ei ,i−1,−di , ei ,i+1, . . . ei ,n)
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Laplacian configurations

∆(i) = dixi −
n�

i=1

ei ,jxj

• Hence after a toppling of vertex xi we have

v = u −∆(i)

• Notice that:
n�

i=1

∆(i) = 0

• Corresponds to the rows of the Laplacian matrix

∆ = D − E

where D is the diagonal matrix such that Di ,i = di and E is
the adjacency matrix.
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Laplacian equivalence

• If u− v is a linear combination of the Laplacian configurations
∆(i) we will write

u ∼LG v



Main question

• Given a configuration u with negative values does there exist
a sequence of topplings leading to a positive one?

• Algebraic translation: Does the exist a linear combination v

of the ∆(i) such that u + v is positive.

• A configuration u for which such a v exists will be called here
effective
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An effective configuration

−1

1

0

21

1

u = −x1 + x3 + x4 + x5 + 2x6



An effective configuration

2

0

3−2

1

0

u ∼LG x3 + 2x4 − 2x5 + 3x6



An effective configuration

0 1

0−1

1

3

u ∼LG x2 + x3 + 3x4 − x5



An effective configuration

0 1

10

2

0

u ∼LG x2 + 2x3 + x6



A non effective configuration
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Similar games

• A. Björner , L. Lovász , P. W. Shor. Chip-firing games on

graphs (1991) European J. Combin, 1991, Vol 12.

Consider only positive configurations, determine if there exists
an infinite sequence of topplings, beginning with a given
configuration and remaining positive.

• Deepak Dhar Self Organised Critical State of Sandpile

Automaton Models Phys. Rev. Lett. 64, No.14,(1990)

The rules are:
1 Add 1 to a vertex different from the sink (xn)
2 Perform topplings in vertices different from the sink;
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Configurations associated to acyclic

orientations

• Orientation of a graph: For each edge {xi , xj} of the graph
determine which of xi , xj is the tail and which is the head.
The orientation is acyclic if there is no circuit.

• For the cycle Cn, the number of acyclic orientations is

2n − 2

The configuration associated to
−→
G is denoted u−→

G
and

given by:
(u−→

G
)i = d

−
i − 1

Where d
−
i is the number of edges which have head xi .

• Remark The degree of u−→
G

is m − n, where m is the number
of edges of G .
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An acyclic orientation and the configuration associated to it



Non effectiveness

Proposition

For any acyclic orientation
−→
G of G the configuration u−→

G
associated to it is non effective.



Non effectiveness

Proof.

• Consider a configuration v such that v ∼LG u−→
G

then

v = u−→
G
+

n�

i=1

ai∆
(i)

• The ai ’s may be supposed negative since the sum of all the
the ∆(i) is equal to 0.

• Let j be such that −aj is maximal among the −ai , then
vj ≥ 0 implies that there exists an edge xk , xj oriented from xk

to xj such that ak = aj ;

• Repeating this remark implies that
−→
G has a circuit,

contradicting acyclicity.
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Parking configurations

• Definition

A parking configuration is a sandpile configuration u such that for
any subset Y of {x1, x2, . . . , xn−1} there exists a vertex xi in Y

such that ui is less than the number of edges with have as end
points xi and an xj not in Y . More precisely:

∃xi ∈ Y , s.t : ui <
�

xj /∈Y

ei ,j

• Remark

In the case of the complete graph:

�

xj /∈Y

ei ,j = n − |Y |

so that the condition correspond to the usual parking functions.
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Parking and recurrent configurations

• Proposition

A configuration u is a parking configuration if and only if u given

by: ui = di − 1− ui is a recurrent configuration.

• Corollary

For each configuration u there is a (unique) parking configuration

v such that u ∼LG v
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Parking configurations and acyclic

orientations

Proposition

For any parking configuration u there exists an acyclic orientation−→
G such that for any vertex xi , i �= n, ui < d

−
i .

Proof.

Y = {x1, x2, . . . , xn−1}

While Y �= ∅ do:

• Find xk ∈ Y such that uk <
�

xj /∈Y ek,j

• Orient the edges joining xj /∈ Y to xk from xj t(tail) to xk

(head)

• Remove xk from Y .
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Deciding effectiveness

Corollary

u is effective if and only if the parking configuration w such that

w ∼LG u satisfies wn ≥ 0



Main Theorem

• Theorem

For any configuration u one of the following assertions holds:

(I) u is effective

(II) There exists an acyclic orientation
−→
G of G such that u−→

G
− u is

effective.

• Remark

Assertions (I) and (II) cannot hold simultaneously since:

u + (u−→
G
− u) = u−→

G
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Proof of the main Theorem

• If u is non effective, let w be the parking configuration

equivalent to u and consider the orientation
−→
G given from w

by the above Proposition.

• Let v be the configuration: v = u−→
G
− w .

• (u−→
G
)i = d

−
i − 1 ≥ wi

• d−
n − 1− wn ≥ 0, since d−

n ≥ 0 and wn < 0
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Consequence of the main Theorem

Proposition If deg(u) > m − n then u is effective

Proof.

In that case deg(u−→
G
− u) < 0

Algorithm for testing effectiveness of u

Find the parking configuration w such that u ∼LG w then check if
wn ≥ 0
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Rank of a configuration

Definition

The rank ρ(u) of a configuration u is given by

ρ(u) = Min(deg(f ))− 1

where the minimum is taken among all the positive configurations
f such that u − f is not effective.

Remark

The rank of a non effective configuration is −1.
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Example of calculation

The configuration u = (0, 2, 2, 2) on K4

The rank is not less than 3.

Subtract any positive configuration of degree 3 and prove
effectiveness
Subtraction of (3, 0, 0, 0) gives (−3, 2, 2, 2) ∼LG (0, 1, 1, 1)
Subtraction of (0, 3, 0, 0) gives (0,−1, 2, 2) ∼LG (2, 1, 0, 0)
Subtraction of (2, 1, 0, 0) gives (−2, 1, 2, 2) ∼LG (1, 0, 1, 1)
Subtraction of (1, 2, 0, 0) gives (−1, 0, 2, 2) ∼LG (1, 2, 0, 0)
Subtraction of (1, 1, 1, 0) gives (−1, 1, 1, 2) ∼LG (2, 0, 0, 1)
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Rank of a configuration of high degree

Proposition

If deg(u) > 2m − 2n then

ρ(u) = deg(u)−m + n − 1

Proof.

Let r = deg(u)−m + n − 1. If deg(f ) = r then
deg(u − f ) = m − n + 1 hence it is effective and ρ(u) ≥ r

Let
−→
G be an acyclic orientation of G ,

deg(u − u−→
G
) > 2(m − n)−m + n hence u − u−→

G
is effective

Let f be such that f ∼LG u − u−→
G

then u − f ∼LG u−→
G

is not
effective. Since deg(f ) = deg(u)−m + n = r + 1, we have
ρ(u) < r + 1.
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Riemann Roch Theorem for graphs

M. Baker, S. Norine, Riemann-Roch and Abel-Jacobi theory

on a finite graph (2007) Advances in Maths, 215, 766-788.

Theorem

Let K be the configuration such that Ki = di − 2, so that

deg(K ) = 2(m − n). Any configuration u satisfies:

ρ(u) = deg(u)−m + n + ρ(K − u)



Riemann Roch Theorem for graphs

Let f be such that u − f non effective and deg(f ) = ρ(u) + 1

There exists
−→
G such that u−→

G
− (u − f ) is effective hence:

u−→
G
− (u − f ) ∼LG g

Consider the reverse orientation
←−
G and add u←−

G
to both sides this

gives:
K − u + f ∼LG g + u←−

G

Showing that K − u − g is not effective hence

ρ(K−u) < deg(g) = deg(u−→
G
−(u−f )) = m−n−deg(u)+ρ(u)+1
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Riemann Roch Theorem for graphs

ρ(K − u) < m − n − deg(u) + ρ(u) + 1

Applying the same inequality to K − u gives:

ρ(u) < m − n − deg(K − u) + ρ(K − u) + 1

But deg(K − u) = 2m − 2n − deg(u) gives:

ρ(u) +m − n − deg(u)− 1 < ρ(K − u)

Since ρ(K − u) is an integer we have:

ρ(u) +m − n − deg(u) = ρ(K − u)
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A greedy algorithm computing the rank on Kn.



A greedy algorithm to compute the rank

on Kn

Lemma. u effective if and only if parking(u) is positive.

1: u ← parking(u)
2: rank ← −1
3: while s ≥ 0 do

4: substract 1 to a ui = 0 and i < n

5: u ← parking(u)
6: rank ← rank + 1
7: end while

8: Return rank



ρ(u) = min
f ≥ 0 and u − f non-effective

deg(f )− 1

Lemma. For a positive configuration u where ui = 0, there exists
in

{f | u − f non-effective, f ≥ 0 and degree(f ) = ρ(u) + 1}
a configuration g such that gi > 0 .

Proof.

u

v

u − f

(ij).v

(ij).[u − f ]

(ij).

(ij).

−(f − a�(j))

−a�(j) −a�(i)

{vi = 0 = vj}

{ non-effective }
{= (ij).[−a�(j)]}

Let �(i) the configuration where �(i)i = 1 and �(i)j = 0 for j �= i .
Let f ≥ 0 be an optimal configuration so u − f non-effective.
Assume fi = 0, let j �= i such that uj − fj = −a < 0.
Let v = u − (f − a�(j)), then 0 ≤ f − a�(j) ≤ f and vi = 0 = vj .
Since v = (ij).v , then g = f − a�(j) + a�(i) satisfies gi > 0 and

u − g = v − a�(i) = (ij).[v − a�(j)] = (ij).[u − f ]
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Algorithm in terms of Dyck words

A non-increasing parking configuration u = (u1, . . . , un−1, s) is
decomposed into

(d(u): Dyck word of (semi-)length n − 1, s:Z).

1: (d , s) ← (d(u), s(u))
2: rank ← −1
3: while s ≥ 0 do

4: match d with ad �bd ��

5: d ← d ��abd �

6: rank ← rank + 1
7: s ← s − |ad �b|a
8: end while

9: Return rank

ababab

aababb aabbab

abaabb

aaabbb

u = (0, 0, 0, 3)
, 3

, 0

,−1

ρ(u) = −1 + 2 = 1

The prerank of a Dyck word d is the number of loop iterations
leading to the fixpoint belonging to (ab)∗.
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beginframe

D
area,prerank
n (q, t) =

�
d q

area(d)tprerank(d) = D
area,prerank
n (t, q).

aaabbbab

abaabbababaababb

aabababb

aaababbb

aababbab aabbabab

abaaabbb

abababab

ababaabb

aabaabbb

aabbaabb

aaaabbbb

aaabbabb

1

3

3

3

2

1

1



Symmetry of area, prerank distribution.

1

2

3
4

5

match d with

e ab f

h

−→ ebaf

ea cumulant at height h

f cumulant at height h − 1

The loss in sink is related to:

either previous vertex at height h

or last vertex at height h − 1
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