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Graphs

Definition
A graph is given by a set X = {x1,x2, ..., xn } of vertices and a set

) )

E of edges, consisting of pairs of vertices.

Definition
The adjacency matrix of a graph denoted also by E is given by:
e;j is equal to the number of edges between the vertices x; and x;.
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Graphs, conventions

There are no loops, multiple edges may be allowed
All graphs are supposed connected

The degree of a vertex is the number of edges incident to it
n
di=7) ej
Jj=1

The number of edges of the graph is denoted m.



Configurations on graphs

¢ A configuration is an assignment of integers (positive or
negative) to vertices.
Two different writings will be used:

u=(u,up, -+ ,up)or u=>"1Ux;
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Configurations on graphs

¢ A configuration is an assignment of integers (positive or
negative) to vertices.
Two different writings will be used:
u=(u,up, -+ ,up)or u=>"1Ux;
e A configuration v is positive if u; > 0 forall i =1,n.

e uis a sandpile configuration if u; >0 forall i =1,n—1,
and u, may be positive or not.

e The degree of a configuration v is given by :

deg(u) = > ui
i=1
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each of its neighbors.
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A game on the graph

The toppling of vertex x; consists in giving d; tokens, one to
each of its neighbors.

Not necessary to have enough tokens, the number of tokens
may become (or stay) negative.

In a toppling u becomes v such that:

vi=u;—d; andforj#ivi=u+e;

V=u-+ (e,-l, €2y 6 i1, —d;, €iitls--- e,-’,,)
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Laplacian configurations

—dx, E € jXj

e Hence after a toppling of vertex x; we have

v=u—-AD

e Notice that:

e Corresponds to the rows of the Laplacian matrix
A=D-E

where D is the diagonal matrix such that D;; = d; and E is
the adjacency matrix.



Laplacian equivalence

e If u— v is a linear combination of the Laplacian configurations
A we will write
Uurp.Vv
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Main question

e Given a configuration u with negative values does there exist
a sequence of topplings leading to a positive one?

e Algebraic translation: Does the exist a linear combination v
of the AU) such that u + v is positive.

e A configuration v for which such a v exists will be called here
effective



An effective configuration

-1 0

u=—x1+x3+ x4+ x5 + 2xp



An effective configuration

0 0

un~p. X3+ 2xs — 2x5 + 36



An effective configuration

0 1

unip. Xo+x3+3xs — X5



An effective configuration

0 1

unrp. Xo + 2x3 + Xg



A non effective configuration




Similar games

e A. Bjorner , L. Lovdsz , P. W. Shor. Chip-firing games on
graphs (1991) European J. Combin, 1991, Vol 12.

Consider only positive configurations, determine if there exists
an infinite sequence of topplings, beginning with a given
configuration and remaining positive.



Similar games

e A. Bjorner , L. Lovdsz , P. W. Shor. Chip-firing games on
graphs (1991) European J. Combin, 1991, Vol 12.

Consider only positive configurations, determine if there exists
an infinite sequence of topplings, beginning with a given
configuration and remaining positive.

e Deepak Dhar Self Organised Critical State of Sandpile
Automaton Models Phys. Rev. Lett. 64, No.14,(1990)

The rules are:

@ Add 1 to a vertex different from the sink (x,)
® Perform topplings in vertices different from the sink;



Configurations associated to acyclic
orientations

e Orientation of a graph: For each edge {x;, x;} of the graph
determine which of x;, x; is the tail and which is the head.
The orientation is acyclic if there is no circuit.

e For the cycle C,, the number of acyclic orientations is
The configuration associated to G is denoted vz and
given by:

(ug)i=d -1

Where d;~ is the number of edges which have head x;.

e Remark The degree of ug is m — n, where m is the number
of edges of G.



Configurations associated to acyclic
orientations

e Orientation of a graph: For each edge {x;, x;} of the graph
determine which of x;, x; is the tail and which is the head.
The orientation is acyclic if there is no circuit.

e For the cycle C,, the number of acyclic orientations is 2" — 2
The configuration associated to G is denoted vz and
given by:

(ug),- =d -1

Where d;~ is the number of edges which have head x;.

e Remark The degree of ug is m — n, where m is the number
of edges of G.



An Example

1

An acyclic orientation and the configuration associated to it



Non effectiveness

Proposition
For any acyclic orientation 8 of G the configuration ug
associated to it is non effective.
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Proof.
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e The a;'s may be supposed negative since the sum of all the
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Non effectiveness

Proof.

e Consider a configuration v such that v ~; vz then
n
v=ug+ Z aiAl)
i=1

e The a;'s may be supposed negative since the sum of all the
the AU) is equal to 0.

e Let j be such that —a; is maximal among the —a;, then
v; > 0 implies that there exists an edge xj. x; oriented from x
to x; such that a, = aj;

e Repeating this remark implies that 8 has a circuit,
contradicting acyclicity.



Parking configurations

e Definition
A parking configuration is a sandpile configuration u such that for
any subset Y of {x1,x2,...,x, 1} there exists a vertex x; in Y

such that u; is less than the number of edges with have as end
points x; and an x; not in Y. More precisely:

dx; € Y,s.t: up < Z € j
xi¢Y



Parking configurations

e Definition
A parking configuration is a sandpile configuration u such that for
any subset Y of {x1,x2,...,x, 1} there exists a vertex x; in Y

such that u; is less than the number of edges with have as end
points x; and an x; not in Y. More precisely:

dx; € Y,s.t: up < Z € j
xi¢Y

e Remark
In the case of the complete graph:

> ej=n—1Y|

5¢EY

so that the condition correspond to the usual parking functions.



Parking and recurrent configurations

e Proposition

A configuration u is a parking configuration if and only if u given
by: u; = d; — 1 — uj is a recurrent configuration.



Parking and recurrent configurations

e Proposition
A configuration u is a parking configuration if and only if u given
by: u; = d; — 1 — uj is a recurrent configuration.

e Corollary

For each configuration u there is a (unique) parking configuration
v such that u ~ v



Parking configurations and acyclic
orientations
Proposition

For any parking configuration u there exists an acyclic orientation
such that for any vertex x;, i # n, u; < d. .



Parking configurations and acyclic
orientations
Proposition

For any parking configuration u there exists an acyclic orientation
such that for any vertex x;, i # n, u; < d. .

Proof.

Y ={x1,x2, ..., Xn—1}

While Y # () do:
e Find xx € Y such that v, < ijgy €k

e Orient the edges joining x; ¢ Y to x, from x; t(tail) to x
(head)

e Remove x, from Y.



Deciding effectiveness

Corollary

u is effective if and only if the parking configuration w such that
W~ u satisfies w, > 0



Main Theorem

e Theorem

For any configuration u one of the following assertions holds:
(1) u is effective

(1) There exists an acyclic orientation G of G such that ug —uis
effective.



Main Theorem

e Theorem

For any configuration u one of the following assertions holds:
(1) u is effective

(1) There exists an acyclic orientation G of G such that ug —uis
effective.

¢ Remark
Assertions (1) and (1) cannot hold simultaneously since:

u+(ug —u)=ug
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Proof of the main Theorem

o If uis non effective, let w be the parking configuration
equivalent to u and consider the orientation G given from w
by the above Proposition.

e Let v be the configuration: v = ug — w.

° (ug),-:df—lz w;



Proof of the main Theorem

If uis non effective, let w be the parking configuration

equivalent to v and consider the orientation
by the above Proposition.

Let v be the configuration: v = ug — w.
(ug)i=d —1>w,
d —1—w,>0,sinced, >0and w, <0

given from w
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Consequence of the main Theorem

Proposition If deg(u) > m — n then u is effective

Proof.
In that case deg(uz —u) <0 O

Algorithm for testing effectiveness of u

Find the parking configuration w such that v ~; _ w then check if
w, >0



Rank of a configuration
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Rank of a configuration

Definition
The rank p(u) of a configuration v is given by

p(u) = Min(deg(f)) — 1

where the minimum is taken among all the positive configurations
f such that u — f is not effective.

Remark
The rank of a non effective configuration is —1.
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The configuration v = (0,2,2,2) on K,
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Example of calculation

The configuration v = (0,2,2,2) on Ky

The rank is not greater than 3.

Subtract a positive configuration of degree 4 and prove non
effectiveness

Subtraction of (0,3,1,0) gives (0,—1,1,2)



Example of calculation

The configuration v = (0,2,2,2) on Ky

The rank is not greater than 3.

Subtract a positive configuration of degree 4 and prove non
effectiveness

Subtraction of (0,3,1,0) gives (0, —1,1,2) which is associated to
an acyclic orientation
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Rank of a configuration of high degree

Proposition
If deg(u) > 2m — 2n then

p(u) =deg(u) —m+n—1

Proof.
Let r = deg(u) — m+ n— 1. If deg(f) = r then
deg(u — ) = m — n+1 hence it is effective and p(u) > r

Let 8 be an acyclic orientation of G,
deg(u—ugz) > 2(m—n)—m+ nhence u— uz is effective

Let f be such that f ~; v — ug then v —f ~ ug is not
effective. Since deg(f) = deg(u) — m+n=r+ 1, we have
p(u) <r+1



Riemann Roch Theorem for graphs

M. Baker, S. Norine, Riemann-Roch and Abel-Jacobi theory
on a finite graph (2007) Advances in Maths, 215, 766-788.

Theorem
Let K be the configuration such that K; = d; — 2, so that
deg(K) = 2(m — n). Any configuration u satisfies:

p(u) = deg(u)—m+n+ p(K — u)



Riemann Roch Theorem for graphs

Let f be such that u — f non effective and deg(f) = p(u) + 1
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ugf(uff)NLGg
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Riemann Roch Theorem for graphs

Let f be such that u — f non effective and deg(f) = p(u) + 1
There exists G such that uz — (u— f) is effective hence:

ug —(u—~f)~ic 8
Consider the reverse orientation G and add us to both sides this

gives:
K—u+fr, g+ug

Showing that K — u — g is not effective hence

p(K—u) < deg(g) = deg(ug —(u—f)) = m—n—deg(u)+p(u)+1
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Riemann Roch Theorem for graphs
p(K—u) <m—n—deg(u)+ p(u)+1
Applying the same inequality to K — u gives:

p(uy <m—n—deg(K—u)+ p(K—u)+1

But deg(K — u) =2m — 2n — deg(u) gives:

p(u) +m—n—deg(u) —1 < p(K — u)

Since p(K — u) is an integer we have:

p(u) + m — n — deg(u) = p(K — u)



A greedy algorithm computing the rank on K.



A greedy algorithm to compute the rank
on K,

Lemma. v effective if and only if parking(u) is positive.

1
2
3
4
5:
6
7
8

. u < parking(u)
. rank «+— —1
: while s > 0 do

substract 1toa u; =0and i < n
u < parking(u)
rank < rank + 1

. end while
: Return rank



min deg(f) —1

u) =
plu) f >0 and v — f non-effective

Lemma. For a positive configuration v where u; = 0, there exists
in

{f| u— f non-effective, f > 0 and degree(f) = p(u) + 1}
a configuration g such that .

Proof.
—(f — ae(j)) -
{fvi=0=vj} v (ﬂ) (ij).v
—ael) ) —ael) {= (ij).[-aeU)]}
(if)-

{ non-effective }u — f === (ij).[u—f]



u min deg(f) —1
plu) = f >0 and u — f non-effective g(f)

Lemma. For a positive configuration u where u; = 0, there exists
in

{f| u— f non-effective, f > 0 and degree(f) = p(u) + 1}
a configuration g such that .

Proof.
—(f — ae(j)) -
{fvi=0=vj} v (ﬂ) (ij).v
—ael) ) —ael) {= (ij).[-aeU)]}
(if)-

{ non-effective }u — f === (ij).[u—f]

Let ¢()) the configuration where e,(.i) =1and ej(.i) =0 for j # I.
Let £ > 0 be an optimal configuration so u — f non-effective.
Assume fi = O let j ;é i such that uj — fi=—-a<.

/ -\



Algorithm in terms of Dyck words
A non-increasing parking configuration v = (uy, ..., uy—1,5) is
decomposed into

(d(u): Dyck word of (semi-)length n —1,s:7).

(d,s) « (d(u),s(u))
rank < —1
while s > 0 do
match d with ad’bd”
d + d"abd’
rank < rank +1
s« s—lad'b|,
end while
Return rank

© e N a s W

The prerank of a Dyck word d is the number of loop iterations
leading to the fixpoint belonging to (ab)*.



Algorithm in terms of Dyck words

A non-increasing parking configuration v = (uy, ..., uy—1,5) is
decomposed into

© e N a s W

(d(u): Dyck word of (semi-)length n —1,s:7).

u=(0,0,0,3)
3

(d,s) « (d(u),s(u))
rank < —1
while s > 0 do
match d with ad’bd”
d + d"abd’
rank < rank +1
s« s—lad'b|,
end while
Return rank

,0

pluy=-1+2=1

The prerank of a Dyck word d is the number of loop iterations
leading to the fixpoint belonging to (ab)*.
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Symmetry of area, prerank distribution.
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Symmetry of area, prerank distribution.
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match d with

ea cumulant at height h

f cumulant at height h — 1
The loss in sink is related to:

either previous vertex at height h
or last vertex at height h — 1



Symmetry of area, prerank distribution.

match d with
e ab f

" ea cumulant at height h

[ f cumulant at height h — 1
N The loss in sink is related to:

.
A/ | wl—]., 1
’

2 either previous vertex at height h

i or last vertex at height h — 1




Symmetry of area, prerank distribution.

match d with
e ab f

4
@
p3
>
—
[
1
1
1
1
T
1

oo
ole| .1
/| ~l® -

A/ | wl—]., 1
’
y

" ea cumulant at height h

SN, f cumulant at height h — 1

o[\ The loss in sink is related to:

either previous vertex at height h

> or last vertex at height h — 1




