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Planarity on the critical window
for random graphs



The model G(n, p)

Take n labelled vertices and a probability p = p(n):

♡ Independence in the choice of edges. X
♣ The expected number of edges is M =

(
n
2

)
p. X

♠ We do not control the number of edges.
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The model G(n,M)
There are 2(n2) labelled graphs with n vertices.

A random graph G(n,M) is the probability space with
properties:

I Sample space: set of labelled graphs with n vertices and
M = M(n) edges.

I Probability: Uniform probability (
((n2)
M

)−1
)

Properties:

♡ Fixed number of edges X
♣ The probability that a fixed edge belongs to the random

graph is p =
(
n
2

)−1
M . X

♠ There is not independence.

EQUIVALENCE: G(n, p) = G(n,M), (n→∞) for

M =

(
n

2

)
p



The Erdős-Rényi phase transition

Random graphs in G(n,M) present a dichotomy for M = n
2 :

1.− (Subcritical) M = cn, c < 1
2 : a.a.s. all connected

components have size O(log n), and are either trees or
unicyclic graphs.

2.− (Critical) M = n
2 + Cn2/3: a.a.s. the largest connected

component has size of order n2/3

3.− (Supercritical) M = cn, c > 1
2 : a.a.s. there is a unique

component of size of order n.

Double jump in the creation of the giant component.



The problem; what was known

PROBLEM: Compute

p(λ) = ĺım
n→∞

Pr
{
G
(
n, n2 (1 + λn−1/3)

)
is planar

}
What was known:

I Janson,  Luczak, Knuth, Pittel (94): 0,9870 < p(0) < 0,9997

I  Luczak, Pittel, Wierman (93): 0 < p(λ) < 1

Our contribution: the whole description of p(λ)



Our result. The strategy



The main theorem
Theorem (Noy, Ravelomanana, R.) Let gr(2r)! be the number
of cubic planar weighted multigraphs with 2r vertices. Write

A(y, λ) =
e−λ3/6

3(y+1)/3

∑
k≥0

(
1
232/3λ

)k
k! Γ

(
(y + 1− 2k)/3

) .
Then the limiting probability that the random graph
G
(
n, n2 (1 + λn−1/3)

)
is planar is

p(λ) =
∑
r≥0

√
2π grA

(
3r +

1

2
, λ

)
.

In particular, the limiting probability that G
(
n, n2

)
is planar is

p(0) =
∑
r≥0

√
2

3

(
4

3

)r

gr
r!

(2r)!
≈ 0,99780.



A plot

Probability curve for planar graphs and SP-graphs
(top and bottom, respectively)



The strategy (I): pruning a graph

The resulting multigraph is the core of the initial graph
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The strategy (I): pruning a graph

The resulting multigraph is the core of the initial graph



The strategy (and II): appearance in the critical
window

 Luczak, Pittel, Wierman (1994):
the structure of a random graph in the critical window

p(λ) =
number of planar graphs with n

2 (1 + λn−1/3) edges( (n2)
n
2
(1+λn−1/3)

)
Hence...We need to count!



Generating Functions:
algebraic methods



The symbolic method à la Flajolet

COMBINATORIAL RELATIONS between CLASSES

↕⇕↕

EQUATIONS between GENERATING FUNCTIONS

Class Relations

C = A ∪ B C(x) = A(x) + B(x)

C = A× B C(x) = A(x) ·B(x)
C = Seq(B) C(x) = (1−B(x))−1

C = Set(B) C(x) = exp(B(x))
C = A ◦ B C(x) = A(B(x))

All GF are exponential ≡ labelled objects

A(x) =
∑
n≥0

an
n!

xn.



First application: Trees
We apply the previous grammar to count rooted trees

⇒

T = • × Set(T )→ T (x) = xeT (x)

To forget the root, we just integrate: (xU ′(x) = T (x))

∫ x

0

T (s)

s
ds =

{
T (s) = u

T ′(s) ds = du

}
=

∫ T (x)

T (0)
1−u du = T (x)−1

2
T (x)2

and the general version

eU(x) = eT (x)e−
1
2
T (x)2



Second application: Unicyclic graphs

V =⃝≥3(T )→ V (x) =

∞∑
n=3

1

2

(n− 1)!

n!
(T (x))n

We can write V (x) in a compact way:

1

2

(
− log (1− T (x))− T (x)− T (x)2

2

)
→ eV (x) =

e−T (x)/2−T (x)2/4√
1− T (x)

.



Cubic planar multigraphs



Planar graphs arising from cubic multigraphs

In an informal way:

G(• ← T , • − • ← Seq(T ))



Weighted planar cubic multigraphs
Cubic multigraphs have 2r vertices and 3r edges (Euler relation)

G(x, y) =
∑
r≥1

gr(2r)!

(2r)!
x2ry3r = G(x2y3)

We need to remember the number of loops and the number of
multiple edges to avoid symmetries:

weights 2−f1−f2(3!)−f3

1
2!

1
6x

2y3 1
2!

1
22
x2y3



The decomposition

I We consider rooted multigraphs (namely, an edge is
oriented).

I Rooted cubic planar multigraphs have the following form:

(From Bodirsky, Kang, Löffler, McDiarmid Random Cubic Planar Graphs)



The equations

We can relate different families of rooted cubic planar graphs
between them:

G(z) = expG1(z)

3z dG1(z)
dz = D(z) + C(z)

B(z) = z2

2 (D(z) + C(z)) + z2

2

C(z) = S(z) + P (z) + H(z) + B(z)

D(z) = B(z)2

z2

S(z) = C(z)2 − C(z)S(z)

P (z) = z2C(z) + 1
2z

2C(z)2 + z2

2

2(1 + C(z))H(z) = u(z)(1− 2u(z))− u(z)(1− u(z))3

z2(C(z) + 1)3 = u(z)(1− u(z))3.



The equations: an appetizer

All GF obtained (except G(z)) are algebraic GF; for instance:

1048576 z6 + 1034496 z4 − 55296 z2+(
9437184 z6 + 6731264 z4 − 1677312 z2 + 55296

)
C+(

37748736 z6 + 18925312 z4 − 7913472 z2 + 470016
)
C2+(

88080384 z6 + 30127104 z4 − 16687104 z2 + 1622016
)
C3+(

132120576 z6 + 29935360 z4 − 19138560 z2 + 2928640
)
C4+(

132120576 z6 + 19314176 z4 − 12429312 z2 + 2981888
)
C5+(

88080384 z6 + 8112384 z4 − 4300800 z2 + 1720320
)
C6+(

37748736 z6 + 2097152 z4 − 614400 z2 + 524288
)
C7+(

9437184 z6 + 262144 z4 + 65536
)
C8 + 1048576C9z6 = 0.



Computing large powers:
analytic methods



Singularity analysis on generating functions

GFs: analytic functions in a neighbourhood of the origin.

The smallest singularity of A(z) determines the asymptotics
of the coefficients of A(z).

I POSITION: exponential growth ρ.

I NATURE: subexponential growth

I Transfer Theorems: Let α /∈ {0,−1,−2, . . .}. If

A(z) = a · (1− z/ρ)−α + o((1− z/ρ)−α)

then

an = [zn]A(z) ∼ a

Γ(α)
· nα−1 · ρ−n(1 + o(1))



Our estimates

I The excess of a graph (ex(G)) is the number of edges
minus the number of vertices

n![zn]

Trees, ex=−1︷ ︸︸ ︷
U(z)n−M+r

(n−M + r)!

Unicyclic, ex=0︷ ︸︸ ︷
e−T (z)/2−T (z)2/4√

1− T (z)

Cubic, ex=3r−2r=r︷ ︸︸ ︷
P5r(T (z))

(1− T (z))3r

Where P5r(x) is a polynomial of degree ≤ 5r.

I We then apply a sandwich argument to get the estimates

I We use saddle point estimates (a la Van der Corput).



Without many details...
We estimate the constant using Stirling:

n!((n2)
M

) 1

(n−M + r)!
=
√

2πn
2n−M+r

nr
e−λ3/6+3/4−n

(
1 + O

(
λ4

n1/3

))
.

For every a, we study the asymptotic behavior of

[zn]U(z)n−M+r T (z)aeV (z)

(1− T (z))3r
=

1

2πi

∮
U(z)n−M+r T (z)a eV (z)

(1− T (z))3r
dz

zn+1

We write the integrand as g(u) enh(u) (u = T (z)); relate with:

A(y, λ) =
1

2πi

∫
Π
s1−yeK(λ,s)ds, K(λ, s) =

s3

3
+

λs2

2
− λ3

6

and Π is the following path in the complex plane:

s(t) =


−e−πi/3 t, for−∞ < t ≤ −2,

1 + it sinπ/3, for− 2 ≤ t ≤ +2,

e+πi/3 t, for + 2 ≤ t < +∞.

Nice cancelations of n . . .



Other applications



General families of graphs
Many families of graphs admit an straightforward analysis:

(Noy, Ravelomanana, R.)
Let G = Ex(H1, . . . , Hk) and assume all the Hi are 3-connected.
Let hr(2r)! be the number of cubic multigraphs in G with 2r
vertices. Then the limiting probability that the random graph
G(n, n2 (1 + λn−1/3)) is in G is

pG(λ) =
∑
r≥0

√
2π hrA(3r +

1

2
, λ).

In particular, the limiting probability that G(n, n2 ) is in G is

pG(0) =
∑
r≥0

√
2

3

(
4

3

)r

hr
r!

(2r)!
.

Moreover, for each λ we have

0 < pG(λ) < 1.



Examples...please

Some interesting families fit in the previous scheme:

I Ex(K4):series-parallel graphs: there are not 3-connected
elements in the family!

I Ex(K2,3,K4): outerplanar graphs: need to adapt the
equations for cubics.

I Ex(K3,3): The same limiting probability as planar...K5 does
not appear as a core!

I Many others: Ex(K+
3,3), Ex(K

−
5 ), Ex(K2 ×K3) . . .



Further research



Bipartite planar graphs and the Ising model
What about bipartite planar graphs in the critical window?

I Trees are always bipartite!

I Unicyclic bipartite graphs are characterized by a cycle of
even lenght

I But...What about cubic multigraphs?

We need something more complicated: ISING MODEL



A program

Rooted
Cubic planar MAP
with Ising Model

3-connected rooted
Cubic planar MAP
with Ising Model

labelled
Cubic planar GRAPH

with Ising Model

3-connected labelled
Cubic planar GRAPH

with Ising Model

Schaeffer, Bousquet-Mélou
Bijective methods

Whitney's Theorem
forget about 

the GEOMETRY

Integration 
of an algebraic function

Functional inverse 
of an ¿algebraic? function

Refined grammar
(NOT à la Tutte)

Recover Ising 
from bipartite

Refined grammar
(NOT à la Tutte)

Composition
of ¿algebraic? functions=

Large powers and
saddle point techniques

Count!



More problems (I)

Main result: structural behavior in the critical window

⇓↓⇓

Can we say similar things for planar graphs with bounded
vertex degree?

I Enumeration of 4-regular and {3, 4}−regular planar graphs
(To be done).

I Study of parameters: Airy distributions (To be done).

I Extend to the bipartite setting (To be done).



More problems (and II)

The asymptotic enumeration of bipartite planar graphs seems
technically complicated (Bousquet-Mélou, Bernardi, 2009)

I Refine the grammar introduced by Chapuy, Fusy, Kang,
Shoilekova, and study SP-graphs (Work in progress).

I Extend the formulas by Bousquet-Mélou, Bernardi to get
the 3-connected planar components (Computationally
involved!) (??)

I Study the full planar case . . .



Gràcies!
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