### Some combinatorial Morse theory

**Thomas Lewiner** Department of Mathematics PUC - Rio. Rio de Janeiro, Brazil!

Séminaire X, 17 sep. 2012

matemát

### Acknowledgements

Luca, organizers!!



students and colleagues:

João Paixão, Renata Nascimento, Andrei Sharf, Daniel Cohen-Or, Arik Shamir, David Cohen-Steiner, Luca Castelli-Aleardi...

authors of the many inspirational works!

financing institute: CNPq, FAPERJ, CAPES, EDX, IMC, Matheon...

### Introduction: special maximal matching



X Y

#### bipartite matching

topological objects

matemática Puc-rio

### Class of graphs: Hasse diagrams











#### graph coding a cell complex

### Hasse diagram

Simple oriented graph built out of K:

- nodes represent the cells of K
- links connect cells towards their bounding faces



### Matching in Hasse diagrams



(unoriented) bipartite matching

selected links have their orientation reversed

### Shape of critical cells





"Gradient V-path"

### Layers of the Hasse diagram



for 2d manifolds:

alternating paths are paths in the primal / dual graph

### Augmenting alternating paths





reduces number of critical cells

### Acyclic matching



### Maximal acyclic matching in Hasse diagrams

#### Combinatorial problem:

MAX SNP hard extendable to subclass of matchings (stable?)

#### Topological problem:

critical cells are building blocks of Morse theory lower bounds from the cell complex characterizes homotopy of the cell complex



### Simple cases: 2-manifolds





layers: primal/dual graph

acyclic matching  $\rightarrow$  tree structure maximal  $\rightarrow$  spanning tree

### Primal spanning tree



#### Image: Erickson 2011

### Dual spanning Co-tree



### Tree-cotree decomposition



#### Slides from J. Erickson

### Spheres: x=2 critical



dual spanning tree leaves a primal spanning tree



Given an acyclic matching on the Hasse diagram of a cell complex K, K is homotopy equivalent to a CW complex with only the critical cells

### Idea of the proof



### Main Theorem

Given an acyclic matching on the Hasse diagram of a cell complex K, K is homotopy equivalent to a CW complex with only the critical cells





### Complexity from topology



#### MAX SNP-hard

#### Reduces to collapsibility:

smaller number of simplices to remove from a 2-simplicial complex for it to collapse.

reduces to vertex cover

# Quick way of computing topology!!!

get the big picture partially self-validated  $\chi = \sum_{i=0}^{d} (-1)^i \cdot m_i$ global (high info) from local (low cost)











### Frame by frame



### **Topological objects**



Manifolds, Subsets of  $\mathbb{R}^n$ 



### Submersion intuition



## subset of $\mathbb{R}^n$ respecting a condition $f \Rightarrow$ closer to real data



#### critical set of f (Morse lemma)

⇒ global from local function analysis

### Usual critical sets



### Immersion intuition





#### locally equivalent to $\mathbb{R}^d$

 $\Rightarrow$  intuitive differential tools

### Immersion Morse topology



critical set of a function on the manifold ⇒ global from local function analysis

### Morse-Smale Decomposition

mate







### Morse-Smale complex





#### relation between critical points

⇒ local function analysis + graph

### Vector field



© http://www.falstad.com/vector/

sparse invariant sets

### Vector field topology



© http://www.falstad.com/vector/

isolated singularities behavior

Iocal analysis (Hartman Grobman)+graph

+ closed orbits + non-generic

### Gradient vector field



#### generic gradient

#### Morse-Smale structure



topology from local function analysis+ Smale complex / topological graph



### Morse theory

 $\mathcal{M} \subset \mathbb{R}^n$ Manifold **Function**  $f:\mathcal{M}\to\mathbb{R}$ Critical point  $\mathbf{x} \in \mathcal{M}, \partial f(\mathbf{x}) = 0$  $#\{\lambda \in Eig(\partial^2 f), \lambda < 0\}$ Index  $\chi = \sum (-1)^i \cdot m_i \ldots$ Topology i=0

### Applications that motivated me



reservoir characterization from huge seismic data

### surface extraction and reconstruction







#### vector field de-noising

### Isosurface extraction



### Isosurface extraction



© L., Lopes, Vieira, Tavares

### Topological cases of Marching Cubes ⇒ differentiable function analysis

-----

### Large isosurface topology





Topology without the isosurface Mid-scale control and filtering global + efficiency ⇒ Forman's line

### Some Isosurfaces' Topology







Smale complex

Reeb graph

mater

PUC-

### Surface reconstruction











© Ju, Zhou, Hu

mate

© Sharf, L., Shamir, Kobbelt, Cohen-Or

#### noisy, sparse point set

 $\Rightarrow$  correct topology?

### Surface reconstruction





#### 

### Topology-aware reconstruction





mater

© Sharf, L., Shklarski, Toledo, Cohen-Or

### Vector field de-noising

Impinging plate



Mechanical Dept, PUC-Rio





© Nascimento, Paixão, Lopes, L.

noise at the scale of the data clean data + "important" vortices local interpolation analysis

### Interactive de-noising



### Scale-dependent singularity



### Topology-aware de-noising



#### some common points



© Gyulassy, Natarajan, Pascucci, Bremer, Hamann

#### ations

#### topology: intuitive interfaces



### Analysis is hard to compute





© http://www.karlscalculus.org/

© http://www.tutornext.com/

#### **But intuitive:** quick and ready insight immediate apprehension or cognition



### Combinatorial optimizations



### Forman's approach, algorithmic views

![](_page_60_Picture_1.jpeg)

# combinatorial field

tree

matching along the flow
Scritical = unmatched

gradient field no closed gradient path ⇒ acyclic

### Geometric Morse function

![](_page_61_Picture_1.jpeg)

#### Smooth Morse function = greedy order orient first

### Elementary optimization

![](_page_62_Picture_1.jpeg)

#### can also enforce critical cells

han and her

### Recent improvements

![](_page_63_Figure_1.jpeg)

On triangulated surface, greedy construction of Forman's vector field keeps Banchoff's critical set for slowly varying function  $f : \mathcal{K}_0 \hookrightarrow \mathbb{R}$ 

© L

![](_page_64_Picture_0.jpeg)

### Maximal weight matching

![](_page_65_Figure_1.jpeg)

© Reininghaus, Guenther, Hotz, Prohaska, Hege

Forman's critical set results from Scole dent dependent critical set global construction:

number of critical cells

quality of the field approximation

### Next challenges

Higher dimension (besides NP)

L., Lopes, Tavares, Joswig, Pfetsch...

More general cases (infinite complexes)

Ayala, Vilches...

More complex objects (tensors,  $\{f_i\}$ )

Forman, Tricoche, Tong, Desbrun...

More theoretical guarantees

L., Zhang, Mischaikow...

More matchings

![](_page_67_Picture_0.jpeg)

matemática puc-rio

# Thank you for your attention!

Thomas Lewiner PUC - Rio. Rio de Janeiro, Brazil! http://thomas.lewiner.org/