Séminaire de l'Équipe Modèles Combinatoires - 2006
16 mars 2006, 10h30
Eric Fusy
Enumération de polytopes
Cet exposé décrit les résultats d'un article paru au journal electronique de combinatoire.
23 mars 2006, 10h30
Gilles Schaeffer
Polyominos Z-convexes
Cet exposé décrit des résultats obtenus avec Enrica Duchi et Simone Rinaldi dans un article disponible sur le serveur arXiv et qui seront présenté au prochain FPSAC.
30 mars 2006, 10h30
Manuel Bodirsky
Enumeration of well-nested drawings
We study tree-like objects called drawings that have been introduced by computational linguists to capture how natural language syntax trees typically look like. In particular, we present a recursive counting formula for the number of well-nested drawings and an elegant equation for their ordinary generating function, which has close connections to Callan's eigensequence for composition.
Joint work with Daniel Johannsen and Marko Kuhlmann.
5 avril 2006
Katya Vassilieva
Cartes bicolores à une face
Cet exposé décrit des résultats obtenus avec Gilles Schaeffer et qui seront présentés au prochain FPSAC.
3 mai 2006
Robert Cori
Algorithmes de recherche d'arbres couvrants maximaux
24 mai 2006
Philippe Nadeau
Enumération de tableaux de rubans par les diagrammes de croissance
23 juin 2006
Pierre-Henri Brouard
La réductibilité dans le théorème des 4 couleurs
25 octobre 2006
Eric Fusy
Algorithmes d'orientation
Cet exposé décrit des travaux en cours sur l'unification de différents algorithmes d'orientation de cartes.
15 novembre 2006
Sylvie Corteel
Tableaux-permutations et processus d'exclusion partiellement asymétrique
The partially asymmetric exclusion process (PASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of N sites. It is partially asymmetric in the sense that the probability of hopping left is \(q\) times the probability of hopping right. Additionally, particles may enter from the left with probability \(\alpha\) and exit from the right with probability \(\beta\).
It has been observed that the (unique) stationary distribution of the PASEP has remarkable connections to combinatorics -- see for example the papers of Derrida, and Duchi and Schaeffer. We prove that in fact the (normalized) probability of being in a particular state of the PASEP can be viewed as a certain weight generating function for permutation tableaux of a fixed shape. (This result implies the previous combinatorial results.) This proof relies on the matrix ansatz of Derrida et al, and hence does not give an intuitive explanation of why one should expect the steady state distribution of the PASEP to involve such nice combinatorics.
Therefore we also define a Markov chain -- which we call the PT chain -- on the set of permutation tableaux which projects to the PASEP in a very strong sense. This gives a new proof of the previous result which bypasses the matrix ansatz altogether. Furthermore, via the bijection from permutation tableaux to permutations, the PT chain can also be viewed as a Markov chain on the symmetric group. Another nice feature of the PT chain is that it possesses a certain symmetry which extends the “particle-hole symmetry” of the PASEP. More specifically, this is a graph-automorphism on the state diagram of the PT chain which is an involution; this has a simple description in terms of permutations.
This is joint work with Lauren Williams (Harvard)
20 décembre 2006
Mathilde Bouvel
Plus long motif commun entre deux permutations
