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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooPermutations'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooGiven a positive integer n, a permutation of order n is a bijetion � fromf1; : : : ; ng to itself.We denote it by the list [�1=�(1); : : : ; �n=�(n)℄ of the suessive imagesof 1; : : : ; n.More generally, one an use any totally ordered �nite set with n elements(one needs a total order, to be able to list images without speifying soures).With these onventions, erasing letters in [�1; : : : ; �n℄ produes a permutationwithout having to shift the remaining entries to 1; 2; 3; : : :.A yle is an orbit i; �(i); �(�(i)); : : : ; ��: : : �(�(i)) : : :�. The yle de-omposition of a permutation is the olletion of its di�erent orbits.A yle an be thought as a olletion of numbers written on a ir-le; onsidering the numbers to be beads, then a yle is to be interpretedas a neklae. To write it one-dimensionally, one deides to begin by itssmallest element i, and this gives the sequene �i; �(i); �(�(i)); : : :�, withi = min(i; �(i); : : :). Therefore, given a bag with k di�erent beads, there are(k�1)! di�erent possible neklaes that an be made from it.The permutation � = [7; 5; 2; 1; 10; 6; 4; 11; 8; 3; 9℄ has yle deomposi-tion : � = 2 ! 5" #3 ! 10 % 71 #- 4 % 118 #- 9 6It is easy to ompute powers of a permutation starting its yle deompo-sition. One has just to understand what is the fate of eah individual yle,independently of the others. For example, the preeding permutation hassquare : �2 = 2�! �10 3�! �5 % 41 #- 7 % 98 #- 11 6The yle type of a permutation is the (dereasing) list of the lengths ofits yles. A permutation is a full yle if it has only one yle.
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Given a partition � = [�1; : : : ; �r℄, then one de�nes �� to be the followingdiret produt of yles :�� = (1; 2; : : : ; �1)(�1+1; : : : ; �1+�2) � � � (�1+ � � �+�n�1+1; : : : ; �1+ � � �+�n)= [2; : : : ; �1; 1; �1+2; : : : ; �1+�2; �1+1; : : :: : : ; �1+ � � �+�n�1+2; : : : ; �1+�r; �1+ � � �+�n�1+1℄All permutations having yle type � are onjugate to �� and, onversely,a permutation onjugate to �� has yle type � (the onjugates of a permu-tation � are all permutations of the type ����1)Indeed, if � = [3; 3; 1; 1℄ for example, given any permutation � of order 8,then ��3311��1 has yle deomposition(�1; �2; �3) (�4; �5; �6) (�7) (�8) :Conjugating amounts to hanging the values of the beads, not the ylelengths!The onjugay lass of type � is the subset of permutations having � asyle type. To ount how many permutations it ontains, one an reason asfollows: �rst we have to put the beads in bags of size �1; : : : ; �r. There aren!=(�1! � � ��r!) possibilities. But there are bags of the same size that we mustnot distinguish. If � = 1m1 2m2 : : :, then to aount for equal sizes, one hasto divide by Q(mi!). But now, with i beads, one an make (i�1)! di�erentneklaes so that �nally the order of the onjugay lass isn!Q(i!)mi Q((i�1)!)miQmi! = n!Q imi mi! (1)We already have met the denominator, it is a salar produt of power sums :z� =Y imi mi! = (	� ; 	�) : (2)There is another graphial representation of a permutation, by braids,whih is used in knot theory and allows easy multipliation and inversion.One writes two horizontal opies of 1; 2; : : : ; n on top of eah other, andonnet eah pair i; �i by an edge. Multiplying permutations onsists instaking them and erasing the intermediate levels.1
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PermutohedronThe simple transposition si is the permutation with only �xed points,exept for a yle (i; i+1). Starting with the identity permutation, and writingthe multipliation by si on the right as an edge of olour i if it produes anew permutation, one gets a direted graph, the Permutohedron with vertiesall the permutations in Sn. This representation of a group from a set ofgenerators is due to Cayley. One ould have hosen multipliation from theleft, in whih ase one would have obtained the inverse Permutohedron, withlabels exhanged by inversion from those of the Permutohedron.Given a permutation �, any path from the origin to � is alled a redueddeomposition of �.Classifying all redued deompositions of a permutation is an interestingproblem that we shall enounter in di�erent oasions later. But already, onean notie in the Permutohedron speial subgraphs : lozenges and hexagons,whih aount for the braid relationssisi+1si = si+1sisi+1 (3)sisj = sjsi ji�jj 6= 1 (4)The graphial display of these relations is (taking the smallest symmetrigroups in whih they appear) :123s1�� � s2213 132s2 ����  s1231 312s1 �� � s2321
1234s1 �� � s32134 1243s3 � �� s12143Braid relations allow to deform a path in the Permutohedron withouthanging its end points. Let us hek that two arbitrary redued deompo-sitions of a permutation are related by a sequene of braid relations.First, let us observe that(s1) (s2s1) (s3s2s1) � � � (sn�1 � � � s1) (5)is a redued deomposition of the maximal permutation ! := [n; : : : ; 1℄ (wehave added parentheses beause we want to distinguish some fators).4



Reall that a omposition is a vetor with integral non-negative ompo-nents.Lemma 1 Given a omposition I = [i1; : : : ; ir℄ 2 Nr , I � [1; 2; : : : ; n�1℄,then the word wI whih the produt of the left fators of (s1) (s2s1) : : : ofrespetive lengths v1; v2; : : : is a redued deomposition of a permutation � (weshall see that it is lexiographially minimal among all redued deompositionsof �). The omposition I is alled the oode of �. Evaluating suh wordsin Sn gives a bijetion with Sn.Now, we shall show how to transform a redued deomposition into alexiographially minimal one using a sequene of braid relations.Let w be a redued deomposition of � in Sn. If sn�1 does not our inw, then � �xes n and we are done by indution on n. In the ontrary ase,let us all olumn of length r the word sn�1 � � � sn�r.We shall iterate the operation of \anonizing" a pair (olumn , si), de�nedas follows:(sn�1 � � � sn�r ; si)! 8<: (si�1 ; sn�1 � � � sn�r) if i > n�r(; ; sn�1 � � � sn�r�1) if i = n�r�1(si�1 ; sn�1 � � � sn�r) if i < n�r�1The ase i = n�r annot our, otherwise the deomposition would not beredued; the anonization use only braid relations.Graphially, it says7654 6! 5 7654 ; 7654 3! 76543 ; 7654 1! 1 7654Take now the leftmost ourrene of sn�1 in w. Then w = w0 sn�1siw00,with sn�1 62 w0. Starting with the pair (sn�1; si), we iterate anonization,and this swallows all letters on the right of the olumn, inreasing eventuallyit, and onatenating letters to the left fator w0. The proess stops whenthere is no more letter on the right of the olumn, on a word of the typew000 sn�1 � � � sn�r, with sn�1 62 w000. Canonizing w000 and iterating, one gets aword whih is of the type w(v) for some vetor v � [1; : : : ; n�1℄.Eah operation gives a word whih is lexiographially smaller than thepreeding one (or idential), therefore w(v) is the smallest redued deom-position among all redued deompositions of the same permutation.Canonize:=pro(left,olumn,i) loal k;k:=olumn[nops(olumn℄; 5



if i>k+1 then [[op(left),i-1℄,olumn℄elif i=k then lprint(`NOT REDUCED`)elif i=k-1 then [left,[op(olumn),i℄℄else [[op(left),i℄,olumn℄fi;end:ItereCano:=pro(rd) loal nn,i,j,left,res;nn:=max(op(rd));member(n,rd,'j');left:=[seq(rd[k℄,k=1..j-1)℄;res:=[left,[nn℄℄;for k from j+1 to nops(rd)-1 dores:=Canonize(op(res), rd[k℄)od;resend:ACE> ItereCano([4,3,4,2,3,4,1,2,3,4℄);[℄ [4℄ 3[℄ [4, 3℄ 4[3℄ [4, 3℄ 2[3℄ [4, 3, 2℄ 3[3, 2℄ [4, 3, 2℄ 4[3, 2, 3℄ [4, 3, 2℄ 1[3, 2, 3℄ [4, 3, 2, 1℄ 2[3, 2, 3, 1℄ [4, 3, 2, 1℄ 3[3, 2, 3, 1, 2℄ [4, 3, 2, 1℄ 4[[3, 2, 3, 1, 2, 3℄, [4, 3, 2, 1℄℄InversionsBeause braid relations preserve the lengths of deompositions, all re-dued deompositions of a permutation � have the same length, whih isalled the length `(�) of �.In fat, `(�) is the number of inversions of �, i.e. the number of sub-wordsof type ba, withb > a, of [�1; : : : ; �n℄. When multiplying � by a transpositionsi suh that `(�si) > `(�), then one inreases the set of inversions by exatlyone inversion, namely [�i+1; �i℄.It is easy to haraterize the set of pairs [b; a℄ whih are the set of in-versions of a permutation. Given a permutation � 2 Sn, one assoiates to6



it a direted graph with verties 1; : : : ; n, suh that the underlying graph isomplete, with an arrow from b to a if ba is an inversion, or from a to botherwise. The graph just represents the sets of subwords of length 2 of thepermutation. It is of ourse suÆient to know the inversions.Lemma 2 A subset E of f[j; i℄ : n � j > i � 1g is the set of inversions of apermutation i� the assoiated graph has no yle.Proof. We shall show that the last (or �rst) omponent of the permutationis easy to haraterize from the set of inversions. This will prove existeneand uniity.There is at least a vertex of the omplete graph whih is a sink (no arrowesapes from it) beause otherwise one would have in�nite paths (and this isimpossible, the graph is �nite and has no yle). This sink is unique, beausethere is an edge between any two verties. Erasing this sink and the arrowsarriving to it, one an onlude by indution. We refer to the book of Berge[2℄ for more details. QEDFor example, the omplete graph for � = [3; 5; 6; 2; 1; 4℄ is :� ℄
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The set of inversions is losed by transitivity: if  > b > a and ba andb are inversions, then a is also an inversion. Otherwise, one would have ayle on a; b; .Beause of this property, one does not need to write the omplete graph.One just writes an arrow for primitive inversions (not resulting by transitivityfrom other inversions). Let m be the maximal value of the end points of thisgraph. Then m = �n and one an iterate on n.7



ACE>Perm2ListInv(Perm2Inv([2,5,7,4,1,6,3℄));#inversions on plaes for ACE![{1,2},{1,4},{1,5},{1,7},{3,4},{3,5},{3,6},{3,7},{4,5},{4,7},{6,7}℄The redued graph orresponding to the above set of inversions, and itssuessive images after suppression of the maximal end point, are7 ! 6& &5 ! 4 ! 3&2 ! 1 ; 7 ! 6&5 ! 4 &2 ! 1 ; 7 &5 ! 4 &2 ! 1 ; : : :from whih one sees that �7 = 3, then �6 = 6, �5 = 1; : : :.Rothe diagramA permutation � an be represented by a matrix M(�), whih desribesits ation on the vetor spae with basis 1; 2; : : : ; n. Expliitly, M(�) hasentries 1 in positions [i; �i℄, and 0 elsewhere (taking the usual oordinates ofmatries, not the Cartesian plane).Rothe[33℄ found in 1800 a graphial display of the inversions of �, startingfromM(�) (though, of ourse, matries had still to wait 50 years to appear),whih leads to many ombinatorial properties of permutations.For eah pair of 1's in M(�) in relative position 0 ��� 1...1 write a box � atthe intersetion of the up-most row and leftmost olumn ontaining theseentries, thus obtaining � ��� 1...1 .The planar set of suh boxes is alled the Rothe diagram of �. The list ofthe number of boxes in the suessive rows is alled the ode C(�) of �. Themorphism � ! C(�) is a bijetion from Sn onto the set of integral vetors[1; : : : ; n℄ � [0; 1; : : : ; n� 1℄.Indeed, given , then �1 = 1 + 1, and [2; : : : ; n℄ is the ode of a permu-tation [�2; : : : ; �n℄ of f1; : : : ; b�1; : : : ; ng.One an read a redued deomposition from the Rothe diagram: justnumber boxes in eah row by onseutive numbers, starting from the numberi in row i. Now read rows from right to left, from top to bottom (interpretingi as si).The following lemma, easy to hek, states that this word is a redueddeomposition. An equivalent desription of it is by taking right fators, ofrespetive lengths spei�ed by the ode, in the following redued deompo-sition of ! (di�erent from the one in eq.5):! = (sn�1 � � � s1) (sn�1 � � � s2) � � � (sn�1sn�2)(sn�1) (6)8



Lemma 3 Given a permutation � 2 Sn, let v = [v1; v2; : : : ; vn�1℄ be its ode.Then the onatenation of the right fators of (sn�1 � � � s1) � � � (sn�1)( ) ofrespetive lengths v1; v2; : : : oinides with the word obtained from the labellingof the Rothe diagram of �, and is a redued deomposition of �.For example, the ode [3; 1; 3; 2; 3; 0; 0; 0℄ of a permutation in S8 gives theredued deomposition(����321) (�����2) (��543) (��54) (765) (��) (�) ( ) :In the ACE output, boxes are numbered, eah 0 is replaed by a dot, andeah 1 is replaed by a ross.ACE> Perm2Code([4, 2, 6, 5, 8, 1, 3, 7℄);[3, 1, 3, 2, 3, 0, 0, 0℄ACE> Perm2Rothe([4, 2, 6, 5, 8, 1, 3, 7℄);[1 2 3 x . . . .℄[2 x . . . . . .℄[3 . 4 . 5 x . .℄[4 . 5 . x . . .℄[5 . 6 . . . 7 x℄[x . . . . . . .℄[. . x . . . . .℄[. . . . . . x .℄ACE> Perm2Rd([4, 2, 6, 5, 8, 1, 3, 7℄);[3, 2, 1, 2, 5, 4, 3, 5, 4, 7, 6, 5℄To build the Rothe diagram, instead of taking pairs of 1's, one an usethe fat that there is no box right of a 1 in its row, and no box below a 1in the same olumn. The Rothe diagram oupies the plaes whih are noteliminated and whih do not ontain a 1.1 � � ��� � ��...�forbidden region � � � 1 � � � �� 1 � � � � � �� � � � � 1 � �� � � � 1 � � �� � � � � � � 11 � � � � � � �� � 1 � � � � �� � � � � � 1 �There is another natural labelling of the boxes of the Rothe diagram, bywriting in the box orresponding to an inversion (ji) a variable xji. We shall9



see in the next setion how to get this labelling by matrix multipliation.266666666664
x41 x42 x43 1 0 0 0 0x21 1 0 0 0 0 0 0x61 0 x63 0 x65 1 0 0x51 0 x53 0 1 0 0 0x81 0 x83 0 0 0 x87 11 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 1 0

377777777775
Four diagramsIn the matrix representing a permutation, there are in fat four types of0's, depending on the relative positions of the 1's whih are in the same rowor same olumn: right or left, up or down. The 0's whih have been replaedby the boxes of the Rothe diagram are one of the four types, let say the NWtype.Therefore, one has four Rothe diagrams, NW-Rothe, NE-Rothe,SW-Rothe,SE-Rothe, whih partition the spae oupied by the 0's of the matrixM(�).0 ! 1 NW ! 1# gives #1 1 ; 1 1" gives "0 ! 1 SW ! 1 ;1 0 1 NE# gives #1 1 ; 1 1" gives "1 0 1 SE :Perm2fourRothe([4, 2, 6, 5, 8, 1, 3, 7℄);3 [a a a 1 b b b b℄1 [a 1 b d b b b b℄3 [a  a  a 1 b b℄2 [a  a  1 d b b℄3 [a  a    a 1℄0 [1 d b d d d b d℄0 [  1 d d d b d℄0 [      1 d℄0 1 0 3 2 3 0 3In ACE, boxes of are labelled a; b; ; d instead of NW, NE, SW, SE.10



Counting the number of a's by rows, one gets [3; 1; 3; 2; 3; 0; 0; 0℄, that is,the ode; ounting the number of d's by olumns, one gets [0; 1; 0; 3; 2; 3; 0; 3℄,that is the oode.Rothe diagrams are related to the matrix of ranks of M(�); it is de�nedto be hr[i; j℄i1�i;j�n, r[i; j℄ being the rank of the sub-matrix of M(�) takenon rows 1; : : : ; i and olumns 1; : : : ; j.As shown in exerise ? they are easily obtained from the matrix givingthe partial row or olumn sums of M(�).Rothe diagrams by matrix multipliationThe simplest non trivial Rothe diagram is [ � 11 0 ℄. Instead of putting abox, one an use a parameter x, and onsider [ x 11 0 ℄, or more generally, for i:1 � i < n, replae the matrix representing M(si) by
Ti(x) :=

2666666666664
1 . . . 1 x 11 0 1 . . . 1

3777777777775Let r be an integer and I = [i1; : : : ; ir℄ 2 f1; : : : ; n�1gr, suh thatsI := si1 � � � sir is a redued deomposition of a permutation �. De�neTI(x1; : : : ; xr) to be the produtTI(x) = TI(x1; : : : ; xr) = Ti1(x1) � � �Tir(xr) : (7)The matrix TI(x) depends on the hoie of the redued deomposition of�. When speializing all xi's to 0, one reovers M(��1). The ombinatorialproperties of the matrix TI(x) are studied in [20℄ (I have kept the onventionsof this paper: the two axes of oordinates have been exhanged; equivalently,one takes ��1 instead of �, or one reads redued deompositions from rightot left). Let us just mention the simplest of them.Proposition 4 Given I 2 Nr suh that sI is a redued deomposition of apermutation ��1, then the matrix TI(x) has entries di�erent from 0 and 1exatly in the positions oupied by the boxes of the Rothe diagram of �. Eahpolynomial entry restrits in degree 1 to a single variable.11



Proof. The proposition is easy to hek by indution on the length of theredued deomposition. Indeed, start from a redued deomposition of �. LetM = TI(x) be the orresponding matrix, and let j be suh that `(�sj) > `(�).MultiplyingM by Tj(x) amounts to replae the two olumns C; C 0 at positionsj; j+1 of M by x C+C 0; C. All the elements in the new �rst olumn are ofdegree > 1, exept the term x 1. If one takes a parameter x = xji reordingthe inversion reated, then one sees that the matrix restrited to its terms ofdegrees 0 and 1 is the transpose of the Rothe diagram desribed at the endof last setion. QEDHere are two suesive diagrams, for the multipliation by s2, whih mod-i�es olumn 2 and olumn 3 and reates the inversion 62 :266666666664
x41 x21 x61 x51 x81 1 � �x42 1 � � � � � �x43 � x63 x53 x83 � 1 �1 � � � � � � �� � x65 1 � � � �� � 1 � � � � �� � � � x87 � � 1� � � � 1 � � �

377777777775 ; 266666666664
x41 x21x62 + x61 x21 x51 x81 1 � �x42 x62 1 � � � � �x43 x63 � x53 x83 � 1 �1 � � � � � � �� x65 � 1 � � � �� 1 � � � � � �� � � � x87 � � 1� � � � 1 � � �

377777777775TT:=pro(i,n,x)diag(1$(i-1),matrix([[x,1℄,[1,0℄℄),1$(n-i-1))end:# parameters = inversions ; input a redued deompositionRd2Rothe_xx:=pro(rd) loal i,j,k,n,mm,perm;n:=max(op(rd))+1;mm:=diag(1$n); perm:=[seq(i,i=1..n)℄;for i from 1 to nops(rd) doj:=perm[rd[i℄℄; k:=perm[rd[i℄+1℄;mm:=multiply(mm, TT(rd[i℄,n, at(x,10*k+j)));perm:=MultPerm(perm,SgTranspo(rd[i℄));od;eval(mm);end:Cosets and double osetsGiven a omposition I = [i1; : : : ; ir℄ of n, let SI = Si1 � � � � �Sir be theYoung subgroup it determines.Cosets Sn=SI are equivalene lasses of permutations modulo multipli-ation by SI on the right. It an be interpreted as utting permutations12



(onsidered as words) into bloks of suessive lengths i1; : : : ; ir, and per-muting freely elements inside eah blok. One an also deide to write in-reasingly the elements inside eah blok, obtaining a row (=row-tableau)that one usually represents in a box.Similarly, osets SInSn are obtained by utting the set of values intobloks, and identifying elements inside a blok, for example, giving themnew names a; b; : : : (letters in a totally ordered alphabet).Double osets SInSn=SJ are equivalene lasses modulo the ation ofthe two Young subgroups, and an be represented by a sequene of rows oflengths j1; j2; : : : using in all i1 times the letter a, i2 times the letter b, &.For example, double osets S323nS8=S44 are obtained by utting permu-tations into two bloks of lengths 4, and identifying 1; 2; 3 to a, 4; 5 to b,6; 7; 8 to .The double oset ontaining � = 63715824 an thus be oded byaa 
 abb(we shall onsider it later as a skew Young tableau, diret produt of tworows, of shape 4
 4).One an also ode suh a tableau by an integral matrix of size 3� 2, eahrow of the matrix being the degree (as a vetor) of the suessive rows of thetableau: a b  row sumsaa = a2b02 2 0 2 4abb = a1b21 1 2 1 4olumn sums 3 2 3The row sums of the matrix are the sizes of the suessive lengths of therows (i.e. are J = 4; 4), the olumn sums are the ommutative evaluation ofthe word a2b02a1b21 � a3b23.More generally, double osets SInSn=SJ are in bijetion with integralmatries: the (h; k) entry of the matrix ounts the number of ourenes ofletter xk in row h of the orresponding skew tableau of shape j1
 j2 � � � andommutative evaluation xI .In partiular, the number of double osets SInSn=SJ is equal to thenumber of integral matries with row sums I and olumn sums J . Thisnumber has many interpretation, we already seen that it is equal to thesalar produt of two produts of omplete symmetri funtions, (SI ; SJ).ACE> GenMat([4,4℄,[3,2,3℄);[3 1 0℄ [3 0 1℄ [2 2 0℄ [2 1 1℄ [2 0 2℄13



[0 1 3℄ [0 2 2℄ [1 0 3℄ [1 1 2℄ [1 2 1℄[1 2 1℄ [1 1 2℄ [1 0 3℄ [0 2 2℄ [0 1 3℄[2 0 2℄ [2 1 1℄ [2 2 0℄ [3 0 1℄ [3 1 0℄ACE> SfSalar(h4^2,h3*h2*h3); 10One an require eah box to ontain only di�erent letters. In that ase,one writes it as a olumn (i.e. a stritly dereasing sequene of letters). Adiret produt of olumns of lengths j1; j2; : : : will be onsidered as a skewtableau of shape 1j1
1j2
� � � . Suh tableaux are in bijetive orrespondenewith (0; 1)-matries with row-sums J and olumn-sums I.532 
 54321 
 52 
 532 $ 26640 1 1 0 11 1 1 1 10 1 0 0 10 1 1 0 13775(the �rst olumn is 532, whih are the positions oupied by 1 in the �rstrow of the matrix).In our exemple, there is only one 0-1 matrix with row-sums [3; 5; 2; 3℄ andolumn-sums [1; 4; 3; 1; 4℄ (we shall see that this is beause [5332℄ and [44311℄are onjugate partitions) :ACE> GenMat1([3,5,2,3℄,[1,4,3,1,4℄);[0 1 1 0 1℄[1 1 1 1 1℄[0 1 0 0 1℄[0 1 1 0 1℄ACE> GenMat([3,5,2,3℄,[1,4,3,1,4℄,'nb'); 2816ACE> SfSalar(e3*e5*e2*e3, h1*h4*h3*h1*h4); 1The number of suh matries is equal to a salar produt between a produtof elementary symmetri funtions and a produt of omplete funtions.The ase where there is only one suh matrix is fundamental in the theoryof representations of the symmetri group.Let us say that two ompositions are weakly onjugate i� the two par-titions obtained by sorting them are onjugate (the word onjugate has amore restrited sense imposed by the theory of non-ommutative symmetrifuntions). 14



Lemma 5 Let I and J be two weakly onjugate ompositions. Then there isonly one 0-1 matrix of row-sums I and olumn-sums J.Proof. Let r be the maximum of the omponents of J . Then one sees thatif jh = r, then all entries in the h-th row of the matrix must have a 1 ineah position k suh that ik 6= 0, and 0 otherwise. Suppressing these rowsand substrating r to eah non-zero omponent of I, one gets the lemma byindution. QEDOne an also interpret the matrix as oding a diagram of boxes, writingin eah box its level (the diagram is obtained by transposing the 0-1 matrix,then replaing eah 1 by a box, eah 0 by a void) :5 5 5 543 3 32 2 2 21To the 0-1 matrix is also assoiated a permutation that we shall note�(I; J) obtained by numbering the boxes from left to right and top to bottom,and reading olumnwise :2664 � 1 2 � 34 5 6 7 8� 9 � � 10� 11 12 � 133775 7! � = [4; 1; 5; 9; 11; 2; 6; 12; 3; 8; 10; 13℄ :
Subgroups assoiated to a tabloidLet D be a diagram of n boxes in the plane. A tabloid of shape D is anynumbering of the boxes of D with the integers 1; 2; : : : ; n.Let P (t) be the sum of all permutations whih globally preserve the rowsof t. Then P (t) is onjugate to �!I , where I is any permutation of thenumber of boxes in the suessive rows of D .For example, if t = 5 3 91 6 8 47 2and I = [4; 2; 3℄, !I = 4321 65 987 andP (t) = [1684 72 539℄ ��432165987 � [1684 72 539℄�1 :15



Given any omposition I whih is a permutation of the lengths of therows of a diagram D of n boxes, let DI be the objet obtained by numberingwith 1; 2; : : : ; n suessively the boxes of D, from left to right in eah row,taking the rows in the order spei�ed by I (hoosing any order between rowswith the same length).For example, for I = [4; 2; 3℄, the numbering of the preeding diagram isD423 = 7 8 91 2 3 45 6 :Let us note that the permutation onjugating P (t) is exatly the permu-tation obtained by reading the boxes of t in the order spei�ed by D423.Similarly, let N(t) be the alternating sum of all permutations whih pre-serve the olumns of t. Then N(t) is onjugate to r!(J), where J is anypermutation of the sequene of number of boxes in the suessive olumns ofD. In the ase of the above tabloid, and J = [2; 2; 1; 1; 1; 2℄ thenN(t0) = [85 16 7 3 4 92℄ � r21 43 5 6 7 98 � [85 16 7 3 4 92℄�1 :Young took the ase where D is the diagram of a partition I. From whatwe have just seen, we know that for any tabloid t of shape I, the elementP (t)N(t) of the group algebra is equal to� ��!I � ��1 � � � r!J � ��1 ;where J is the partition onjugate to I and � and �, the two permutationsobtained by reading the boxes of t in a ertain order. Let us note thatthe permutation ��1� does not depend upon the tableau t, but only of thediagram, beause it is the permutation whih transforms the row-readinginto the olumn-reading.For example, if t = 5 32 64 7 1then � = [53 26 471℄, � = [524 367 1℄ and � ��1 = [135 246 7℄ and this permu-tation is the one obtained by reading olumnwise1 23 45 6 7 ! [135 246 7℄ :
16



'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooThe group algebra of the symmetri group'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooUp to now, we ould multiply permutations, but not add them. To reoveraddition, we shall work in the group algebra Q [Sn ℄ of the symmetri group,with rational oeÆients.In other words, as a Q -vetor spae, Q [Sn ℄ is n!-dimensional, with a basisonsisting of permutations. But moreover, two elements multiply aordingthe multipliation of permutations : X�2Sn � �!  X�2Sn d� �! =X� X� (� d�) � � :Yang-Baxter elementsInstead of handling redued deompositions, one an now take produtsof fators of the type si + , with  2 Q . However our fundamental relations1s2s1 = s2s1s2 is not ompatible with a uniform shift :(1 + s1)(1 + s2)(1 + s1) = 2 + 2s1 + s2 + s1s2 + s2s1 + s1s2s16= (1 + s2)(1 + s1)(1 + s2) :Indeed 2s1 + s2 is not symmetrial in s1; s2, and it implies that the elements(1 + s1)(1 + s2)(1 + s1) and (1 + s2)(1 + s1)(1 + s2) are di�erent. To reoverequality, one must use non onstant shifts. For example,(1 + s1)(12 + s2)(1 + s1) = (1 + s2)(12 + s1)(1 + s2) :The general rule to ensure equality is due to Yang and Baxter. Morepreisely, we want an equality, with some onstants �; : : : ; 0 :(s1 + 1�) (s2 + 1 ) (s1 + 1� ) = (s2 + 1�0 ) (s2 + 10 ) (s1 + 1� 0 ) :We �nd that we must have � = � 0, � = �0 to ensure equality for the termsof length 2. Now, to reover symmetry in the terms of length 1 :1 � 1� + 1�� s1 + 1�� s2 ;17



one must have  = � + � :Of ourse, one an introdue parameters in the relation sisj = sjsi, ji�jj 6= 1,without breaking the ommutation: (si + 1�)(sj + 1� ) = (sj + 1� )(si + 1�).Finally, the braid relations have beome the Yang-Baxter relations(si + 1�) (si+1 + 1� + � ) (si + 1� ) = (si+1 + 1� ) (si + 1� + � ) (si+1 + 1�) (8)(si + 1�) (sj + 1� ) = (sj + 1� ) (si + 1�) ; ji� jj 6= 1 (9)Their graphial representation is easy to remember (taking i = 1) :[1 2 3℄s1 + 1� �� � s2 + 1�[2 1 3℄ [1 3 2℄s2 + 1�+� ����  s1 + 1�+�[2 3 1℄ [3 1 2℄s1 + 1� �� � s2 + 1�[3 2 1℄
[1 2 3 4℄s1 + 1� �� � s3 + 1�[2 1 3 4℄ [1 2 4 3℄s3 + 1� � �� s1 + 1�[2 1 4 3℄Vertial edges wear a parameter whih is the sum of the two on theopposite sides, other pairs of parallel edges have the same parameter.In short, forgetting about the labelling of verties, the index of the simpletranspositions si being spei�ed by the olor of edges, one needs only writethe parameters � used in the fators si + 1=� (beware that usually we arewriting on edges the inverses of the parameters) :���� � �� ��+ � ���� � + �� �� �� � ��

���� � �� �� � �� �� (10)
The important onstraint is that the parameter on a vertial edge is thesum of the parameters on the two opposite edges. Thus, instead of two18



parameters, one an take for S3 four independent parameters, keeping thetrivial ommutation relations for lozenges :���� � � � + Æ ���� �+ �� �� �� � Æ�
���� � Æ� �Æ � �� ��With M.P. Sh�utzenberger, we alled this relation Yin relation, and we solvedthe problem of labelling the edges of the permutohedron in suh a way thatall sub-hexagons satisfy the Yin relation, and that all lozenges ommute [22℄.Sine braid relations onnet any two redued deompositions of the samepermutation, if we an label edges of a permutohedron with parameters insuh a way as to satisfy relations (8,9), then all paths from the origin to agiven permutation will give the same element in Q [Sn ℄.To get a oherent hoie of parameters forSn, Yang [42℄ gave the followingreepee, that we an interpret as enrihing the permutohedron with a seondlabelling of verties, and of edges, aording to the following rule :� hoose an arbitrary system of \spetral parameters" [x1; : : : ; xn℄.� label eah vertex, say �, with [x�1 ; : : : ; x�n ℄� label the edge of olor si onneting � and � si with x�i+1 � x�iAn edge si with parameter � must be interpreted as a fator (si+ 1�) anda path must be interpreted as the produt of its edges.In summary, given parameters [x1; : : : ; xn℄ all di�erent, then all paths inthe labelled permutohedron, starting from the origin to a permutation �,give in Q [Sn ℄ the same Yang-Baxter element that we shall denote Y� orY�(x1; : : : ; xn). We an formulate the preeding onstrution as follows :Proposition 6 For any hoie of spetral parameters [x1; : : : ; xn℄, all di�er-ent, there exists a Yang-Baxter basis whih is a linear basis of Q [x1 ; : : : ; xn℄(Sn),satisfying the following relations whih araterize it (together with normal-ization Y1 = 1) :Y� si = Y� �si + 1x�i+1 � x�i� when `(�si) > `(�) : (11)19



The permutohedron for S3 looks now like[x1 x2 x3℄s1 + 1x2�x1 �� � s2 + 1x3�x2[x2 x1 x3℄ [x1 x3 x2℄s2 + 1x3�x1 ����  s1 + 1x3�x1[x2 x3 x1℄ [x3 x1 x2℄s1 + 1x3�x2 �� � s2 + 1x2�x1[x3 x2 x1℄
(12)

Quadrati formOne usually de�nes quadrati forms by taking onstant terms (in the aseof Q [Sn ℄, taking the oeÆient of the identity permutation). We shall usehere another onvention.Denote by g ! eg the linear morphism on Q [Sn ℄ indued by � ! ��1; � 2Sn, and by g \ ! the oeÆient of ! in g. For any f; g 2 Q[Sn℄, let�f ; g� := f eg \ ! : (13)The linear basis of permutations is self-adjoint with respet to this form :�� ; !�� = 1 & �� ; �� = 0; � 6= !� : (14)The next proposition, due to [24℄, shows that the Yang-Baxter basis is alsoompatible with the quadrati form. Let Y� be a Yang-Baxter basis for theparameters [x1; : : : ; xn℄, and bY� be the Yang-Baxter basis for the reversedparameters [xn; : : : ; x1℄.Proposition 7 The Yang-Baxter basis fY�g is adjoint to the Yang-Baxterbasis f bY!�g, i.e. one has�Y� ; bY!�� = 1 & �Y� ; bY�� = 0; � 6= !� : (15)Proof. The proposition is true for bY1, beause only Y! has a term in !.Suppose it is true for bY�. We shall prove it for bY�si, `(�si) > `(�). Indeed,bY�si = bY�(si + �) for some �. ThereforeY� (si + �)fbY� = ��Y� + Y�si�fbY� ;20



for some onstants �; . Therefore, one has just to onsider the ases where� = !� or �si = !�, and this is where one sees that one had to take reversedparameters for the seond Yang-Baxter basis. QEDFor example, let us hek that (Y231 ; bY321) = 0, taking the parameters[0; �;  = �+ �℄. Then there exists some onstants Æ; � suh thatY231 bY321 = (s1 + 1�) (s2 + 1 ) (s2 � 1� )| {z }Æ(s2� 1� )+� (s1 � 1 )(s2 � 1�) :The fator of � annot ontain !, and we an eliminate it. The triple (s1 +1�)(s2� 1� )(s1� 1 ) an be transformed into (s2� 1 )(s1� 1� )(s2+ 1�), but sine(s2 + 1�)(s2 � 1�) is a salar, the remaining expression annot either ontain!.Speial Yang-Baxter elementsMany interesting elements of the group algebra of Sn an be written interms of Yang-Baxter elements, for di�erent hoies of parameters.We shall speially use the two ases where [x1; : : : ; xn℄ = [1; : : : ; n℄ or[x1; : : : ; xn℄ = [n; : : : ; 1℄, denoting�� := Y�(1; : : : ; n) & r� := Y�(n; : : : ; 1) ; � 2 Sn :Let us notie that proposition 7 implies :Lemma 8 f��g and fr!�g are two adjoint bases.The elements �� and r� allow to write idempotents in the group algebra.Let us hek for example that the sum of all permutations of Sn is equal to�! = Y!(1; : : : ; n), with ! = maximal permutation = [n; : : : ; 1℄.Beause we an start a path from the identity to ! by any simple transpo-sition si, then �! is suh that it has at least one expression with a left fator(si+1). The two anonial redued deompositions that we have enounteredextends to two expressions of �!, whih are :�! = �(s1 + 11)��(s2 + 12)(s1 + 11)� � � ��(sn�1 + 1n� 1) � � � (s1 + 1)�= �(sn�1 + 11) � � � (s1 + 1n� 1)� � � ��(sn�1 + 11)(sn�2 + 12)��(sn�1 + 11)�Suppose that we have notied that�321 =X�2S3 �21



We want to prove that the similar property holds for�4321 = �321(s3 + 13)(s2 + 12)(s1 + 1) :We use the fat that �P�2S3 �� � = P�2S3 � if � 2 S3. In other words,when multiplyingP�2Sn � by an expression involving only permutations inSn, one an replae in this expression eah permutation by 1.Therefore�321 13 (s2 + 12)(s1 + 1) = �321 13 (1 + 12)(1 + 1) = �321 :Similarly �321 s3 12 (s1 + 1) = �321 s3 12(1 + 1) = �321 s3Finally�321(s3 + 13)(s2 + 12)(s1 + 1) = �321(1 + s3 + s3s2 + s3s2s1) :The right hand side is indeed equal to the sum of all permutations of S4,beause it desribes how they are obtained from permutations of S3 by in-serting 4 in all possible manners.To pass from a general Sn to Sn+1, one needs to write the expansionwith some are. One deomposes the produt (sn + 1=n) � � � (s1 + 1) into asums of termssn � � � sk+1 1k (sk�1 + 1k�1) � � � (s1 + 1) ; 0 � k � n ;orresponding to the �rst time that in the suesive fators si + 1=k, onehooses to take the salar instead of the simple transposition.The term right of 1k ommutes with the left part, and behaves like thesalar (1 + 1k�1)(1 + 1k�2) � � � (1 + 1) = 1 when multiplied on the left byP�2Sn �. Therefore one �nds that�n+1 n:::1 = �n:::1�sn � � � s1 + sn � � � s2 + � � �+ sn + 1� ;and, as for n = 3, this proves that �n+1 n:::1 is the sum of all permutationsin Sn+1. Using the involution si ! �si, we also get that r! is equal to thealternating sum of all permutations :�! =X�2Sn � & r! =X�2Sn(�1)`(�!)� : (16)22



We shall use later that �! and r! are the two 1-dimensional quasi-idempotents of Sn, and are haraterized, up to a salar, by�! si = �! = si�! & r! si = �r! = sir! ; 8i : 1 � i < nUsing this haraterization would have saved us from the above omputa-tions, we performed them only to illustrate the tehniques one should needto use for a general Yang-Baxter element ��.Let us see another more powerful approah, whih would also apply whendiret expansions in the group algebra are not feasible. It onsists in iden-tifying eah element of Q [Sn ℄ to an operator on polynomials; two elementsoinide i� they have the same ation on polynomials. If we were testing theation on the polynomials x1; x2; : : : ; xn, then we have just said that thereis no essential di�erene between a permutation � and the list [x�1 ; : : : ; x�n ℄.However, we shall use the fat that the ring of polynomials Q [x1 ; : : : ; xn℄is a module over the ring Sym(n) of symmetri polynomials. It is in fata free module with basis the Shubert polynomials X�; � 2 Sn. In otherwords, any polynomial is a linear ombination of Shubert polynomials withoeÆients in Sym(n) (whih ommute with the ation of the symmetrigroup).The only property that we shall need from these polynomials is that theyall are symmetrial in at least one pair xi; xi+1, exept for the maximal oneX! = x� := xn�11 xn�22 � � �x0n.Let us prove again thatr! = Y!(n; : : : ; 1) = X�2Sn(�1)`(!�) � ; (17)interpreting both sides as operators on polynomials.Both sides annihilate polynomials whih have at least one symmetry ina pair xi; xi+1 (beause (si � 1) annihilates suh polynomials). Thus bothsides annihilate all the Shubert polynomial, exept the last one X! . Nowinstead of testing the ation on X! , one an take the Vandermonde � :=Qi<j(xi� xj). Eah simple transposition ats by multipliation by �1 on �,and therefore, Y!(n; : : : ; 1) ats by multipliation by the salar(�1� 11)(�1� 12)(�1� 11) � � � (�1� 1n) � � � (�1� 11) = �n! :Similarly, eah permutation � ats on the Vandermonde by (�1)`(�), andtheir alternating sum ats by �n!. Therefore, the two operators r! andP�� are equal. QED23



We shall justify in more details the preeding arguments, when desribingthe quotient of the ring Q [x1 ; : : : ; xn℄ by the ideal generated by symmetripolynomials without onstant term. This quotient is isomorphi, as a repre-sentation of Sn, to Q [Sn ℄. Therefore identities in the group algebra an bemoved to identities involving only polynomials.We shall need the Yang-Baxter elements Y�(1; : : : ; n) to ompute har-aters. In partiular, we shall need the Yang-Baxter \yles" of order k,2 � k � n, whih are� [k℄ := �23:::k1 = (s1 + 11)(s2 + 12) � � � (sk�1 + 1k�1) 1k (18)Permutation modulesFrom now on, let us write H for the group algebra Q [Sn ℄ (many state-ments an be generalized to the Heke algebra, whih is a deformation ofQ [Sn ℄, this explains the use of H !).The elements �! and r! are suh that �!H and r!H are two 1-dimensional modules1, alled the trivial representation and the alternatingrepresentation respetively.One annot get muh information from a 1-dimensional spae, but on-sidering the orresponding elements for Young sub-groups will be enough togenerate all representations.Let I = [i1; : : : ; ir℄ be a omposition of n, SI = Si1 � � � ��Sir ,! Sn bethe assoiated Young sub-group, and !I its maximal element.From (16) one knows that�!I =X�2SI � & r!I =X�2SI (�1)`(�!I )� : (19)Proposition 9 Given a omposition I, the modules2 �!I H and r!I H havebasis f��; � 2 [!I ; !℄g and fr�; � 2 [!I ; !℄g respetively, where � runs overall permutations in the interval [!I ; !℄ of the permutohedron.The permutations in [!I ; !℄ are exatly those permutations whih have theinversions of !I, in other words, whih are shu�es of[i1 : : : 1℄; [(i2+i1) : : : (i1+1)℄; : : : ; [(i1+ � � �+ir) : : : (i1+ � � �+ir�1+1)℄ :The spae �!I H is isomorphi to the permutation representation of Snon words with ommutative evaluation xI .1We already used that �!� = �! and r!� = (�1)`(�)r! for any � 2 Sn.2alled indued from the trivial representation or alternating representation of SI24



Proof. The linear span of f��; � 2 [!I ; !℄g and f�!I !I�; � 2 [!I ; !℄g is thesame. Two permutations �; � in the same oset SI � are suh that �!I � =�!I �. Conversely, the elements f��; � 2 [!I ; !℄g are linearly independent,having term of highest length �. This gives a basis of �!I H, and by theinvolution si ! �si, a basis of r!I H.Cheking the last statement is just a matter of rewriting the interval ofthe permutohedron, replaing 1; : : : ; i1 by a, i1+1; : : : ; i1+i2 by b, &. Forexample, one has for I = [2; 2℄[2143℄s2[2413℄s1� ���s3[4213℄ [2431℄s3��� �s1[4231℄s2[4321℄
aabbs2ababs1� ���s3baab abbas3��� �s1babas2bbaaThe two graphs an be interpreted as furnishing a basis: �!I�, and a basis ofwords of two modules, with the same ation of the symmetri group, beausethe right graph is obtained from the left one by making verties operate on theommutative monomial xaabb ( more simply, one an take x0011; we need onlytwo di�erent exponents. It is equivalent to use monomials in ommutativevariables x1; x2; : : :, or words in non-ommutative letters a; b; : : :, or 0; 1; : : :,whih are interpreted as the exponents of the monomials, and of ourse,anot be written in any order if one does not write the variables at the sametime). To be omplete, one should write on the graph loops at eah vertex,orresponding to the simple transpositions whih preserve the vertex. QEDNotie that the stabilizer of a vertex is more evident on the right graphthan the left one. For example, xbaab = xb1xa2xa3xb4, or equivalently, x1001 arestable under s2, but heking that [4213℄ = �2143s2s1 is invariant requireswriting �2143s2s1 s2 = �2143s1 s2s1 = �2143s2s1 :From the desription in terms of words, it is lear that the spaes �!I Hand r!I H have dimension the multinomial oeÆient � ni1;:::;ir�.Frobenius harateristi map 25



There are many ways to relate the group algebra Q [Sn ℄ to the ring ofsymmetri polynomialsSym. Let us follow the approah of Frobenius, whihgave birth to the theory of haraters.The Frobenius harateristi map is the linear morphism h : Q [Sn ℄ !Sym whih sends eah permutation � of yle type � = 1�12�2 : : : to theprodut of power sums 	� := 	a11 	a22 � � � .Therefore, a onjugay lass of type � is sent to n!z� 	�, beause n!z� is theorder of the lass, with z� := 1�1�1!2�2�2! : : :.Frobenius' harateristi is not ompatible with produts of permutations,exept for diret produts : if � belongs to a Young sub-group : � = �1 �� � � � �k 2 Si1�����ik , thenh(�) = h(�1) � � �h(�k) :It is also ompatible with yli permutations :h(�� � � �� �) = h(� �� � � ��) ;beause the two elements that we have written are onjugate.Sine Shur funtions are the fundamental basis of Sym, it is importantto �nd in the group algebra elements whih are sent to Shur funtions underFrobenius' harateristi. We shall see later that Young idempotents possessthis property. But already, we an �nd suh elements. Let us �rst omputethe image of a Yang-Baxter yle.Lemma 10 The image of the Yang-Baxter yle � [n℄ under h is the om-plete funtion Sn.Proof. We have already seen that � [n℄ deomposes into the sum of terms ofthe following type (i = 0; : : : ; n�1) :(s1 + 11)(s2 + 12) � � � (si�1 + 1i�1) 1i si+1 � � � sk�1 1kwhih are diret produts of a Yang-Baxter yle by a yle. Supposing thelemma true for Yang-Baxter yles of order less than n, one hash(� [n℄) = n�1Xi=0 Si	n�i 1n :But this is the Newton-Brioshi reursion between omplete funtions andpower sums, and therefore h(� [n℄) = Sn. QED26



Given any omposition I = [i1; : : : ; ir℄, de�ne�I := � [i1℄ � � � � � � [ir℄ :For example, � [3;2;4℄ := � [3℄ � � [2℄ � � [4℄ 2 S(3)�S(2)�S(4)is equal to(s1 + 11)(s2 + 12)13 (s4 + 11)12 (s6 + 11)(s7 + 12)(s8 + 13)14 :It is onvenient to extend the de�nition of � [k℄ to negative exponents andput � [k℄ = 0 for k < 0 ; � [0℄ = � [1℄ = 1Given any inreasing partition I = [i1; : : : ; ir℄, let �I be the determinant��� [ik+k�h℄��1�h;k�r ;where the determinant is expanded from left to right and where produts arediret produts.Proposition 11 For any partition I, one hash(�I) = SI : (20)Proof. Beause of the Jaobi-Trudi formula expressing Shur funtions asdeterminants of omplete funtions, the statement is equivalent to the fatthat h(� [i;j;:::;k℄) = SiSj � � �Sk, but this is a diret onsequene of lemma 10.QEDFor example,�23 = ����(s1 + 1)12 (s1 + 1)(s2 + 12)(s3 + 13)141 (s1 + 1)(s2 + 12)13 ����and4! h(�23) = h�4(s1 + 1)(s3 + 1)(s4 + 12)� 6(s2 + 1)(s3 + 12)(s4 + 14)�= �6 14 + 4 23 � 4 113 + 3 122 + 2 1112 +  1111= 4!S23 :One an also �nd produts of elementary symmetri funtions. For anyomposition I = [i1; : : : ; ik℄, let us write !I for the maximal element of theYoung sub-group Si1�����ik i, and I! for i1! � � � ik!.27



Proposition 12 The image of �!I under h is a produt of omplete fun-tions, the image of r!I , a produt of elementary symmetri funtions :h��!I� = I!SI (21)h�r!I� = I! (�1)`(!I) �I (22)Proof. Beause �!I and r!I are diret produts, using that h is ompatiblewith diret produts, we have only to hek the ase I = [n℄, i.e. to prove thestatement for �!, the one for r! being obtained from it by the involutionsi ! �si. But h�X �� =XJ n!zJ	J = n!Sn ;as is well known sine Cauhy. QEDDesribing the kernel of h is not immediate. For example, from propo-sitions (11,12), one gets that 6� [3℄ and �321 are both sent to 6S3, i.e. thath�(s1 + 1)(s2 + 12)(s1 � 1)� = 0 ;the next ase being :6h�(s1 + 1)(s2 + 12)(s3 + 13)� = h�(s1 + 1)(s2 + 12)(s3 + 13)(s1 + 1)(s2 + 12)(s1 + 1)�i.e. h�(s1 + 1)(s2 + 12)(s3 + 13)(6��321)� = 0ACE> Perm2p:= pro(perm)onvert( map(i->at(p,i),Perm2CyleType(perm)),`*`)end:ACE> Sga2Sym:=pro(f); # Frobenius' harateristiif member(whattype(f),{`+`,`*`,`^`})then map(Sga2Sym,f)elif whattype(f)=`indexed` and op(0,f)=`A`then RETURN(Perm2p([op(f)℄)) ;else ffi;end:ACE> Sga2Carre(A[3,2,1,5,4℄); # ase I=[3,2℄A[3,1,2,5,4℄ + A[2,1,3,5,4℄ + A[1,2,3,4,5℄ + A[1,3,2,4,5℄+ A[3,2,1,5,4℄ + A[2,3,1,5,4℄ + A[3,1,2,4,5℄ + A[2,1,3,4,5℄+ A[3,2,1,4,5℄ + A[2,3,1,4,5℄ + A[1,3,2,5,4℄ + A[1,2,3,5,4℄28



ACE> Toh(Sga2Sym(%)); 12 h3 h2ACE> Toe(Sga2Sym(Sga2Nabla(A[3,2,1,5,4℄)));12 e3 e2
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooYoung normal representations and Yang-Baxter bases'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooWe have already represesented permutations as matries. Indeed, to han-dle the (non-ommutative) multipliation in the group algebra of the sym-metri group, the simplest tool is to realize it as a multipliation of matries.Instead of having only one representation of dimension n for Sn (i.e. embed-ding Sn into the linear group Gl(C n), one an try to use other linear groups.A representation over C of dimension N of Sn is a morphism' : Sn 3 � ! '(�) 2 Gl(C N )ompatible with the mutipliation :'(� �) = '(�)'(�)(the image of the identity being the identity matrix).We also have impliitely used another representation, the (left) regularrepresentation, whih is the n! dimensional representation of Sn ating byleft multipliation on the group algebra of itself (one has also a right regularrepresentation).ACE> Perm2RRep([2,3,1℄); [ 0 0 0 0 1 0 ℄[ 0 0 0 0 0 1 ℄[ 0 1 0 0 0 0 ℄[ 1 0 0 0 0 0 ℄[ 0 0 0 1 0 0 ℄[ 0 0 1 0 0 0 ℄Of ourse, with two representations, one an make a third one by takingmatries made of two diagonal bloks. One says that the resulting represen-tation is diret sum of the two original ones. Thus one wants representationswhih are not equivalent to a diret sum.Let us see a solution by Young to this problem for the symmetri group(his seond solution, as a matter of fat). We shall rewrite it in terms ofa Yang-Baxter graph, and this will make lear the onnetion with Yang'sbasis.To any partition �, we assoiate a word y�, by �rst writing the diagram of� as a diagram of boxes staked in the North-East orner (the parts of � being30



the olumn lengths), then we �ll eah olumn with onseutive numbers,inreasing upwards and starting with 0 in the bottom boxes :� = [3; 2℄) � �� �� ) 1 20 10 ) word 10 210Now generate a graph, by allowing all possible transpositions of adjaentletters a; b, with a < b : [10:210℄s2[1:20:10℄s1� ���s3[210:10℄ [1:2100℄s3��� �s1[21100℄The bottom element of the graph is the weakly dereasing word ommuta-tively equivalent to y�. Eah edge has a olor si (transposition of omponentsi; i+1).The labels of verties are Yamanouhi words3, i.e. words w suh for eahfatorisation w = w0w00, then the number of ourenes of i is bigger or equalto the the number of ourenes of (i+1), i = 1; 2; 3; : : :, in w00. This wewrite :w Yamanouhi , 8w = w0w00; jw00j1 � jw00j2 � jw00j3 � � � � (23)We ould have also labelled verties by permutations: take the same under-lying graph, and put the maximal permutation (here [54321℄ at the bottom).Now the graph has beome an interval in the permutohedron. However, forfurther appliations, our present labelling is better.
Interval of the permutohedron [42:531℄s2[4:52:31℄s1� ���s3[542:31℄ [4:5321℄s3��� �s1[54321℄3Some people say \lattie permutations", but there is no lattie here, and permutationsare hidden. 31



There is still another labelling, diretly equivalent to the one by Yamanouhiwords, whih onsists in interpreting eah word as desribing the levels o-upied by the letters 1; 2; : : : ; 5 in the diagram of [3; 2℄ (top row is level 0) :2 51 43s23 51 42s1� ���s33 52 41 4 51 32s3��� �s14 52 31
[10:210℄s2[1:20:10℄s1� ���s3[210:10℄ [1:2100℄s3��� �s1[21100℄Transpositions at on the verties of the left graph by permuting values.As a Yang-Baxter graph, it is not yet totally de�ned, we have to hoosean initial vetor of spetral parameters.We take the ontent vetor �, obtained by �lling the diagram of �, thistime paked in the North-West orner and the parts of � being the row lengths,with onseutive numbers in eah olumn, inreasing upwards, in suh a wayto have 0 in the main diagonal. We read now the onseutive rows, fromright to left, from bottom to top :� = [3; 2℄) � � �� � ) 0 � �� 0 ) 0 1 2�1 0 ) � = [0; �1; 2; 1; 0℄Now edges of the graph have not only a olor si, but also a label 1=(b�a),for the transposition of a and b. Labelling verties by their orrespondingontent vetors (=images of the initial ontent vetor �), and writing 1instead of �1, one gets the graph 0 1 2 1 0 130 2 1 1 012� ��� 122 0 1 1 0 0 2 1 1 012��� � 122 0 1 1 0The set of verties of the preeding graph is the plati lass4 of the word[0 1 2 1 0℄, we shall desribe it later in the hapter about Young tableaux.4The plati relations are, for any triple a < b < , ab � ab, ba � ba, and for anypair a < b, baa � aba, bab � bba. The plati lass of a word is its losure under platirelations. 32



How to read matries from the graph ?The underlying vetor spae has a basis oded by the verties of thegraph. To represent any simple transposition si, one �rst erases all edgeswhih are not labelled by si. One is left with isolated verties (orrespondingto 1-dimensional representations of S2), and pairs of verties onneted byan edge, orresponding to 2-dimensional representations.In this last ase, if � is the parameter written on the edge, then to de�nea two-dimensional representation of Sn, Young took the matrix� �� 11��2 �� :In the one-dimensional ase, if i; i+1 is a subword of the vertex, then therestrition of the representation is trivial (i.e. the matrix is 1), otherwise (ifi+1; i is a subword) it is the alternating representation (matrix = �1).Choosing a total order on the verties of the direted graph, ompatiblewith its partial order, Young de�ned a matrix to represent the simple trans-position si by embedding these elementary matries into a N � N matrix,putting 0 in the other plaes (N=number of verties).In other words, a single vertex gives a diagonal entry �1, an edge sionneting vertex p and vertex q gives a submatrix h �� 11��2 � i on rows andolumns p; q, and all other entries are 0.Continuing with the example, for shape [3; 2℄, here are the matries rep-resenting s1; : : : ; s4, for the ordering (here ACE has reversed the words andthe order)[0;�1; 1; 0; 2℄; [0;�1; 1; 2; 0℄; [0; 1;�1; 2; 0℄; [0; 1; 2;�1; 0℄; [0; 1;�1; 0; 2℄ :24 �1 0 0 0 00 �1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 135 2664 12 0 0 0 10 12 1 0 00 34 �12 0 00 0 0 1 034 0 0 0 �12 3775 264 �1 0 0 0 00 1 0 0 00 0 13 1 00 0 89 �13 00 0 0 0 1375 2664 12 1 0 0 034 �12 0 0 00 0 �12 0 3=40 0 0 1 00 0 1 0 12 3775 (24)
Verties are labelled in the order 1� �2 5� �3j4 . Edges [1; 5℄ and [2; 3℄ are labelleds2, and vertex 4 is an isolated point for s2. Therefore, the matrix representings2 is made of two Young-matries of order 2, plus a matrix of order 1, plaedat the positions indiated : 24 [1;1℄ � � � [1;5℄� [2;2℄ [2;3℄ � �� [3;2℄ [3;3℄ � �� � � [4;4℄ �[5;1℄ � � � [5;5℄35. The parameters on the33



edges tell the preise values of the entries; the entry [4; 4℄ is equal to 1 beauseomponent 2 of vertex 4 is smaller than omponent 3.It is lear that the square of any Young matrix is the identity (beauseit is true for the ase of order 1 and 2). It is also lear that ommutingtranspositions give ommuting matries. It remains essentially to hek thease a six dimensional representation of S3, with parameters �; �;  = �+�,i.e. to hek that the matriesM1;M2 andidate to represente the two simpletranspositions satisfy M1M2M1 =M2M1M2 :Expliitely, these two matries are
M1 :=

266666666664
���1 0 1 0 0 00 � (� + �)�1 0 0 1 01� ��2 0 ��1 0 0 00 0 0 ���1 0 10 1� (� + �)�2 0 0 (�+ �)�1 00 0 0 1� ��2 0 ��1

377777777775
M2 :=

266666666664
���1 1 0 0 0 01� ��2 ��1 0 0 0 00 0 � (� + �)�1 1 0 00 0 1� (� + �)�2 (�+ �)�1 0 00 0 0 0 ���1 10 0 0 0 1� ��2 ��1

377777777775 (25)
Arrived at this stage, instead of trying to perform the produt of matries,we remember that we have used in the preeding setion another interpreta-tion of a Yang-Baxter graph, as oding elements in the group algebra of Sn(verties an be labelled arbitrarily). We have to hoose an arbitrary vetorof parameters. Afterwards, we obtain n! elements in the group algebra ofSn, by reading paths and interpreting them as produts of simple fators inthe group algebra.In general, one edge is labelled si + �, its two verties are Y� and Y� =Y� (s+ �), with � = �si. The linear span of Y� and Y� is a two dimensionalrepresentation of S2 ating on the right, and the matrix representing the34



ation of si is (reading by rows)� Y� ! Y�si = ��Y� + Y�Y� ! Y�si = (1� �2)Y� + �Y� , � �� 11��2 �� : (26)This is exatly Young's matrix.It means, that if we take S3 and the parameters [0; �; �+ �℄, then Yang-Baxter equation insures that M1M2M1 = M2M1M2 without any need tohek it 5. Therefore Young's matries represent the symmetri group.The expliit matrix of hange of basis, with the vetor of parameters[0; a; a+ b℄ is (reading the expansion of a Yang element in eah row) :ACE> MatYang2Perm(3,[0,a,a+b℄), inverse(%);2666666666664
1 0 0 0 0 01b 1 0 0 0 01a 0 1 0 0 01(a+b)a 1a 1a+b 1 0 01b(a+b) 1a+b 1b 0 1 0ab+1(a+b)ba 1ab 1ab 1b 1a 1

3777777777775 ; 266666666664
1 0 0 0 0 0�1b 1 0 0 0 0� 1a 0 1 0 0 01ab � 1a � 1a+b 1 0 01ab � 1a+b 1b 0 1 0� ab+1(a+b)ba 1(a+b)a 1b(a+b) �1b � 1a 1

377777777775Apart from signs, these two matries have the same entries, but distributeddi�erently. This fat result from the fat, seen in the preeding setion, thatthe adjoint of a Yang-Baxter basis is a Yang-Baxter basis for the reversedparameters.For our running example, the representation is of dimension 5, and Yang-Baxter basis is 1??y 13s2+ 1312 . & 12(s2+ 13 )(s1+ 12 ) (s2+ 13 )(s3+ 12 )12 & . 12(s2+ 13 )(s1+ 12 )(s3+ 12 )5One nevertheless has to verify what happens in the degenerate ase, when one of thedi�erenes of parameters is equal to �1; for Young, this is the ase where two onseutiveintegers, in a tableau, are in the same row or same olumn (and thus in adjaent boxes)35



The matries representing s1; : : : ; s4 have already been written in (24).There are other normalizations for Young's matries. Essentially, onean take one of the following three matries for the ase of S2 (or theirtransposed, but of ourse, one must stik for Sn with one type only!)� �� 11��2 �� ; ��� 1+�1�� � � ; � �� p1��2p1��2 � � (27)The matrix on the right is unitary, and thus is the building blok of Youngorthonormal representations. Young �rst obtained them by orthonormalisa-tion of the matries in the natural representations.Here are now two opies of a bigger graph, for shape [3; 4℄; on the left,we write writing Yamanouhi words; on the right, we take the ontents +1,to have positive numbers (this does not hange di�erenes!).210:321021:30:210
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Here are the matries representing s2 and s3 for this representation :ACE> latex(MatRepNormal([4,3℄,2)),latex(MatRepNormal([4,3℄,3));266666666666666666666666666666664
1=2 � � � � � � � � � � � � 1� 1=2 � � � � � � � 1 � � � �� � 1=2 � � � � 1 � � � � � �� � � 1=2 1 � � � � � � � � �� � � 3=4 �1=2 � � � � � � � � �� � � � � 1 � � � � � � � �� � � � � � 1 � � � � � � �� � 3=4 � � � � �1=2 � � � � � �� � � � � � � � 1 � � � � �� 3=4 � � � � � � � �1=2 � � � �� � � � � � � � � � 1=2 1 � �� � � � � � � � � � 3=4 �1=2 � �� � � � � � � � � � � � 1 �3=4 � � � � � � � � � � � � �1=2

377777777777777777777777777777775266666666666666666666666666666664
�1 � � � � � � � � � � � � �� �1 � � � � � � � � � � � �� � 1 � � � � � � � � � � �� � � 1 � � � � � � � � � �� � � � 1=3 1 � � � � � � � �� � � � 8=9 �1=3 � � � � � � � �� � � � � � 1 � � � � � � �� � � � � � � 1=3 1 � � � � �� � � � � � � 8=9 �1=3 � � � � �� � � � � � � � � 1 � � � �� � � � � � � � � � 1 � � �� � � � � � � � � � � 1=3 1 �� � � � � � � � � � � 8=9 �1=3 �� � � � � � � � � � � � � 1

377777777777777777777777777777775We now give the 16-dimensional representation of S6, for shape [1; 2; 3℄ :0:10:210
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s1 ; s2==== ; s3� � � ; s4= = =
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooYoung's natural representations'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooWe now ome to the heart of Young's work, who introdued the funda-mental idea that 2-dimensional ombinatorial objets were needed to workin the group algebra of the symmetri group.Young obtained the following key property (he was using only partitions,and not ompositions, but his method extends straightforwardly).Proposition 13 Let I, J be two onjugate ompositions. Then �!IHr!Jis a 1-dimensional module, and�!I � � � r!J 6= 0, � = �0 � �(I; J) � �00; �0 2 SI; �00 2 SJ ;where the permutation �(I; J) assoiated to a pair of onjugate ompositionshas been de�ned above.Proof. The spae �!(I)Hr!(J) is generated by the permutations � of min-imum length in their double oset SI �SJ . These permutations are inbijetive orrespondene with tableaux of evaluation 1i12i2 � � � and shapej1 
 j2 
 � � � .Let us hek that suh a tableau gives a non-zero element �!I�r!J i�all the letters in every row separately are distint. Indeed, suppose on theontrary that a letter ours twie in a row. It means that there exists aninteger k suh that sk 2 SI and suh that � and sk � give the same elementmodulo SJ . We an equivalently write��!J = sk ��!J or �r!J = �sk �r!J or also (1 + sk) �r!J = 0 ;but now, beause (1 + sk) = �k is a right fator of �!I , this last nullityimplies that of �!I �r!J .Finally, lemma 5 tells us that there is only one tableau of evaluation1i12i2 � � � and shape 1j1 
 1j2 
 � � � , and it orresponds to the permutation�(I; J). QEDFor example, for I = 232 and J = 331, �(232; 331) = 136 247 5, and the
39



di�erent ombinatorial objets that we attahed to the pair I; J are :241 1 01 1 11 1 035 3 32 2 21 1 241 23 4 56 7 350�1matrix diagram numbering ! �(232; 331) = 136 247 5321 
 321 
 2 ! 631 
 742 
 5 ! 631 742 5the olumn reading of the last tableau is now the element of maximal lengthin its oset �(232; 331)S331 instead of being the element of minimum length.Proposition 13 is so important in Young's theory that we now give anotherformulation of it in terms of Yang-Baxter elements. The situation is evensimpler, we shall have a spae of dimension 1 beause there is only one non-vanishing element. One more, vanishing properties ome only from the fatthat, for any simple transposition, (si + 1)(si � 1) = 0.Proposition 14 Let � be a partition. Fill the suessive olumns of thediagram of � (in the S-W orner) (resp. of �e, in the N-E orner) with1; : : : ; n. Let !0 and !00 the olumn readings of these two tableaux, and �, �their row-reading. Let J be the inreasing reordering of of �, and I = �e .Then, for every permutation � greater than !0 (in the permutohedron),one has that ��r� 6= 0 i� � and � belongs to the same double oset SI �SJ.Moreover �!0 Hr!00 is 1-dimensional, with basis �� r!00, and ��r� is aquasi-idempotent, i.e.��r���r� =  ��r� ; for some  2 Z;  6= 0 :Proof. Let us take an expliit partition, say � = [3; 2; 2℄, to avoid unneessaryindies. In that ase, the �lled diagrams are3 62 51 4 7 ! � = [3625147℄; !0 = [3216547℄ & 2 4 71 3 65 ! � := [2471365℄; !00 = [2143765℄ :We have seen in proposition 9 that �!0H has a linear basis onsisting of��, � � !0 = [3216547℄ in the permutohedron, i.e. � having subwords321; 654; 7, to whih we shall attribute di�erent olors. Considering � mod-ulo SJ amounts writing an ordered sequene of sets (all them baskets)f�1; �2g, f�3; �4g, f�5; �6; �7g instead of a permutation. Suppose that twointegers of the same olor are in the basket. All the integers between them40



also belong to the same basket, we an suppose that the two integers, sayj; j+1, are onseutive.Therefore, �� is obtained from ��0 , where �0 is the element of minimumlength in the oset �SJ , by multipliation on the right by fators of the typesk + �, with all sk 2 SJ , but one of the � being equal to 1 (reated by theexhange of j and j+1. Sine (sk + �)r!00 = (�1 + �)r!00, the produt ofthese fators vanishes with r!00 . For example, when � = [63 75 241℄, then1; 2 have the same olor and lie in the same basket, and �6375241r2143765 =�6375124 (s5 + 1)(s6 + 13)r2143765 = 0.To avoid nullity, one must have that all integers of the same olor liein di�erent baskets, and one more, lemma 5 states that all permutationssatisfying suh property belong to the same double oset.Moreover, �3625147r2143765 is non-zero, beause it has term of highestlength the produt [36 25 147℄[21 43 765℄ (whih is redued).One passes from �!0 to �� by multipliation on the right by invertiblefators si + 1� , � 6= 1; the spaes ��Hr!00 and �!0 ;Hr!00 are the same.Finally, ��r���r�r!00 belongs to the spae �!0 ;Hr!00 . One has justto hek that it is not null. We shall hek later, and more easily, this typeof non-vanishing properties by using the ation of H on polynomials. QEDIn the following orollary, we shall take tabloids of shape a partition, toreover statements diretly adapted from those of Young.Corollary 15 Given two tabloids u, v of shape the same partition I, then1) The spae P (u)HN(v) is 1-dimensional. Moreover P (u)N(u) andN(u)P (u) are two quasi-idempotents.2) If h 2 H is suh that, for all � 2 Sn preserving the rows of u, onehas �h = h and for all � 2 Sn preserving the olumns of u, one has h� =(�1)`(�)h, then h is proportional to P (u)�(u; v)N(v), where �(u; v) is thepermutation transforming u into v.3) If u and v are two tabloids of shapes two di�erent partitions �, �, ofthe same number, � being stritly higher than � (with respet to the naturalorder on partitions, for whih 1n is the maximum), thenP (u)N(v) = 0 = N(v)P (u) :Proof. The �rst point is a diret onsequene of propositions 13,14, takinginto aount that all P (u), for u of shape I, are onjugate to �!I . Similarly,all N(v) are onjugate to r!J , for v of olumn-shape J (= onjugate of I).The invariane of h with respet to multipliations on its right and its leftby all the permutations belonging to some Young subgroups, implies that h41



is equal, up to a non-zero fator, to P (u)hN(v), and thus proportional toP (u)�(u; v)N(v).This last point is asribed to Von Neuman by Weber [40℄.There is no 0-1 matrix of row-sums the shape I of u, and olumn-sums J ,the shape (by olumns) of v. It implies �!I Hr!J = 0, and by onjugation,P (u)N(v) = 0. QEDWe summarize now some of the di�erent 1-dimensional spaes that wehave assoiated to the partition [3; 3; 1℄.Pair[331℄; [223℄! h 1 1 11 1 10 0 1 i! h 1 2 34 5 6� � 7 i! �([331℄; [223℄) = [1425367℄Spae �3216547Hr2143765, with basis �3216547 [1425367℄r2143765or �3625147r2143765, oming from the tableau 3 62 51 4 7 .Pair[331℄; [322℄! h 1 1 11 1 11 0 0 i! h 1 2 34 5 67 � � i! �([331℄; [322℄) = [1472536℄Spae �3216547Hr3215476, with basis �3216547 [1472536℄r3215476or �3672514r3215476 oming from the ontre-tableau 3 62 51 4 7 ! 3 6 72 51 4Let us analyze more preisely the vanishing property stated in the pre-vious proposition. Young [43℄, p.95, gives the following property6, whih isruial in his haraterization of idempotents, and their branhing rules.Proposition 16 Given two onjugate ompositions I, J and an index k suhthat ik � ik+1, let Iy be the omposition [: : : ; ik + 1; ik+1 � 1; : : :℄ di�eringfrom I only at the k-th and k+1-th omponents. Then�!I ��!Iy Hr!J = 0 = �!Iy ��!I Hr!J (28)Proof. There is no tableau of evaluation xIy and of shape 1j1 
 1j2 
 � � � andthus �!IyHr!J = 0. QEDIn the produt �!I � �!Iy , there are many repeated fators. One an infat replae �!Iy by a smaller fator. Indeed, suppose by onjugation thatk = 1 and write I = [a; b; : : :℄, Iy = [a+1; b�1; : : :℄, with a � b, and �ij for the6In terms of representations of the symmetri group, the proposition is equivalent tothe fat that Hom(SIy ; �J) = 0, where SIy denotes the representation indued by thetrivial representation of the Young subgroup SIy , and �J the representation indued bythe alternating representation of SJ .
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transposition of i; j. Then!I = (a; : : : ; 1; a + b; : : : ; a+ 1; a+ b + 1; : : :)!Iy = (a+ 1; : : : ; 1; a + b; : : : ; a+ 2; a+ b + 1; : : :) and�a+1���1 = �a:::1(1 + �1;a+1 + � � �+ �a;a+1)�a+1���1 = �a:::1(sa + 1a) � � � (s1 + 1)Thus the elements �!I�!+I and �!I (1 + �1;a+1 + � � � + �a;a+1) are equal, upto a non-zero fator, and (28) an be written�!I (1 + �1;a+1 + � � �+ �a;a+1)Hr!J = 0 ; (29)as stated by Young in QSA2, [43℄ p.95 (0 means here the zero-dimensionalspae).Similarly, multiplying on the left by �!Iy , and eliminating repeated fa-tors, one gets the nullity(s1 + 1) � � � (sa + 1a)�!I Hr!J = 0 (30)used by [JMKO, prop.A2℄.For example, if I = (3; 3; : : :), then Iy = (4; 2; : : :), and one has thenullities of �4321 65:::�321 654:::Hr!(J)as well as of �321 654::: (1 + �14 + �24 + �34)Hr!(J)and of (�1 + 1)(�2 + 12)(�3 + 13) ��321 654:::Hr!(J) :Using the involution � ! (�1)`(�) �, and the right/left symmetry, onegets from proposition 16 the following identities, whih an be identi�edwith the lift of Pl�uker relations to the group algebra of Sn (Young ?).Proposition 17 1) Let I and J be two onjugate ompositions, I = (a; b; : : :),with a � b. Then�!J �(J; I)r!I �1� �1;a+1 � � � � � �a;a+1� = 0 (31)�!J �(J; I)r!I (sa � 1a) � � � (s1 � 1) = 0 (32)43



2) Let u be a tabloid of shape a partition. Let A;B be two olumns of u,with B on the right of A, and b an element of B. ThenP (u)N(u) = P (u)  Xa2A �a;b! N(u) : (33)For example, take I = [3; 2℄ and J = [2; 1; 2℄.ACE> aa:=Compo2Young([2,1,2℄) &!* A[op(DeuxCompo2Perm([2,1,2℄,[3,2℄))℄&!* Compo2Young([3,2℄,N):ACE> aa &!* (1-A[4,2,3,1℄-A[1,4,3,2℄-A[1,2,4,3℄);0ACE> aa &!* (A[1,2,4,3℄-1/3) &!* (A[1,3,2℄-1/2) &!* (A[2,1℄-1);0To illustrate the seond part of the proposition, take the seond and thirdolumns of u = 63 5 71 2 4 , and b = 4.ACE> aa:=Word2YoungPN(w[6,3,5,7,1,2,4℄,P):ACE> bb:=Word2YoungPN(w[6,3,5,7,1,2,4℄,N):ACE> aa &!* (1 -A[1,4,3,2℄ -A[1,2,3,5,4℄) &!* bb;0From the �rst part of the proposition, one gets relations between produtsof minors of the Vandermonde matrix. Indeed, write �(i; j; : : :) =Q(xi�xj).Take now the monomial with exponent [0j1; 1j2; 2j3 : : :℄, supposing J to bea dereasing partition. It is preserved by eah permutation of SJ , thus theation of �!J is just multipliation by the order of SJ , one an ignore it.Now, the image of the image of the monomial under romegaI is a produt ofVandermonde determinants, that we shall write �([I℄), beause the image ofx012::k�1 under rk:::1 is �(1; : : : ; k). Therefore, equation (31) beomes�([I℄) �1� �1;a+1 � � � � � �a;a+1� = 0 : (34)For the pair J = [2; 2; 1℄, I = [3; 2℄, one gets x00112�1435 = 4x00112. Under�([221℄; [32℄), it beomes 4x01201, whih is sent by r32154 to 4�(123)�(45).Finally the relation is�(123)�(45)(1� �14 � �24 � �34) = �(123)�(45)��(423)�(15)��(143)�(25)��(124)�(35) = 0:Graphially, one represents eah Vandermonde by a olumn, and the pree-dent relation is now displayed ash 32 51 4 i� h 32 54 1 i� h 34 51 2 i� h 42 51 3 i = 0 :44



In fat, this relation, alled Pl�uker relation7, is valid for minors of anymatrix, and not only minors of the Vandermonde matrix.We shall see with more details in the next setion that Young's identitiesimply minor identities.

7Pl�uker relations are quadrati relations between minors of order n of an n�1matrix,obtained (before Pl�uker) in the 18th entury through eliminations in systems of linearequations. Writing [A℄ for the minor taken on olumns spei�ed by an ordered set A, and[A℄ [B℄ for the produt of two minors, hoosing some arbitrary b in B, Pl�uker states :[A℄ [B℄ = Xa2A �a;b�[A℄ [B℄� :Notie that we have also written[13℄ [24℄�s1 � 12� (s2 � 1) = 0whih is not a standard form of a Pl�uker relation.45



We are now ready to study the fundamental modules �!I �(I; J)r!J Hor, equivalently (by inversion of permutations, and the involution si ! �si),H�!I �(I; J)r!J .Let us desribe, as a �rst example, �2143s2r2143H. Let v1 = �2143s2r2143,v2 = �2143s2r2143s2. They have di�erent leading terms, and thus are lin-early independent. We know the images of v1 under multipliation by asimple transposition: v1s1 = v1s3 = v1, v1s2 = s2. However, omputingv2s1 = v1s2s1 = v1s1s2s1 is less evident. It is neessary to use Young'srelation (31) : �2143 s2r2143�1� �13 � �23� = 0;whih shows that v1�13 = v2s1 belongs to the linear span of v1; v2 a similaromputation giving also v2s3. Thus the module is a 2-dimensional represen-tation of S4.To desribe the general ase, reall that a standard Young tableau of shape� is a �lling of the boxes of the diagram of � with unrepetited onseutivenumbers 1; 2; : : :, in suh a way that olumns stritly derease, and rowsinrease. Let us write Tab(�) for the set of standard tableaux of olumnshape �.We shall identify for the moment a tableau with the permutation obtainedby reading its suessive olumns, from left to right.The �rst desription that Young [Y1℄ gave of a representation of thesymmetri group, is the following (slightly adapted to our onventions) :Theorem 18 Let I be an inreasing partition, J be the onjugate dereasingpartition.Then �!I �(I; J)r!J H is a representation of the symmetri group withbasisf�!I �(I; J)rt : t 2 Tab(J)g or f�!I �(I; J)r!J !J t : t 2 Tab(J)g :Proof. The elements �!I �(I; J)rt are linearly independent, beause theirleading terms !I�(I; J) t are di�erent. One passes from f�!I �(I; J)rtg tofet := �!I �(I; J)r!J !J tg by a triangular matrix, we shall rather show thatfetg span the module, i.e. that any e� := �!I �(I; J)r!J !J�, � 2 Sn, is alinear ombination of et.If one odes e� by the tabloid obtained from e!J by replaing in the �rsttableau !J , 1; 2; : : : by �1; �2; : : :, then one has to show that every tabloid uis a linear ombination of standard tableaux.Of ourse, one an ommute the entries in eah olumn separately, itjust introdues a sign. Thus one an suppose that tabloids have dereasingolumns. If u is not a tableau, then there is at least one violation, i.e. two46



adjaent entries a; b in the same row, with a > b. Starting with the violationa; b whih the furthest in the North-East, and interhanging b with all theelements of the preeding olumns thanks to relation (31), and repeatingthis proess, Young shows that one an straighten the tabloid into a sum oftableaux. The deliate point is that one reates in general new violationsby orreting one, and one has to make sure that the algorithm onvergesinstead of looping. We shall avoid totally this analysis by produing, asYoung did 30 years later, orthonormal bases. There is no more straighteningnow, but only evaluation of salar produts. We shall also, in the next setion,gives another desription of natural representations, where straightening isreplaed by evaluation of salar produts. QEDLet us hek the module �13254 �(122; 32)r32154H. There are 5 tableaux,and 5 tabloids, with dereasing olumns, whih are not tableaux. One has,modulo the spae generated by the �ve tableaux,43 52 1 = 43 52 1 := 43 52 1��12 + �13 + �14� = 43 51 2 + 41 52 3 + 13 52 4 � 0 ;writing the letter whih is to be exhanged inside a disk. Similarly, exhang-ing 4 and 5, 53 42 1 � 0. Now,54 23 1 � 54 21 3 ; 54 21 3 � 54 12 3 ; 54 12 3 � 54 13 2 :Combining these relations with the preeding ones, one gets that54 23 1 � 0 � 54 32 1 � 54 31 2 :Already on that small example, one sees that one has to ombine severalPl�uker relations to remove one violation. In order to do that Young wroterelations more eÆient than (31), whih involve summing on several lettersat a time8. We shall detail them later. In the present ase, one has32 51 4 � 42 51 3 + 43 51 2 + 52 41 3 � 53 41 2 + 54 31 2 = 0 ;and this gives in one step that the tabloid 54 31 2 belongs to the span of tableaux.
8they are alled Garnir relations [14℄. 47



'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooPolynomial representations of the symmetri group'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooAs a linear spae on whih ats Sn, the group algebra H = Q [Sn ℄ isisomorphi to the linear span of x� := xn�11 xn�22 � � �x0n, the orrespondeneexhanging � and (x�)�.If instead of �, one takes another weight � = [�1; �2; : : : ; �n℄, then the lin-ear span V� of the orbit of x� is of dimension n!=dim(Stab(�)) = n!=�1!�2! � � � ,instead of n!, denoting by Stab(�) the subgroup of Sn leaving � invariant,and writing � = 1�12�2 � � � .The H-spaes V� are alled permutation representations. We already metthese representations, as spaes �!I H. One an start from these representa-tions to build the irreduible ones, but this approah does not furnish expliitirreduible representation matries.We shall see that the images of some permutation modules modulo sym-metri funtions are irreduible modules, and that it is easy to write thematries representing the ation of the symmetri group on these quotientmodules.Let H be the quotient spae Q [x1 ; : : : ; xn℄=Sym+, of polynomials modulothe ideal Sym+ generated by polynomials without onstant term. Here, theuse of the letter H omes from the fat that this spae, also alled oinvariantspae of the symmetri group is isomorphi, as an Sn-spae, to the spae ofharmoni polynomials.As a vetor spae, H is of dimension n!. It is easy to see by indutionon n that it has a basis onsisting of monomials x�, � � � = [n�1; : : : ; 0℄(i.e. �1 � n�1; �2 � n�2; : : :), and that it is isomorphi to the regularrepresentation of Sn9.A better linear basis of H onsists of the Shubert polynomialsfX� = YJ ; � 2 Sn; J = ode(�)g ;that one index indi�erently with permutations, or with odes (some proper-ties are better seen, or some omputations are easier, on one indexing thanon the other, f. [℄).9But the ring of polynomials has a grading (=total degree in the xi's) and a produtthat has, a-priori, no natural ounterpart in Q[Sn ℄. Similarly, one does not see whatorresponds to the multipliation of permutations at the level of polynomials. We shallneed idempotents to see the orrespondene.48



Reall that every polynomial in x1; : : : ; xn is a linear ombination of Shu-bert polynomial indexed by permutations belonging to symmetri groups ofarbitrary order, Sm being identi�ed with its embedding Sm�S1 into Sm+1.The ideal Sym+ is the linear span of all Shubert polynomials indexed bypermutations whih annot be restrited to Sn. Therefore, one a polyno-mial is expressed into the Shubert basis, one gets a representative of it in Hby just annhilating all Shubert polynomials indexed by permutations whihmove at least one value > n.We shall need ongruenes 10 whih ome from deomposing X = fx1; : : : ; xnginto any pair of disjoint subsets X0 ; X00 .For any positive integer k and any subset X0 � X, let us note X0k :=fxk; x 2 X0g.Lemma 19 Let X = X0 [ X00 , and f(X0) be any symmetri funtions in X0.Then f(X0) � f(�X00) mod Sym+ (35)In partiular, for any positive integers k; r, writing 	J for the monomialsymmetri funtion of index the partition J, one has(�1)r	kr(X0) �XJ 	J(X00) ; (36)sum over all partitions of kr, with all parts multiple of k.Proof. Sine for any k, 	k(X0) = 	k(X) � 	k(X00) � 	k(�X00), the �rststatement is true for power sums, hene for any symmetri funtion. Inpartiular, (�1)r	1r(X0) � Sr(X00) =XJ 	J(X00) ;sum over all partitions of r. Sine a funtion remains symmetrial aftersubstitution of xi by xki , i = 1; : : : ; n, raising variables to power k produesthe seond statement from the preeding equation. QEDLet u = [u1; : : : ; u2Nn ; u � � be weakly dereasing. Then the monomial(alled dominant) xJ is equal to the Shubert polynomial Yu. Suppose thatmoreover u is suh that there exists i; r : i+ r � n� 1 suh thatui = n�i; ui+1 = ui+2 = � � � = ui+r = n�i�r :Then, from Monk's rule [℄, one easily obtains the following property :10reall that for any power sum 	k and any alphabet X, 	k(�X) := �	k(X). Thisde�nes the fundamental involution X ! �X of the ring Sym(X). In partiular, for anelementary symmetri funtion �k, one has �k(�X) = (�1)kSk(X).49



Lemma 20 For any polynomial f in r variables,f(xi+1; : : : ; xi+r)Yu � 0 mod Sym+(X), f(xi+1; : : : ; xi+r) � 0 mod Sym+(xi+1; : : : ; xi+r) : (37)In partiular, xni � 0, beause it is equal to Sn(xi) � �S1n(X � xi) = 0,the nullity oming from the fat that X 00 = X � xi has only n�1 letters.Similarly, Sn�1;n�1(X2) � 0, Sn�2;n�2;n�2(X3) � 0 &., where X2; X3; : : : aresubsets of X of order 2; 3; : : : respetively.Quadrati form Computations in the quotient ring are made easy by de�ninga quadrati form 11(f; g) = (fg; 1) = (1; fg) := X�2Sn(�1)`(�) (fg)� 1� ���x1=0=x2=��� ; (38)where � := Qi<j(xi � xj) is the Vandermonde. In other words, given twopolynomials f; g, one builds an alternating funtion from their produt. Itsquotient by � is a symmetri funtion, the onstant term of whih one �ndsby speializing all xi's to 0 (this amounts evaluating modulo the idealSym+).Expliitely, the salar produt of two monomials xu; xv is(xu; xv) = (xu+v; 1) = �(�1)`(�) if u+ v = [: : : 210℄�0 otherwise (39)In this set-up, to evaluate the quadrati form, one has to test whether thevetor u+v is a permutation of [n�1; : : : ; 1; 0℄ or not, and if so, keep the signof the permutation.Let us now ompare the modules r2143s2�2143H, x1100H, x2200H. Theirgenerator is invariant under s1; s3, and the ation of s2 produes an ele-ment whih is not proportional to it. But now x1100s2s3 = x1001 is nota ombination of x1100; x1010, though r2143s2�2143s2s1 is a ombination ofr2143s2�2143; r2143s2�2143s2. However,x2002+x2020+x2200 = x21(x22+x23+x24) = x21�(x21+x22+x23+x24)�x21� � �x41 � 0 ;11We ould have twisted this form, as we did forH, by taking the produt of f(x1; : : : ; xnwith g(xn; : : : ; x1). This is the onvention that we �rst hosed in the theory of Shubertpolynomials, to have them onstitute a self-adjoint basis.50



and similarly x0220 also belongs to the span of x2200; x2020. Therefore, thetwo modules r2143s2�2143H and x2200H are isomorphi. On the ontrary,x1100H is 5-dimensional, and not irreduible.Let us take a bigger example, with the 5-verties graph orresponding toshape [3; 2℄ that we already wrote many times. We write a opy of the graphstarting with the vertex [00033℄ :[00033℄[00303℄� ���[03003℄ [00330℄��� �[03030℄
32 51 442 51 3� ���43 51 2 52 41 3��� �53 41 2Both graphs have 5 verties, related by the same permutations to the topone. Notie however, that s1; s2; s4 at by �1 on the top tableau, and by 1on the top monomial. We have desribed the spae 32 51 4 H by writing howtabloids deompose in the basis of tableaux. To the tabloid 32 51 4 � we assoiatethe monomial x00033 �. Taking into aount signs, we have orrespondingequations0 = 43 52 1�1� �12 � �13 � �14�  ! x30003�1 + �12 + �13 + �14� = 0 ;but now, the equation on the right is easier to hek, beause it readsx30003 + x03003 + x00303 + x00033 � �x00003x00003 = �x00006 � 0 :More interesting, the more sophistiated relation expressing the tabloid 54 31 2orresponds tox03300 + x03030 + x03003 + x00330 + x00303 + x00033 � 0 ;but this is true beause the left-hand side is a symmetri funtion of x2; : : : ; x5.Therefore, aording to (??), it is ongruent to a symmetri funtion of x1of degree 6, and it must be null (already x51 � 0).Let us now evaluate the salars produts of the verties of the left graphwith verties [01201℄; [01021℄; [00121℄; [01012℄; [00112℄, obtained by readingfrom right to left the verties of the original graph for shape [3; 2℄.51



The quadrati form is expressed by the following matrix (0 are replaedby dots) : Q = " 1 � � � �� �1 � � �� � 1 � �� � � 1 ��1 � � � �1# :We know from (39) that we must obtain a matrix of 0;�1. That the diagonalhas no zero entry is lear, beause we started with a deomposition of � =[01234℄ into [00033℄ + [01201℄, and ated with the same transpositions onboth vetors. But what is remarkable is that the matrix is lower triangular.Now, we an obtain relations by just evaluating salar produts. For ex-ample, the expansion of x30003 is obtained from the matrix, and the evaluationof (x30003; x01201) = (x31204; 1), (x30003; x01021) = (x31024; 1), (x30003; x00121) =(x30124; 1), (x30003; x01012) = (x31015; 1) = 0, (x30003; x00112) = (x30115; 1) = 0.
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In the general ase, we proeed as follows.Given any two vetors u; v 2 Nn , let �uv� be the word in the biletters �uivi�.Given a partition � of n, reall that we have de�ned a word y� by �lling itsdiagram (paked in the North-East orner, parts of � being olumn lengths)with suessive integers, starting from 0 in the bottom boxes, and then,reading suessive olumns from left to right. Let u� = � � v� = [n�1 �v1; n�2� v2; : : : ; 0� vn℄.� = [422℄! 1 1 30 0 210y� = [10 10 3210℄ ! u� = [76543210℄�[10103210℄ 6 64 40 0 0 0u� = [66 44 000℄Let V� be the linear span of the orbit of xy� under Sn, and U� be the linearspan of the orbit of xu�.Lemma 21 Let � be a partition, u be any permutation of u�, v be any per-mutation of y�. Then(xu ; xv) 6= 0 i� �uv� � �u�v�� ommutatively :Proof. (xu ; xv) 6= 0 (and = �1) is equivalent to the fat that u + v is apermutation of �. But it is possible to get the omponents 0; 1; : : : ; �1�1only as 0 + 0; 0 + 1; : : : ; 0 + (�1�1). This determines �1 letters of the biword�uv�, and one proeeds by indution on the length of �. QEDTake now the graph �� with its �rst labelling (the plati lass of y�),and a opy of it, that we denote �|� , taking now u� as top vertex. Denote by| the involution exhanging the labellings of verties (so that u� = y|� ).Lemma 22 Let u be a vertex of �|� , v be a vertex of ��. Then (xu; xu|) =�1. If (xu; xv) 6= 0, then v is smaller than u| for the lexiographi order,and u is smaller than v| for the right-lexiographi order.Proof. First, u + u| is a permutation of �. This proves the �rst assertion.Seondly, from lemma 21, we have that in the ase of non nullity of �uv�, forany b, then the set of biletters �b�� in �uv� is the same as in �u�y��. But in this lastbiword, the bottom letters are : : : ; 2; 1; 0. Therefore, any permutation of thebiletters � � � �b2��b1��b0� will give a word in the bottom letters lexiographiallysmaller than ..................... QEDFor example, for .......................... but only v = ::::::::: are verties of ��.A more detailed analysis of the restrition of the quadrati form to U��V�is made in [3℄.Taking the lexiographi order on the verties of ��, and its image under| on the verties of �|� , one dedues from lemma 22 the following proposition.53



Proposition 23 Given a partition � of n, then the restrition of the anon-ial quadrati form of Q [x1 ; : : : ; xn℄=Sym+ to U�� V� is a triangular matrixQ�, with a diagonal entries in f1; �1g.
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooJuys elements and the enter of the group algebra of Sn'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooGiven a non-ommutative algebra, there are many ways to relate it tothe ommutative world. In this setion, we shall treat the related questionsof desribing the enter of the group algebra of Sn (i.e. the set of elementswhih ommutes with every permutation) and �nding a maximal ommuta-tive subalgebra.If g 2 Q [Sn ℄ ommutes with every permutation �, theng = � g ��1 = 1n! X�2Sn g = � g ��1 :Therefore, g is a linear ombination of onjugay lasses, and onversely, anyonjugay lass belongs to the enter Zn of Q [Sn ℄. As a result, one has :Lemma 24 Conjugay lasses are a linear basis of the enter Zn of Q [Sn ℄.The produt of two onjugay lasses is a sum of onjugay lasses.Desribing the multipliation onstants of Zn is not a straightforwardmatter, we shall see later how to do it with di�erential operators. Multipli-ation of lasses an be translated into an operation on symmetri funtion,whih is implemented into ACE :ACE> ProdCC:= pro(1,2) ## Enter 2 linear ombination of lassesTo( SfCCProd(1, 2))end:ACE> ProdCC( [3,2,1℄,[4,2℄);36 [4,1,1℄+ 48 [2,2,2℄+ 24 [2,1,1,1,1℄+ 24 [3,2,1℄+ 30 [6℄Let us now look at ommutative sub-algebras. We shall follow Juys[19℄, who desribed a Gelfand-Zetlin basis of the group algebra of suessivesymmetri groups. Reall that we embedded symmetri groups of suessiveordersS1 ,! S2 ' S2 �S1 ,! S3 ' S3 �S1 : : :Sn�1 ' Sn�1 �S1 ,! Sn ;by identi�ying a permutation of Sk�1 to the permutation of Sk obtained byadding to it a �xed point k.The Gelfand-Zetlin sub-algebra Jn � Hn, n = 1; 2; : : : is the algebragenerated by the suessive enters Z1; : : : ;Zn of H1; : : : ;Hn. It is lear55



that is ommutative. We shall see later that it is a maximal ommutativesub-algebra of Hn.Sine the sum of all transpositions belong to the enter, then Jn ontainsall elements Pi;j: i<j�k �ij, or equivalently the Juys elements12�n := X1�i<j<n �in(it is onvenient to put �1 = 0).One an now use the Juys elements to desribe the enter. We havealready said that it is linearly spanned by onjugay lasses. However, as analgebra, Farahat and Highman [8℄ have shown that the sumsPI:`(I)=n�k CI ,1 � k � n�1 generate it. Juys proved the more preise following property :Theorem 25 For eah k : 1 � k � n�1, the elementary symmetri fun-tion �k(�1; : : : ; �n) of degree k in the Juys elements is equal to the sumPI:`(I)=n�k CI of all onjugay lasses of length n�k (i.e. indexed by parti-tions of length n�k).For example, �1 = C21:::1�2 = C221:::1 + C31:::1�3 = C321:::1 + C41:::1� � � � � ��n�1 = CnProof. . By indution on n, one has essentially to desribe the e�et ofmultipliation of a onjugay lass ofSn�1 by a transposition �in. If � 2 Sn�1has a yle (a; : : : ; b; i;  : : :), then �in � will di�er from it just by the yle(a; : : : ; b; i; n;  : : :).On the other hand,�k(�1 + � � �+ �n) = �k(�1 + � � �+ �n�1) + �n�k�1(�1 + � � �+ �n�1) :The �rst term orresponds to adding a yle onstituted by n only, the se-ond, to the multipliation by the sum of all transpositions involving n. QEDGiven Juys' result , a natural question is : how to express the onjugaylasses, whih onstitute the natural linear basis of the enter, as symmetripolynomials in the �j's ?12the terminology Juys-Murphy, or Murphy element is also used, the last one beingpredominent, but ontrary to the historial order; our hoie is meant to reestablish amore balaned average of itations. 56



We shall give, in the next proposition, a linear basis of produts of ele-mentary symmetri funtions. For I a partition of n, and J := [j1; j2; : : : ; jk℄the onjugate partition, let�hIi := �j2 � � ��jk = �j2;:::;jn("produt" of the olumns of the diagram of I minus its �rst olumn).Proposition 26 The �hIi, jIj = n, onstitute a linear basis of Sym(�1; : : : ; �n),and the matrix of hange of basis is triangular by bloks (taking the naturalorder of partitions on the onjugay lasses CJ , and taking an order on the�hIi's, suh that the weight jIj is inreasing).For example, for n = 4; 5; 6, ACE omputes266666664
1111 211 22 31 4�h0i 1 : : : :�h1i : 1 : : :�h11i 6 : 2 3 :�h2i : : 1 1 :�h3i : : : : 1

377777775
26666666666664

11111 2111 221 311 32 41 5�h0i 1 : : : : : :�h1i : 1 : : : : :�h11i 1 : 2 3 : : :�h2i : : 1 1 : : :�h21i : 9 : : 4 6 :�h3i : : : : 1 1 :�h4i : : : : : : 1
3777777777777526666666666666666666664

111111 21111 2211 3111 222 321 411 33 42 51 6�h0i 1 : : : : : : : : : :�h1i : 1 : : : : : : : : :�h11i 15 : 2 3 : : : : : : :�h2i : : 1 1 : : : : : : :�h111i : 51 : : 6 9 16 : : : :�h21i : 14 : : 3 4 6 : : : :�h3i : : : : 1 1 1 : : : :�h22 85 : 28 37 : : : 11 12 20 :�h31i : : 13 12 : : : 6 7 10 :�h4i : : : : : : : 1 1 1 :�h5i : : : : : : : : : : 1

37777777777777777777775The inverse matries are
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2666664 1 : : : :: 1 : : :6 : �1 3 :�6 : 1 �2 :: : : : 1
3777775

266666666664
1 : : : : : :: 1 : : : : :10 : �1 3 : : :�10 : 1 �2 : : :: 9=2 : : �1=2 3 :: �9=2 : : 1=2 �2 :: : : : : : 1

377777777775266666666666666666664
1 : : : : : : : : : :: 1 : : : : : : : : :15 : �1 3 : : : : : : :�15 : 1 �2 : : : : : : :: �4 : : 2 �7 10 : : : :: 13 : : �3 10 �12 : : : :: �9 : : 1 �3 3 : : : :54 : �7 18 : : : 3=5 �8=5 4 :�67 : 9 �19 : : : �4=5 9=5 �2 :13 : �2 1 : : : 1=5 �1=5 �1 :: : : : : : : : : : 1

377777777777777777775
Commutation relationsIt is immediate to hek that the Juys elements satisfy the followingrelations �k+1 sk � sk �k = 1 & �k si = si �k ; jk � ij > 1 : (40)Suppose now that h 2 Hn is an eigenvetor for �1; : : : ; �n, with eigenvalues1; : : : ; n : h �i = h i ; 1 � i � n : (41)Then one an easily generate other eigenvetors :Lemma 27 Let h 2 Hn be a simultaneous eigenvetor for the Juys ele-ments, with di�erent eigenvalues 1; : : : ; n. Then, for any i : 1 � i < n,g := h (si+ 1i+1�i ) is also eigenvetor, with the same eigenvalues as h, exeptg �i = g i+1 & g �i+1 = g i :58



Proof. Beause of the ommutations (40), g is an eigenvetor for all �j, j 6=i; i+1, with same eigenvalues as f . On the other handh�si + 1i+1 � i� �i = h (xii+1 si + 1 + �i 1i+1 � i= h�i+1(si + 1i+1 � i ) + �i+1 + i+1 � i + ii+1 � i � = g i+1 ;and the produt g�i+1 is determined by the fat that �i+�i+1 ommutes withsi. QEDWe shall need more ommutation relations.Lemma 28 Let i; j; k three integers, 1 � i � k � j; let gi; gi+1; : : : ; gj belongto the algebra generated by the Juys elements. Thensigisi+1si+1 � � � sjgj �k = �k+1 sigisi+1gi+1 � � � sjgj� sigisi+1 � � � gk�1 ; gksk+1 � � � sjgj : (42)Proof. The element �k ommutes with all the fators of the right of si; now,si�i = �i+1si � 1 and �i+1 is free to reah the extreme left. QEDPNP and Juys elementsTo �nd orthogonal idempotents starting from natural representations,Young used the elements13 P (t)N(t)P (t), for tableaux with rows �lled ofonseutive integers, instead of taking P (t)N(t) or N(t)P (t).We are going to show that these elements have many remarkable proper-ties; they are, in partiular, two-sided eigenvetors with respet to the Juyselements.Reall Young's relations14 :N(t)P (t)�1 +Xa2A �a;b� = 0 ; (43)for any hoie of two rows of t, a varying over all the entries of a row, and bbelonging to a row of not bigger length.Given an integer k, then the Juys element �k is the sum of all trans-positions whih exhange k with elements of lower rows, plus transpositions13P (t)N(t)P (t) 6= 0, beause P (t)N(t)P (t)N(t) = n!=dim(�)P (t)N(t), when t is ofshape �.14no signs, beause we took N(t)P (t) instead of P (t)N(t); Young's relations involve twoonseutive parts of a omposition, or equivalently by onjugation, any pair of rows of atableau. 59



exhanging k with elements in the same row. For eah of the lower rows, onehas N(t)P (t) Pa �ak = �N(t)P (t), and eah transposition preserving therow where k lies is suh that N(t)P (t) �ak = N(t)P (t). Summing up, andusing left and right multipliation, one obtains the following proposition :Proposition 29 Let t be a tableau with rows �lled of onseutive integers(all it a bottom tableau). Then P (t)N(t)P (t) is a two-sided eigenvetor ofall the Juys elements, with�i P (t)N(t)P (t) = (i; t)P (t)N(t)P (t) = P (t)N(t)P (t) �i ; (44)where (i; t) is the ontent of the box of t ontaining i, i.e. the distane of ito the main diagonal.In partiular, all the Juys elements ommute with P (t)N(t)P (t).Yang-Baxter graphs and eigenvetorsGiven a partition �, we shall take again the Yang-Baxter graph ��, ver-ties being labelled by the ontent vetor. We shall still label eah edgev ! v si by the fator �si + 1�� 1p1� ��2 ;where � = vi � vi+1 (notie the hange of sign !).Let t� be the bottom tableau of shape �. For any other tableau t of thesame shape, de�ne �(t�; t) to be the produt of the edges of any path t� ! t,and e�(t�; t) to be its image under the antiautomorphism of H indued by� ! ��1. If �(t�; t) = �si + 1�� 1p1���2 � � ��sk + 1� 1p1��2 , then e�(t�; t) =�sk + 1� 1p1��2 � � � �si + 1�� 1p1���2 .Let et�t� be the idempotent proportional to P (t�)N(t�)P (t�). For anypair t; t0 of tableaux of shape �, de�neett0 = e�(t�; t) et�t� �(t�; t0) : (45)ThenTheorem 30 The n! elements ett0 , t; t0 standard tableaux of the same shape,are (non zero) two-sided eigenvetors of Juys elements, with eigenvalues�i et;t0 = (i; t) et;t0 & et;t0 �i = et;t0 (i; t0) : (46)They are a linear basis of H and multiply as matrix units, i.e.et;t0 et0;t00 = et;t00 & et;t0 eu;t00 = 0 if u 6= t0 (47)60



Proof. For two tableaux of shape �, the et;t0 are obtained by multiplying theet�t� with invertible fators, and therefore are non-zero. The ommutationrelations given by Lemma 27 show that�i et;t0 = (i; t) et;t0 & et;t0 �i = et;t0 (i; t0) ;beause it is true for et�t�. Notie that it implies that the Juys elementsommute with all the diagonal elements ett. Moreover, the ett are also idem-potents.Sine the \ontent vetors" are all di�erent, the et;t0 are linearly indepen-dent, and therefore, onstitute a linear basis of H.Sine P (t)N(t)HP (t0)N(t0) = f0g if t and t0 are not of the same shape,then et;t0 eu;u0 = 0 if t and u have not the same shape.Given any tableau of shape �, a produt et�t ett� = �e�(t�t)��1 ettett (�(t�t))�1is di�erent from 0. Multiplying it on the right and on the left by invertiblefators, it implies that any produt et0tett00 is non zero. But it is a left andright eigenvetor of the Juys elements, and therefore, proportional to et0t00 .Sine ett is an idempotent, e�(t�t) et�t��(t�t)e�(t�t)et�t� = e�(t�t)et�t��(t�t), andet�t��(t�t)e�(t�t)et�t� = �(t�t)et�t� . One onludes that the fator of propor-tionality is 1.In the ase of four tableaux t0; t; u; t00 of shape �, one writes the produtet0teuu0 as et0tetteuueut00 . If t 6= u, at least one �i has a di�erent eigenvalue onett and euu. But �i etteuu = ett �i euu, and therefore the produts etteuu andet0teuu0 are null.
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Yang PolynomialsGiven a partition �, letu := [(�2+ � � �+�n)�1 ; (�3+ � � �+�n)�2 ; (�4+ � � �+�n)�3 ; : : : ; 0�n℄ ;and let t� be the bottom tableau of shape �. The monomial xu is equal tothe Shubert polynomial Yu, and is invariant under the Young subgroup S�.In fat, from the theory of Shubert polynomials, one easily obtain thefollowing haraterization of Yu.Lemma 31 Let f be the lass of an homogenous polynomial of degree juj inthe quotient ring HH := C [x1 ; : : : ; xn℄=Sym+. If f is invariant under S� ,then it is proportional to the Shubert polynomial Yu.Denote by �! = �1!�2! � � � the order of S�. The element P (t�)N(t�)P (t�)is a quasi-idempotent :(P (t�)N(t�)P (t�))2 = n!�!dim(�) P (t�)N(t�)P (t�) :Let e� be the idempotent proportional to P (t�)N(t�)P (t�):e� = dim(�)n!�! P (t�)N(t�)P (t�) :Lemma 32 The lass of the monomial xu in HH is invariant under e�.Proof. Clearly PNPxu is invariant under the left multipliation by elementsof S�. Therefore e� xu is proportional to xu. But the two modules H xu andHP (t�)N(t�)P (t�) are isomorphi, and therefore the equalityP (t�)N(t�)P (t�)P (t�)N(t�)P (t�) =  P (t�)N(t�)P (t�)implies that P (t�)N(t�)P (t�) xu =  xu for the same onstant . QEDLet �� be the normalized Yang-Baxter graph for the partition �. Anyedge v ! v si is now labelled�si + 1�� �p�2 � 1 with � = jvi � vi+1j :Given any tableau t of shape �, let e�t and �t be respetively a path fromt to t�, and a path from t� to t (evaluated, as usual, as the produt of thelabels of its edges).De�ne, for any tableau t the Yang polynomial bt to bebt := e�t xu : (48)62



Theorem 33 Let � be a partition, and �! = �1!�2! � � � be the order of S�.Then for any pair of tableaux of shape �, one hasP (t�)�t0 bt � 0 ; t 6= t0 & 1�!P (t�)�t0 bt � xu : (49)Proof. P (t�)�t0 bt is proportional to xu, therefore, proportional toP (t�)N(t�)P (t�)�t0e�tP (t�)N(t�)P (t�)xu. The fat that the produt of thetwo idempotents e�t0 e� �t0 and e�t e� �t is 0 or e�t e� �t whether t 6= t0, or notimplies the theorem. QEDCorollary 34 Every polynomial in the spae H xu deomposes uniquely inHH as f � Xt2Tab(�)� 1�! xuP (t�)(�t f)� bt : (50)
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooYoung idempotents as limits of Yang-Baxter elements'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooWe have already seen that Young matries are a solution of Yang-Baxterequation, and that Young orthogonal idempotents involve produts of fatorsof the type sk + 1(t; k)� (t; k + 1)in whih the ontents (t; k) of standard tableaux appear (we have impliitelyused the fat that that no two onseutive ontents are equal).Another way to relate Young idempotents and Yang-Baxter elements isdue to Juys and has been developped by Cherednik.It onsists mostly in taking only one Yang-Baxter element, the elementindexed by !, and in speializing in it the vetor of spetral parameters toall the ontent vetors of standard tableaux. But, beause ontents are notall di�erent, the speialization is not straightforward and must be obtainedas a limit.Thus, let us �rst "polarize" the ontents by using extra variables �1; : : : ; �nand puting, for a letter k in row i of a tableau t+(k; t) := (k; t) + �i : (51)We an now use these modi�ed ontents as parameters in Yang-Baxterelements, sine they are all di�erent. Juys [19℄ gave an inpreise version ofthe following theorem15, but this was orreted by Cherednik [?℄.Theorem 35 (Juys-Cherednik) Let � be a partition of n, t be the bottomtableau of shape �. Then the limit ofY!(+(1; t); : : : ; +(n; t))when all the �i tend towards 0, exists and is equal, up to a non zero fator,to the Young element P (t)N(t)P (t)! :Nazarov has made a detailed analysis of why the above Yang-Baxter ele-ment has no pole (and extended his analysis to over the spin representationsof the symmetri group). Independently, [JMKO℄ haraterized the left and15he took di�erent �'s for eah box of a diagram, and let all �'s tend independentlytowards 0. The limit does not exist in general for unrelated �'s.64



right ideals generated by the limit of Y! and thus provided another proof ofTheorem ??.We prefer to show that one an avoid getting involved into sophistiatedstudies of limits, by just extending Yang-Baxter relations in suh a way asto over the limit ase.We �rst notie that the limit of(s1 � 1) (s2 + 1� ) �s1 + 1�� 1�for �! 0 exists and is equal to (s1� 1) (s2s1� s2� 1), and, by symmetry, isalso equal to (s2s1 � s1 � 1) (s2 � 1). Therefore, one has(s1 � 1) (s2s1 � s2 � 1) = (s2s1 � s1 � 1) (s2 � 1) : (52)Thus, fators of the type (s1 + 1)(s2s1 � s2 � 1) an be used instead ofthe troublesome (s1 + 1)(s2 + 1� ) �s1 + 1��1�.To be able to handle these speial fators in Yang-Baxter produts, weneed to replae ommutations of the following type (the numbers 1,2,3 standfor any triple of onseutive numbers, and � is a non-zero onstant) :�(s3 + 1�)(s2 + 1�� 1)(s1 + 1� )��(s3 + 1�� �� 1)(s2 + 1�� �)� =�(s2 + 1�� �� 1)(s1 + 1�� �)��(s3 + 1�� 1)(s2 + 1� )(s1 + 1�)� (53)by�(s3 + 1�)(s2s1 � s1 � 1)��(s3 + 1�� � 1)(s2 + 1��)� =�(s2 + 1�� � 1)(s1 + 1��)��(s3s2 � s2 � 1)(s1 + 1�)� (54)Yang-Baxter relations will be replaed by (52), (54) whenever speialfators are involved. We still an write enough Yang-Baxter type produtsto produe elements whih an be haraterized by some of their right andleft possible fators (in the group algebra)16.We are now ready to de�ne an element depending on parameters x1; : : : ; xnwhih an be speialized to the ontents of any standard tableau with n boxes.16Reall for example that the Yang-Baxter element Y!(x1; : : : ; xn) is, up to a salar, theonly element in Hn whih admits any si + 1=(xi+1 � xi) as a right or left fator.65



De�nition 36 Given a partition J of n, let w = (�n�1 � � ��1)(�n�1 � � ��2) � � � (�n�1)be the maximal17 redued deomposition of !n. Then the Young-Yang elementof index J, YJ , is obtained as follows.Write the Yang-Baxter produt orresponding to w, speialize the param-eters to the ontents of the diagram of J, but replae eah double fator ofthe type (s� 1)(s0� 1=0), with s and s0 onseutive simple transpositions, bya fator (ss0 � s� 1).This de�nition makes sense beause for the hoosen redued deomposi-tion, a fator ss0 � 1=0 has always as a left neighbour a fator s � 1. Onean in fat haraterize all the redued deompositions of ! having this prop-erty, and onsequently one is able to use all of them instead of taking only aanonial redued deomposition.However, we need only have enough deompositions to be able to hara-terize the Young-Yang element by its possible left and right fators si + 1=�of degree 1, and we shall not onsider all possible fatorizations of the Young-Yang element.Lemma 37 Let YJ be a Young-Yang element. Let [a + 1; : : : ; a+ k℄ be anyrow of the bottom tableau tJ of shape J. Then (sa+1 + 1); : : : ; (sa+k + 1) areleft fators of YJ in the group algebra. Moreover, if the row is not the topone, then (sa+k � 1k )(sa+k�1 � 1k � 1) � � � (sa+1 � 1)is a left fator of YJ .Proof. Suppose by indution that the lemma is true for the partition I ob-tained from J by dereasing by 1 its smallest part. Let YIy the image of YIunder the embedding Sn�1 7! S1 �Sn�1, n = jJ j. ThenYJ = (sn�1 + ?) � � � (s1 + ?)YIy ;where there are in the extra left fator, as many fators of the type (ss0�s�1)as there are entries other than n in the diagonal oupied by n in tJ . Morepreisely, apart from the ase of the top row, the subfator involving theindies a+ 1; : : : ; a+ k is of the type(sa+k+ 1b�k ) � � � (sa+b+2+ 1�2) (sa+b+1sa+b�sa+b�1) (sa+b�1+11) � � � (sa+1+ 1b�1) :We know by indution on n that (sa+2+1); : : : ; (sa+k+1) are left fatorsof YIy , and so is (sa+2 � 1k )(sa+3 � 1k�1) � � � (sa+k+1 � 11).17with respet to the lexiographi order66



But the extended Yang-Baxter equations allow us to ommute these fa-tors with (sa+k + 1=(b�k)) � � � (sa+1 + 1=(b�1)), produing just a derease byone of the indies of the simple transpositions s. QEDFor example, let J = [5; 6; 10℄. The tableau tJ and its ontents are17 � � � 2111 � � � 15 161 � � � 5 6 � � � 10 �2� � � 2�1� � � 3 40 � � � 4 5 � � � 9The Young-Yang element fatorizes into(s20 + 12� 1)(s19 + 12� 0)(s18 + 12� (�1))(s17 + 12� (�2))(s16 + 12� 4)(s15s14 � s14 � 1)(s13 + 12� 1)(s12 + 12� 0)(s11 + 12� (�1))(s10 + 12� 9) � � � (s5 + 12� 4)(s4s3 � s3 � 1)(s2 + 12� 1)(s1 + 12� 0)times Y4;6;10.We an now present an alternative to the result of Juys and Cherednik.Theorem 38 Let J be a partition, tJ be the bottom tableau of shape J. Thenthe Young-Yang element YJ is equal to P (tJ)N(tJ)P (tJ)!, up to a non-zerosalar.Proof. We shall hek that YJ satis�es the left and right vanishing propertieswhih haraterize P (tJ)N(tJ)P (tJ).Let i be an integer suh that �i 2 SJ . Then si + 1 is a left fator of YJand therefore (si � 1)YJ is null for all those i.Take now a row of tJ : aording to Lemma 37, one an fatorize on theleft y := (sa+k � 1k)(sa+k�1 � 1k�1) � � � (sa+1 � 1). But the produt (sa+1 +1)(sa+2+ 12 � � � (sa+k+ 1k) y redues to (sa+1+1)(1� 1k2 ) � � � (1� 122 )(sa+1� 1),and thus is is null : the two modules HYJ and HP (t)N(t) are isomorphi.The same reasoning applies to the fators that one an extrat from theright of YJ , up to the reversal of the parameters (1; tJ); : : : (n; tJ). Theseright and left vanishing properties show that YJ is equal, up to a fator, toP (tJ)N(tJ)P (tJ)!. The leading term of YJ is !, and thus the oeÆient of!! = 1 in P (t)N(t)P (t) determines the fator of proportionality. QEDWe have already seen that P (tJ)N(tJ)P (tJ) is equal to the produt ofP (tJ)N(tJ) by invertible fators s+1=,  =2 f0;�1g. Thus from YJ , one anget P (tJ)N(tJ). This orresponds to starting with a redued deomposition67



of another permutation than the maximal one, or extrating fators fromthe right of YJ . One ould as easily produe the idempotents orrespondingto other tableaux than the bottom one tJ . All these expressions are diretlyobtained from YJ and we shall not bother the reader with unneessary details.For example, when J = [2; 2℄, the ontent vetor is [0; 1; �1; 0℄, speializa-tion of [0; 1; �1; �℄. The Young-Yang element is(s3 + 1)�s2s1 � s1 � s1�(s3 � 12)(s2 � 1)(s3 + 1)whih is indeed the expression obtained from the maximal Yang-Baxter ele-ment (s3 + 11 + �)�(s2 + 1�� 1)(s1 + 1� )�(s3 � 1=2)(s2 � 1)(s3 + 1) :Using the omutations ? , it an also be written(s3 + 1)(s1 + 1)�s2s1 � s2 � s1�(s3 � 12)(s2 � 1)(s3 + 1) ;expression whih shows that P (t22) an be fatorized on its left (we have tomultiply it by the permutation ! = [4; 3; 2; 1℄ to be able to fatorize P (t22)on the right).On the other hand, the element PNP , for the tableau 3 41 2 , is equal to�2143s2r2143s2�2143 = 4 + � � �and therefore 4Y22 ! = P (t22)N(t22)P (t22) :

68



'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooGelfand-Zetlin bases, and Juys-Murphy onstrution'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooThe requirement to build reursively objets for suessive symmetrigroups Sn ompatible with the embeddings Sn ,! Sn+1 is a very strongondition, and determines these objets as soon as one �xes them for thease of S2.Let us �rst look at orthogonal idempotents.Taking all standard tableaux t, Young assoiated to them quasi-idempotentsP (t)N(t). These quasi-idempotents are not mutually orthogonal; for a pair oftableaux t; t0 of the same shape, one an have non-zero produts P (t)N(t)P (t0)N(t0).Young desribed ompliated branhing rules for these quasi-idempotents18 We desribe this onstrution of Young in the appendix.Moreover, Young gave an orthogonalisation proess, but unfortunatelyhis desription is ompliated, not really fully expliited and not anonialbeause he leaves the hoie of di�erent orderings of tableaux.Thrall [38℄ gave a simpler onstrution whih is learly ompatible withthe branhing proess.For a standard tableau t of n letters, let tnn denote the tableau obtainedby erasing the letter n.Following Thrall, de�ne elements ft, where t runs over all standard tableaux,reursively by : (t) ftnn(t)P (t)N(t) ftnn ; (55)putting e1 = 1 for the tableau with 1 box, (t) being a ertain spei� non-zero onstant that we shall make preise later.For any pair of tableaux t; t0 of the same shape, let nowftt0 = (t; t0) ft �(t; t0) ft0 & ftt = ft ; (56)where �(t; t0) is the permutation (t)�1t0 (onsidering standard tableaux aspermutations), and (t; t0) some spei� onstant.Theorem 39 (Thrall) The produts f(t)f(t0) are null if t 6= t0.For tableaux of the same shape u; t; t0; u0, then the produts eut et0u0 arenull if t 6= t0.There exist of hoie of the onstants �(t); �(t; t0) suh that f(t)2 = f(t),and fut ftu0 = fuu0, i.e. suh that the ftt0 are matrix units.18Of ourse, at the level of haraters only, the rule is very simple, reduing to addinga new box to a diagram, in all possible positions. But this does not give the relationsbetween the elements P (t)N(t) and P (t0)N(t0) when t0 is obtained by adding a letter to t.69



Proof. If t and t0 have not the same shape, then we have seen thatP (t)N(t)HP (t0)N(t0) = 0, and therefore ftft0 = 0. Supposing now t and t0to have the same shape, but be di�erent, then tnn is not equal to t0nn, andby indution on n one has ftnnft0nn = 0. This implies in turn that ftft0 = 0and fut ft0u0 = 0.To hek that the elements f(t) are non zero, and that there exist on-stants suh that they are idempotents, we shall show that they are non-zeromultiples of the elements ett seen in the preeding setion.Let �n = P1�i<j�n. We have seen Young quasi-idempotents P (t)N(t)and N(t)P (t), for any tableau t, are two-sided eigenvetors for this entralelement : �n P (t)N(t) = P (t)N(t) �n = (Xi (i; t))P (t)N(t) : (57)Notie that the sum of all ontents Pi (i; t) does not depend on t, but onlyon the shape � of t. Let us denote it (�).We shall now exploit one of the main feature of Gelfand-Zetlin bases. Inthe present ase, it will be that the property satis�ed by (�n; t), for t with nboxes, will be valid for any pair (�n; t).Proposition 40 The ftt0 are two-sided eigenvetors for the Juys elements.One has, for all i = 1; : : : ; n,�i ftt0 = (i; t) ftt0 ; ftt0 �i = ftt0 (i; t0) : (58)Proof. Supposing the theorem to be true for n � 1, then we know that ftt0is a two sided eigenvetor for �1; : : : ; �n�1, with eigenvalues the ontents of1; : : : ; n�1. But we know from (57) that ftt0 is also a two sided eigenvetorfor �n with eigenvalue (�), and it implies that it is a two-sided eigenvetorfor �n with the ontents of n in t and t0 as eigenvalues on the left and on theright respetively. QEDCorollary 41 Thrall elements ftt0 are non zero-multiple of the units ett0 de-�ned in ?Juys-Murphy onstrution of idempotentsThe haraterization of the elements ett as two-sided eigenvetors for allthe �i's naturally lead to another reursive de�nition of them, due to Juys,then Murphy. 70



Given a standard tableau u with n�1 boxes, let Sons(u) := fv : vnn = ugbe the set of all standard tableaux obtained by adding a letter n to u. Givensome t 2 Sons(u), we all the other v 2 Sons(u) the brothers of t and denotetheir set Broth(t).De�ne reursively elements gt indexed by standard tableaux by :gt := gtnn Yv2Broth(t) �n � (n; v)(n; t)� (n; v) : (59)Theorem 42 The gt are two-sided eigenvetors for the Juys-Murphy ele-ments and oinide with Young's orthogonal idempotents ett.Proof. Let �(x1; : : : ; xn) be any polynomial in n variables. Then, beause theeuv are eigenvetors of the Juys elements, one has for every pair of tableaux(u; v) with at least n boxes :gt(�1; : : : ; �n) euv = gt((1; u); : : : ; (n; u)) euv ;euv gt(�1; : : : ; �n) = euv gt((1; v); : : : ; (n; v)) ;i.e. the produt of euv by gt is obtained by replaing eah �i by the ontentof i in u or v.But, by onstrution gt((1; u); : : : ; (n; u)) vanish if the restrition of u ton boxes does not oinide with t. Sine feu;vg, where (u; v) runs over all pairsof standard tableaux of the same shape with n boxes is a linear basis of Hn,the gt oinide with the ett up to a salar fator. However, ett is invariant bymultipliation by any fator (�i�y)=((i; t)�y), for any y 6= (i; t). Thereforeettgt = gtett = ettand gt oinide with ett. QEDBoth Juys and Murphy kept in the expression of the gt in terms of Juyselements unneessary fators, de�ning elements f 0t by the following reursiong0t := f 0tnn �n � n(n; t)� n � � � \�n � (n; t0 � � � �n + n(n; t) + n ; (60)with the fator having 0 in denominator omitted.Of ourse, beause gt is an eigenvetor, multiplying it by extra fators(�i�y)=((i; t)�y) does not hange its value, as long as y 6= (i; t) and thereforeg0t = gt.Juys and Murphy's proof that the g0t are simultaneous eigenvetors, with-out assuming previous knowledge of the ett, mostly redues to heking thefollowing lemma : 71



Lemma 43 Let Pn(x) := (x� n) � � �x � � � (x+ n). Then for any i � n,Pn(�i) = 0 :Proof. By indution on n, one has Pn(�i) = 0, i < n. The entral elementPn(�1) + � � �+ Pn(�n) is thus equal to Pn(�n), and it is haraterized by thevalue of its restrition to a opy of eah irreduible representation. But wehave already seen that Young's relations give in eah representation elementswhih are eigenvetors of all �i's, with whih one an hek the extra nullityof Pn(�n). QEDJuys and Murphy expression of idempotents learly enodes the fat thatthey are eigenvetors, with eigenvalues the ontents. It also shows that theett0 are a Gelfand-Zetlin basis. However, it has disadvantages. Developingexpressions (59) or (60) in Hn is ostly, beause of the number of fators,and beause eah Juys element is a sum of transposition.On the other hand, with Yang-Baxter elements, we need only ompute,for eah shape �, the element P (t�)N(t�)P (t�) (whih is obtained by enu-meration of double osets, and not by produts in Hn), and then we obtainthe other idempotents by multipliation by fators of the type (si + 1=x)aording to the Yang-Baxter graph ��.
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooNotes'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooSpaes of Tableaux and Garnir relationsMany spaes that we obtained an be identi�ed with linear spans oftabloids of a given shape, the symmetri group ating by permutation ofthe entries of the tabloids.Tabloids are not linearly independent, and we want the relations that theysatisfy to be suh that tableaux be a linear basis. Young gave suh relations,using di�erent approahes depending on the type of representations he wasdesribing.The simplest relations have been desribed by Garnir [14℄, but in fat, arespeial ases of lassial relations between minors, and also of generalizationsof the Lagrange interpolation formula.Suppose for the moment that tabloids satisfy the following relations :1. They are invariant under permutations preserving rows.2. Given two onseutive rows of lengths p; q (p � q) of a tabloid t, letA be the entries of the �rst row, B [ C the entries of the seond row,with ard(A) + ard(C) = q + 1. ThenX�2S(A[C) � (t) = 0 : (61)Beause tabloids are invariant under permutations in rows, instead ofsumming on the group S(A[C), one needs only enumerate omplementarysubsets (written inreasingly) A0; C 0, replaing A by A0 and C by C 0 in t.For example, for p = 2; q = 3, A = fa1; a2g, A = f1; 2g, the sum onthe symmetri group S(a1; a2; 1; 2) is equal to 2! � 2! the sum on pairs ofomplementary subsets of ardinality 2.a1 a2b 1 2 + a1 1b a2 2 + a1 2b a21 1 + a2 1b a1 2 + a2 2b a1 1 + 1 2b a1 a2 = 0 :Let � be a partition, Tbl(�) the set of tabloids of shape �. Then thefollowing proposition shows that Garnir relations are suÆient to expressany tabloid in terms of tableaux. 73



Proposition 44 Let n be an integer. Let V be an Sn-module, linearlyspanned by tabloids invariant under permutations in rows, and satisfyingrelations (61). Then any tabloid is a linear ombination of tableaux of thesame shape.Proof. De�ne a violation ............. Taking an extremal violation (with respetto the order on the plane, that is there is no other violation in its North-Eastorner), then using Garnir relation ... QEDNotie that we have not forbidden tableaux to be linearly dependent.Usually, one �rst heks diretly their independene. The usual strategy forthe seond step is to prove that there is no non-zero morphism between spaesof tabloids of di�erent shapes, and to use some general results on representa-tions of �nite groups on C , to onlude that the above spaes are irreduiblerepresentations, and that every irreduible representation of the symmetrigroup is isomorphi to one of suh spaes. However, we prefered to explainhow Young onstruted expliit representations without any knowledge ofgroup theory.Let us review the di�erent interpretations of Garnir's relations, or ofsimilar relations, that we have enountered.Let us begin with the group algebra. We take an inreasing partition J ,and I a omposition (weakly) onjugate to J . Filling the diagram of J withonseutive numbers, from top to bottom, we isolate a pair of onseutiverows of lengths p; q, p � q,[: : : ; �; : : : ; �℄ ; [�+1; : : : ; ; : : :℄taking �;  in suh a way that  � � � q. Then, one has (??)r!I H�!0 �!J = 0 ; (62)where !0 = [1; : : : ; ��1; ; : : : ; �; +1; : : :℄ (and therefore, �!0 =P�2S(�;:::;)).Beause one an fator P�2S(�;:::;�) � �P�2S(�+1;:::;) � on the left of �!J ,the preeding relation an be redued tor!I HX� ��!J = 0 ; (63)where � runs over osets representatives ofS(�; : : : ; )=S(�; : : : ; �)�S(�+1; : : : ; ).For example, writing the letters whih ommute freely between themselvesin boldfae, one has the following relation (� = 5; � = 7;  = 12) :0 =X 1 2 34 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 21 22 $ r!44432221 H�1234 12:::5 15:::22�!3478 = 0 :74



Multiplying from the right the left hand side by any permutation �, onegets a relation involving permutations of letters in onseutive rows of anarbitrary tabloid of shape J .We also desribed representations in the quotient ring C [x1 ; : : : ; xn℄=Sym+,and needed Garnir relations in this set-up. To a partition J we assoiated amonomial xu, with u = [� � � (�1 + �2)�3 ; ��21 ; 0�1 ℄, � = dereasing reorderingof J , and we obtained xu�!0 � 0 ; (64)taking the same de�nition of !0 as in (62). Again, one an redue the summa-tion to osets representatives ofS(�; : : : ; �)�S(�+1; : : : ; )nS(�+1; : : : ; ),in whih ase the ation of �!0 an be interpreted as a summation on om-plementary subsets of �xed ardinality.There are other possible equivalent families of relations than (64). Onehas for example the following lemma.Lemma 45 Let � be a dereasing partition of n, � be the vetor � = [; 0; �1; �1+�2; �1 + �2 + �3; : : :℄, u = [��11 ; ��22 ; ��33 ; : : :℄. For any integer j < `(�), anyk : 1 � k � �j+1, let v be the vetor obtained from u by hanging the blok��j+1j+1 into �kj ��j+1�kj+1 . Thenxu � xv  �kj (x�j+1; : : : ; x�j+�j ) mod Sym(x1; : : : ; xn) : (65)For example, for � = [5; 4; 3; 3℄, and j = 2, k = 2, one has � = [0; 5; 9; 12℄,u = [0; 0; 0; 0; 0; 5; 5; 5; 5; 9; 9; 9; 12; 12; 12℄,v = [0; 0; 0; 0; 0; 5; 5; 5; 5; 5; 5; 9; 12; 12; 12℄. The relation isxu � xv 	44(x6; x7; x8; x9) mod Sym(x1; : : : ; x15) :In other words, one has inreased by 4 in all possible manners the exponentsin xv of two of the indeterminates x6; x7; x8; x9.Identify now a olumn A = [a1; : : : ; ak℄ with the Vandermonde �(A) =Qi<j(xai � xaj ), and a tabloid with the produt of its olumns. For the two-olumns tableau t = �... Æ... ...� ... ...1 �+1 the original Garnir relations, relative to Spehtrepresentations, areX�(�1)`(�)���(�; : : : ; 1)�(Æ; : : : ; �+1)� = 0 : (66)75



As before, the summation an be redued to osets representatives, and onestill has nullity when taking two arbitrary olumns (onseutive or not, butordered by length) in a tabloid. The other olumns introdue a onstantfator, and by onjugation, one passes from 1; : : : ; Æ to any set of Æ integers.For example, taking olumns 1 and 3, and summing on subsets of f2; 3; 7; 8g,one has the following nullity :3 6 92 5 8 111 4 7 10 � 7 6 92 5 8 111 4 3 10 + 8 6 92 5 7 111 4 3 10 + 7 6 93 5 8 111 4 2 10 � 8 6 93 5 7 111 4 2 10 + 8 6 97 5 3 111 4 2 10 = 0 :The above relations are implied by the following generalization of La-grange interpolation, given by Sylvester (?). For two alphabets A , B , writeR(A ; B ) for the resultant R(A ; B ) :=Qa2A ;b2B (a� b).Lemma 46 Let n; n0; n00 be three integers, n = n0+n00, and X be an alphabetof ardinality n. Let Sym(n0; n00) be the spae of polynomials symmetrial inthe �rst n0 indeterminates, and also symmetrial in the last n00 ones. Thenthe following morphism19 from Sym(n0; n00) to Sym(n)f !XX0[X00=X f(X0 ;X00)=R(X0 ;X00) (67)sends polynomials of degree < n0n00 to 0, and sends (x1 � � �xn0)n00 to 1.Amore general property is the following \exhange lemma" for resultants,that is useful in rational interpolation [?℄.Lemma 47 Let A ; B ; C be three alphabets of respetive ardinals n; n0; n00,n = n0 + n00. ThenXA=A 0[A 00 R(A 0 ; B )R(A 0 ; C )R(A 0 ; A 00) = R(B ; C )R(A ; C ) (68)XA=A 0[A 00 R(A 0 ; B )R(A 00)R(A 0 ; A 00) = R(B ; C ) ; (69)sum over all disjoint deompositions A = A 0 [ A 00 of A , with ard(A 0) = n0.The Vandermonde determinants in (66) are minors of the same Vander-monde matrix hxjiij�0;1�i�n, and the relation they satisfy results in fat from19This is the Gysin morphism, for the ohomology of a relative Grassmannian. It anin fat be rewritten as a summation on the full symmetri group Sn, in whih ase itbeomes evident [?℄ 76



quadrati relations on minors of order n of any n�1 matrix20 M , due, onemore, to Sylvester.Given a set of integers A of ardinality n, write [A℄ for the minor ofM taken on olumns spei�ed by A. Then one has the following relation,generalizing Pl�uker relations.Lemma 48 Let M be an n�1 matrix, �; � be integers suh that �+� = n.Then[1; : : : ; ��1; �; : : : ; n℄ [n+1; : : : ; �; �+1; : : : ; 2n℄X�2S(�;:::;�)(�1)`(�)� = 0 ;(70)where the permutations at on the indies of the pair of minors.As always, one an restrit to a summation on osets representatives, andtake sets of olumns whih are not 1; 2; 3; : : :. In other words, let A;B;C bethree sets of integers, with ard(B) � n + 1. Then, one has the followingquadrati relation : XB0[B00=B �[A;B0℄ [B00; C℄ = 0 ; (71)sum over all diret deompositions B = B0 [ B00, with ard(B0) = n �ard(A), ard(B00) = n�ard(C), the sign being the sign of the permutation(B0; B00)! B.There is in fat a diret onnetion between spaes of minors and Youngdeompositions of spaes of polynomials aording to their types of symme-try. It involves using Shur funtors21 and representations of the linear groupinstead of representations of the symmetri group. As a matter of fat, suha onnetion is provided by the Shur-Weyl duality, but Young was alreadyusing the ation of his idempotents on the tensor spae �nV 
n.Thus, let us take a vetor spae V , interpreting integers as vetors in V ,and the olumns of the matrix M as elements of the exterior power ^n(V).Now, a produt of two minors is an element of ^n(V)
^n(V), but Garnirrelations show that it belongs to the omponent S2n(V ), where S2n is theShur funtor of index the partition 2n. We shall refer to the book of Fulton[13℄ for an elementary introdution to representations of the linear group.20a matrix of order n �m an be onsidered as an in�nite matrix by adjoining to it an�1 null matrix.21I was using in my thesis Shur funtions with modules as arguments, instead of setsof variables, but Verdier made me use the term Shur funtor, whih remained.77
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