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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooPermutations'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooGiven a positive integer n, a permutation of order n is a bije
tion � fromf1; : : : ; ng to itself.We denote it by the list [�1=�(1); : : : ; �n=�(n)℄ of the su

essive imagesof 1; : : : ; n.More generally, one 
an use any totally ordered �nite set with n elements(one needs a total order, to be able to list images without spe
ifying sour
es).With these 
onventions, erasing letters in [�1; : : : ; �n℄ produ
es a permutationwithout having to shift the remaining entries to 1; 2; 3; : : :.A 
y
le is an orbit i; �(i); �(�(i)); : : : ; ��: : : �(�(i)) : : :�. The 
y
le de-
omposition of a permutation is the 
olle
tion of its di�erent orbits.A 
y
le 
an be thought as a 
olle
tion of numbers written on a 
ir-
le; 
onsidering the numbers to be beads, then a 
y
le is to be interpretedas a ne
kla
e. To write it one-dimensionally, one de
ides to begin by itssmallest element i, and this gives the sequen
e �i; �(i); �(�(i)); : : :�, withi = min(i; �(i); : : :). Therefore, given a bag with k di�erent beads, there are(k�1)! di�erent possible ne
kla
es that 
an be made from it.The permutation � = [7; 5; 2; 1; 10; 6; 4; 11; 8; 3; 9℄ has 
y
le de
omposi-tion : � = 2 ! 5" #3 ! 10 % 71 #- 4 % 118 #- 9 6It is easy to 
ompute powers of a permutation starting its 
y
le de
ompo-sition. One has just to understand what is the fate of ea
h individual 
y
le,independently of the others. For example, the pre
eding permutation hassquare : �2 = 2�! �10 3�! �5 % 41 #- 7 % 98 #- 11 6The 
y
le type of a permutation is the (de
reasing) list of the lengths ofits 
y
les. A permutation is a full 
y
le if it has only one 
y
le.
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Given a partition � = [�1; : : : ; �r℄, then one de�nes �� to be the followingdire
t produ
t of 
y
les :�� = (1; 2; : : : ; �1)(�1+1; : : : ; �1+�2) � � � (�1+ � � �+�n�1+1; : : : ; �1+ � � �+�n)= [2; : : : ; �1; 1; �1+2; : : : ; �1+�2; �1+1; : : :: : : ; �1+ � � �+�n�1+2; : : : ; �1+�r; �1+ � � �+�n�1+1℄All permutations having 
y
le type � are 
onjugate to �� and, 
onversely,a permutation 
onjugate to �� has 
y
le type � (the 
onjugates of a permu-tation � are all permutations of the type ����1)Indeed, if � = [3; 3; 1; 1℄ for example, given any permutation � of order 8,then ��3311��1 has 
y
le de
omposition(�1; �2; �3) (�4; �5; �6) (�7) (�8) :Conjugating amounts to 
hanging the values of the beads, not the 
y
lelengths!The 
onjuga
y 
lass of type � is the subset of permutations having � as
y
le type. To 
ount how many permutations it 
ontains, one 
an reason asfollows: �rst we have to put the beads in bags of size �1; : : : ; �r. There aren!=(�1! � � ��r!) possibilities. But there are bags of the same size that we mustnot distinguish. If � = 1m1 2m2 : : :, then to a

ount for equal sizes, one hasto divide by Q(mi!). But now, with i beads, one 
an make (i�1)! di�erentne
kla
es so that �nally the order of the 
onjuga
y 
lass isn!Q(i!)mi Q((i�1)!)miQmi! = n!Q imi mi! (1)We already have met the denominator, it is a s
alar produ
t of power sums :z� =Y imi mi! = (	� ; 	�) : (2)There is another graphi
al representation of a permutation, by braids,whi
h is used in knot theory and allows easy multipli
ation and inversion.One writes two horizontal 
opies of 1; 2; : : : ; n on top of ea
h other, and
onne
t ea
h pair i; �i by an edge. Multiplying permutations 
onsists insta
king them and erasing the intermediate levels.1
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PermutohedronThe simple transposition si is the permutation with only �xed points,ex
ept for a 
y
le (i; i+1). Starting with the identity permutation, and writingthe multipli
ation by si on the right as an edge of 
olour i if it produ
es anew permutation, one gets a dire
ted graph, the Permutohedron with verti
esall the permutations in Sn. This representation of a group from a set ofgenerators is due to Cayley. One 
ould have 
hosen multipli
ation from theleft, in whi
h 
ase one would have obtained the inverse Permutohedron, withlabels ex
hanged by inversion from those of the Permutohedron.Given a permutation �, any path from the origin to � is 
alled a redu
edde
omposition of �.Classifying all redu
ed de
ompositions of a permutation is an interestingproblem that we shall en
ounter in di�erent o

asions later. But already, one
an noti
e in the Permutohedron spe
ial subgraphs : lozenges and hexagons,whi
h a

ount for the braid relationssisi+1si = si+1sisi+1 (3)sisj = sjsi ji�jj 6= 1 (4)The graphi
al display of these relations is (taking the smallest symmetri
groups in whi
h they appear) :123s1�� � s2213 132s2 ���� 



 s1231 312s1 �� � s2321
1234s1 �� � s32134 1243s3 � �� s12143Braid relations allow to deform a path in the Permutohedron without
hanging its end points. Let us 
he
k that two arbitrary redu
ed de
ompo-sitions of a permutation are related by a sequen
e of braid relations.First, let us observe that(s1) (s2s1) (s3s2s1) � � � (sn�1 � � � s1) (5)is a redu
ed de
omposition of the maximal permutation ! := [n; : : : ; 1℄ (wehave added parentheses be
ause we want to distinguish some fa
tors).4



Re
all that a 
omposition is a ve
tor with integral non-negative 
ompo-nents.Lemma 1 Given a 
omposition I = [i1; : : : ; ir℄ 2 Nr , I � [1; 2; : : : ; n�1℄,then the word wI whi
h the produ
t of the left fa
tors of (s1) (s2s1) : : : ofrespe
tive lengths v1; v2; : : : is a redu
ed de
omposition of a permutation � (weshall see that it is lexi
ographi
ally minimal among all redu
ed de
ompositionsof �). The 
omposition I is 
alled the 
o
ode of �. Evaluating su
h wordsin Sn gives a bije
tion with Sn.Now, we shall show how to transform a redu
ed de
omposition into alexi
ographi
ally minimal one using a sequen
e of braid relations.Let w be a redu
ed de
omposition of � in Sn. If sn�1 does not o

ur inw, then � �xes n and we are done by indu
tion on n. In the 
ontrary 
ase,let us 
all 
olumn of length r the word sn�1 � � � sn�r.We shall iterate the operation of \
anonizing" a pair (
olumn , si), de�nedas follows:(sn�1 � � � sn�r ; si)! 8<: (si�1 ; sn�1 � � � sn�r) if i > n�r(; ; sn�1 � � � sn�r�1) if i = n�r�1(si�1 ; sn�1 � � � sn�r) if i < n�r�1The 
ase i = n�r 
annot o

ur, otherwise the de
omposition would not beredu
ed; the 
anonization use only braid relations.Graphi
ally, it says7654 6! 5 7654 ; 7654 3! 76543 ; 7654 1! 1 7654Take now the leftmost o

urren
e of sn�1 in w. Then w = w0 sn�1siw00,with sn�1 62 w0. Starting with the pair (sn�1; si), we iterate 
anonization,and this swallows all letters on the right of the 
olumn, in
reasing eventuallyit, and 
on
atenating letters to the left fa
tor w0. The pro
ess stops whenthere is no more letter on the right of the 
olumn, on a word of the typew000 sn�1 � � � sn�r, with sn�1 62 w000. Canonizing w000 and iterating, one gets aword whi
h is of the type w(v) for some ve
tor v � [1; : : : ; n�1℄.Ea
h operation gives a word whi
h is lexi
ographi
ally smaller than thepre
eding one (or identi
al), therefore w(v) is the smallest redu
ed de
om-position among all redu
ed de
ompositions of the same permutation.Canonize:=pro
(left,
olumn,i) lo
al k;k:=
olumn[nops(
olumn℄; 5



if i>k+1 then [[op(left),i-1℄,
olumn℄elif i=k then lprint(`NOT REDUCED`)elif i=k-1 then [left,[op(
olumn),i℄℄else [[op(left),i℄,
olumn℄fi;end:ItereCano:=pro
(rd) lo
al nn,i,j,left,res;nn:=max(op(rd));member(n,rd,'j');left:=[seq(rd[k℄,k=1..j-1)℄;res:=[left,[nn℄℄;for k from j+1 to nops(rd)-1 dores:=Canonize(op(res), rd[k℄)od;resend:ACE> ItereCano([4,3,4,2,3,4,1,2,3,4℄);[℄ [4℄ 3[℄ [4, 3℄ 4[3℄ [4, 3℄ 2[3℄ [4, 3, 2℄ 3[3, 2℄ [4, 3, 2℄ 4[3, 2, 3℄ [4, 3, 2℄ 1[3, 2, 3℄ [4, 3, 2, 1℄ 2[3, 2, 3, 1℄ [4, 3, 2, 1℄ 3[3, 2, 3, 1, 2℄ [4, 3, 2, 1℄ 4[[3, 2, 3, 1, 2, 3℄, [4, 3, 2, 1℄℄InversionsBe
ause braid relations preserve the lengths of de
ompositions, all re-du
ed de
ompositions of a permutation � have the same length, whi
h is
alled the length `(�) of �.In fa
t, `(�) is the number of inversions of �, i.e. the number of sub-wordsof type ba, withb > a, of [�1; : : : ; �n℄. When multiplying � by a transpositionsi su
h that `(�si) > `(�), then one in
reases the set of inversions by exa
tlyone inversion, namely [�i+1; �i℄.It is easy to 
hara
terize the set of pairs [b; a℄ whi
h are the set of in-versions of a permutation. Given a permutation � 2 Sn, one asso
iates to6



it a dire
ted graph with verti
es 1; : : : ; n, su
h that the underlying graph is
omplete, with an arrow from b to a if ba is an inversion, or from a to botherwise. The graph just represents the sets of subwords of length 2 of thepermutation. It is of 
ourse suÆ
ient to know the inversions.Lemma 2 A subset E of f[j; i℄ : n � j > i � 1g is the set of inversions of apermutation i� the asso
iated graph has no 
y
le.Proof. We shall show that the last (or �rst) 
omponent of the permutationis easy to 
hara
terize from the set of inversions. This will prove existen
eand uni
ity.There is at least a vertex of the 
omplete graph whi
h is a sink (no arrowes
apes from it) be
ause otherwise one would have in�nite paths (and this isimpossible, the graph is �nite and has no 
y
le). This sink is unique, be
ausethere is an edge between any two verti
es. Erasing this sink and the arrowsarriving to it, one 
an 
on
lude by indu
tion. We refer to the book of Berge[2℄ for more details. QEDFor example, the 
omplete graph for � = [3; 5; 6; 2; 1; 4℄ is :� ℄
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The set of inversions is 
losed by transitivity: if 
 > b > a and ba and
b are inversions, then 
a is also an inversion. Otherwise, one would have a
y
le on a; b; 
.Be
ause of this property, one does not need to write the 
omplete graph.One just writes an arrow for primitive inversions (not resulting by transitivityfrom other inversions). Let m be the maximal value of the end points of thisgraph. Then m = �n and one 
an iterate on n.7



ACE>Perm2ListInv(Perm2Inv([2,5,7,4,1,6,3℄));#inversions on pla
es for ACE![{1,2},{1,4},{1,5},{1,7},{3,4},{3,5},{3,6},{3,7},{4,5},{4,7},{6,7}℄The redu
ed graph 
orresponding to the above set of inversions, and itssu

essive images after suppression of the maximal end point, are7 ! 6& &5 ! 4 ! 3&2 ! 1 ; 7 ! 6&5 ! 4 &2 ! 1 ; 7 &5 ! 4 &2 ! 1 ; : : :from whi
h one sees that �7 = 3, then �6 = 6, �5 = 1; : : :.Rothe diagramA permutation � 
an be represented by a matrix M(�), whi
h des
ribesits a
tion on the ve
tor spa
e with basis 1; 2; : : : ; n. Expli
itly, M(�) hasentries 1 in positions [i; �i℄, and 0 elsewhere (taking the usual 
oordinates ofmatri
es, not the Cartesian plane).Rothe[33℄ found in 1800 a graphi
al display of the inversions of �, startingfromM(�) (though, of 
ourse, matri
es had still to wait 50 years to appear),whi
h leads to many 
ombinatorial properties of permutations.For ea
h pair of 1's in M(�) in relative position 0 ��� 1...1 write a box � atthe interse
tion of the up-most row and leftmost 
olumn 
ontaining theseentries, thus obtaining � ��� 1...1 .The planar set of su
h boxes is 
alled the Rothe diagram of �. The list ofthe number of boxes in the su

essive rows is 
alled the 
ode C(�) of �. Themorphism � ! C(�) is a bije
tion from Sn onto the set of integral ve
tors[
1; : : : ; 
n℄ � [0; 1; : : : ; n� 1℄.Indeed, given 
, then �1 = 
1 + 1, and [
2; : : : ; 
n℄ is the 
ode of a permu-tation [�2; : : : ; �n℄ of f1; : : : ; b�1; : : : ; ng.One 
an read a redu
ed de
omposition from the Rothe diagram: justnumber boxes in ea
h row by 
onse
utive numbers, starting from the numberi in row i. Now read rows from right to left, from top to bottom (interpretingi as si).The following lemma, easy to 
he
k, states that this word is a redu
edde
omposition. An equivalent des
ription of it is by taking right fa
tors, ofrespe
tive lengths spe
i�ed by the 
ode, in the following redu
ed de
ompo-sition of ! (di�erent from the one in eq.5):! = (sn�1 � � � s1) (sn�1 � � � s2) � � � (sn�1sn�2)(sn�1) (6)8



Lemma 3 Given a permutation � 2 Sn, let v = [v1; v2; : : : ; vn�1℄ be its 
ode.Then the 
on
atenation of the right fa
tors of (sn�1 � � � s1) � � � (sn�1)( ) ofrespe
tive lengths v1; v2; : : : 
oin
ides with the word obtained from the labellingof the Rothe diagram of �, and is a redu
ed de
omposition of �.For example, the 
ode [3; 1; 3; 2; 3; 0; 0; 0℄ of a permutation in S8 gives theredu
ed de
omposition(����321) (�����2) (��543) (��54) (765) (��) (�) ( ) :In the ACE output, boxes are numbered, ea
h 0 is repla
ed by a dot, andea
h 1 is repla
ed by a 
ross.ACE> Perm2Code([4, 2, 6, 5, 8, 1, 3, 7℄);[3, 1, 3, 2, 3, 0, 0, 0℄ACE> Perm2Rothe([4, 2, 6, 5, 8, 1, 3, 7℄);[1 2 3 x . . . .℄[2 x . . . . . .℄[3 . 4 . 5 x . .℄[4 . 5 . x . . .℄[5 . 6 . . . 7 x℄[x . . . . . . .℄[. . x . . . . .℄[. . . . . . x .℄ACE> Perm2Rd([4, 2, 6, 5, 8, 1, 3, 7℄);[3, 2, 1, 2, 5, 4, 3, 5, 4, 7, 6, 5℄To build the Rothe diagram, instead of taking pairs of 1's, one 
an usethe fa
t that there is no box right of a 1 in its row, and no box below a 1in the same 
olumn. The Rothe diagram o

upies the pla
es whi
h are noteliminated and whi
h do not 
ontain a 1.1 � � ��� � ��...�forbidden region � � � 1 � � � �� 1 � � � � � �� � � � � 1 � �� � � � 1 � � �� � � � � � � 11 � � � � � � �� � 1 � � � � �� � � � � � 1 �There is another natural labelling of the boxes of the Rothe diagram, bywriting in the box 
orresponding to an inversion (ji) a variable xji. We shall9



see in the next se
tion how to get this labelling by matrix multipli
ation.266666666664
x41 x42 x43 1 0 0 0 0x21 1 0 0 0 0 0 0x61 0 x63 0 x65 1 0 0x51 0 x53 0 1 0 0 0x81 0 x83 0 0 0 x87 11 0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 1 0

377777777775
Four diagramsIn the matrix representing a permutation, there are in fa
t four types of0's, depending on the relative positions of the 1's whi
h are in the same rowor same 
olumn: right or left, up or down. The 0's whi
h have been repla
edby the boxes of the Rothe diagram are one of the four types, let say the NWtype.Therefore, one has four Rothe diagrams, NW-Rothe, NE-Rothe,SW-Rothe,SE-Rothe, whi
h partition the spa
e o

upied by the 0's of the matrixM(�).0 ! 1 NW ! 1# gives #1 1 ; 1 1" gives "0 ! 1 SW ! 1 ;1 0 1 NE# gives #1 1 ; 1 1" gives "1 0 1 SE :Perm2fourRothe([4, 2, 6, 5, 8, 1, 3, 7℄);3 [a a a 1 b b b b℄1 [a 1 b d b b b b℄3 [a 
 a 
 a 1 b b℄2 [a 
 a 
 1 d b b℄3 [a 
 a 
 
 
 a 1℄0 [1 d b d d d b d℄0 [
 
 1 d d d b d℄0 [
 
 
 
 
 
 1 d℄0 1 0 3 2 3 0 3In ACE, boxes of are labelled a; b; 
; d instead of NW, NE, SW, SE.10



Counting the number of a's by rows, one gets [3; 1; 3; 2; 3; 0; 0; 0℄, that is,the 
ode; 
ounting the number of d's by 
olumns, one gets [0; 1; 0; 3; 2; 3; 0; 3℄,that is the 
o
ode.Rothe diagrams are related to the matrix of ranks of M(�); it is de�nedto be hr[i; j℄i1�i;j�n, r[i; j℄ being the rank of the sub-matrix of M(�) takenon rows 1; : : : ; i and 
olumns 1; : : : ; j.As shown in exer
ise ? they are easily obtained from the matrix givingthe partial row or 
olumn sums of M(�).Rothe diagrams by matrix multipli
ationThe simplest non trivial Rothe diagram is [ � 11 0 ℄. Instead of putting abox, one 
an use a parameter x, and 
onsider [ x 11 0 ℄, or more generally, for i:1 � i < n, repla
e the matrix representing M(si) by
Ti(x) :=

2666666666664
1 . . . 1 x 11 0 1 . . . 1

3777777777775Let r be an integer and I = [i1; : : : ; ir℄ 2 f1; : : : ; n�1gr, su
h thatsI := si1 � � � sir is a redu
ed de
omposition of a permutation �. De�neTI(x1; : : : ; xr) to be the produ
tTI(x) = TI(x1; : : : ; xr) = Ti1(x1) � � �Tir(xr) : (7)The matrix TI(x) depends on the 
hoi
e of the redu
ed de
omposition of�. When spe
ializing all xi's to 0, one re
overs M(��1). The 
ombinatorialproperties of the matrix TI(x) are studied in [20℄ (I have kept the 
onventionsof this paper: the two axes of 
oordinates have been ex
hanged; equivalently,one takes ��1 instead of �, or one reads redu
ed de
ompositions from rightot left). Let us just mention the simplest of them.Proposition 4 Given I 2 Nr su
h that sI is a redu
ed de
omposition of apermutation ��1, then the matrix TI(x) has entries di�erent from 0 and 1exa
tly in the positions o

upied by the boxes of the Rothe diagram of �. Ea
hpolynomial entry restri
ts in degree 1 to a single variable.11



Proof. The proposition is easy to 
he
k by indu
tion on the length of theredu
ed de
omposition. Indeed, start from a redu
ed de
omposition of �. LetM = TI(x) be the 
orresponding matrix, and let j be su
h that `(�sj) > `(�).MultiplyingM by Tj(x) amounts to repla
e the two 
olumns C; C 0 at positionsj; j+1 of M by x C+C 0; C. All the elements in the new �rst 
olumn are ofdegree > 1, ex
ept the term x 1. If one takes a parameter x = xji re
ordingthe inversion 
reated, then one sees that the matrix restri
ted to its terms ofdegrees 0 and 1 is the transpose of the Rothe diagram des
ribed at the endof last se
tion. QEDHere are two su

esive diagrams, for the multipli
ation by s2, whi
h mod-i�es 
olumn 2 and 
olumn 3 and 
reates the inversion 62 :266666666664
x41 x21 x61 x51 x81 1 � �x42 1 � � � � � �x43 � x63 x53 x83 � 1 �1 � � � � � � �� � x65 1 � � � �� � 1 � � � � �� � � � x87 � � 1� � � � 1 � � �

377777777775 ; 266666666664
x41 x21x62 + x61 x21 x51 x81 1 � �x42 x62 1 � � � � �x43 x63 � x53 x83 � 1 �1 � � � � � � �� x65 � 1 � � � �� 1 � � � � � �� � � � x87 � � 1� � � � 1 � � �

377777777775TT:=pro
(i,n,x)diag(1$(i-1),matrix([[x,1℄,[1,0℄℄),1$(n-i-1))end:# parameters = inversions ; input a redu
ed de
ompositionRd2Rothe_xx:=pro
(rd) lo
al i,j,k,n,mm,perm;n:=max(op(rd))+1;mm:=diag(1$n); perm:=[seq(i,i=1..n)℄;for i from 1 to nops(rd) doj:=perm[rd[i℄℄; k:=perm[rd[i℄+1℄;mm:=multiply(mm, TT(rd[i℄,n, 
at(x,10*k+j)));perm:=MultPerm(perm,SgTranspo(rd[i℄));od;eval(mm);end:Cosets and double 
osetsGiven a 
omposition I = [i1; : : : ; ir℄ of n, let SI = Si1 � � � � �Sir be theYoung subgroup it determines.Cosets Sn=SI are equivalen
e 
lasses of permutations modulo multipli-
ation by SI on the right. It 
an be interpreted as 
utting permutations12



(
onsidered as words) into blo
ks of su

essive lengths i1; : : : ; ir, and per-muting freely elements inside ea
h blo
k. One 
an also de
ide to write in-
reasingly the elements inside ea
h blo
k, obtaining a row (=row-tableau)that one usually represents in a box.Similarly, 
osets SInSn are obtained by 
utting the set of values intoblo
ks, and identifying elements inside a blo
k, for example, giving themnew names a; b; : : : (letters in a totally ordered alphabet).Double 
osets SInSn=SJ are equivalen
e 
lasses modulo the a
tion ofthe two Young subgroups, and 
an be represented by a sequen
e of rows oflengths j1; j2; : : : using in all i1 times the letter a, i2 times the letter b, &
.For example, double 
osets S323nS8=S44 are obtained by 
utting permu-tations into two blo
ks of lengths 4, and identifying 1; 2; 3 to a, 4; 5 to b,6; 7; 8 to 
.The double 
oset 
ontaining � = 63715824 
an thus be 
oded byaa

 
 abb
(we shall 
onsider it later as a skew Young tableau, dire
t produ
t of tworows, of shape 4
 4).One 
an also 
ode su
h a tableau by an integral matrix of size 3� 2, ea
hrow of the matrix being the degree (as a ve
tor) of the su

essive rows of thetableau: a b 
 row sumsaa

 = a2b0
2 2 0 2 4abb
 = a1b2
1 1 2 1 4
olumn sums 3 2 3The row sums of the matrix are the sizes of the su

essive lengths of therows (i.e. are J = 4; 4), the 
olumn sums are the 
ommutative evaluation ofthe word a2b0
2a1b2
1 � a3b2
3.More generally, double 
osets SInSn=SJ are in bije
tion with integralmatri
es: the (h; k) entry of the matrix 
ounts the number of o

uren
es ofletter xk in row h of the 
orresponding skew tableau of shape j1
 j2 � � � and
ommutative evaluation xI .In parti
ular, the number of double 
osets SInSn=SJ is equal to thenumber of integral matri
es with row sums I and 
olumn sums J . Thisnumber has many interpretation, we already seen that it is equal to thes
alar produ
t of two produ
ts of 
omplete symmetri
 fun
tions, (SI ; SJ).ACE> GenMat([4,4℄,[3,2,3℄);[3 1 0℄ [3 0 1℄ [2 2 0℄ [2 1 1℄ [2 0 2℄13



[0 1 3℄ [0 2 2℄ [1 0 3℄ [1 1 2℄ [1 2 1℄[1 2 1℄ [1 1 2℄ [1 0 3℄ [0 2 2℄ [0 1 3℄[2 0 2℄ [2 1 1℄ [2 2 0℄ [3 0 1℄ [3 1 0℄ACE> SfS
alar(h4^2,h3*h2*h3); 10One 
an require ea
h box to 
ontain only di�erent letters. In that 
ase,one writes it as a 
olumn (i.e. a stri
tly de
reasing sequen
e of letters). Adire
t produ
t of 
olumns of lengths j1; j2; : : : will be 
onsidered as a skewtableau of shape 1j1
1j2
� � � . Su
h tableaux are in bije
tive 
orresponden
ewith (0; 1)-matri
es with row-sums J and 
olumn-sums I.532 
 54321 
 52 
 532 $ 26640 1 1 0 11 1 1 1 10 1 0 0 10 1 1 0 13775(the �rst 
olumn is 532, whi
h are the positions o

upied by 1 in the �rstrow of the matrix).In our exemple, there is only one 0-1 matrix with row-sums [3; 5; 2; 3℄ and
olumn-sums [1; 4; 3; 1; 4℄ (we shall see that this is be
ause [5332℄ and [44311℄are 
onjugate partitions) :ACE> GenMat1([3,5,2,3℄,[1,4,3,1,4℄);[0 1 1 0 1℄[1 1 1 1 1℄[0 1 0 0 1℄[0 1 1 0 1℄ACE> GenMat([3,5,2,3℄,[1,4,3,1,4℄,'nb'); 2816ACE> SfS
alar(e3*e5*e2*e3, h1*h4*h3*h1*h4); 1The number of su
h matri
es is equal to a s
alar produ
t between a produ
tof elementary symmetri
 fun
tions and a produ
t of 
omplete fun
tions.The 
ase where there is only one su
h matrix is fundamental in the theoryof representations of the symmetri
 group.Let us say that two 
ompositions are weakly 
onjugate i� the two par-titions obtained by sorting them are 
onjugate (the word 
onjugate has amore restri
ted sense imposed by the theory of non-
ommutative symmetri
fun
tions). 14



Lemma 5 Let I and J be two weakly 
onjugate 
ompositions. Then there isonly one 0-1 matrix of row-sums I and 
olumn-sums J.Proof. Let r be the maximum of the 
omponents of J . Then one sees thatif jh = r, then all entries in the h-th row of the matrix must have a 1 inea
h position k su
h that ik 6= 0, and 0 otherwise. Suppressing these rowsand substra
ting r to ea
h non-zero 
omponent of I, one gets the lemma byindu
tion. QEDOne 
an also interpret the matrix as 
oding a diagram of boxes, writingin ea
h box its level (the diagram is obtained by transposing the 0-1 matrix,then repla
ing ea
h 1 by a box, ea
h 0 by a void) :5 5 5 543 3 32 2 2 21To the 0-1 matrix is also asso
iated a permutation that we shall note�(I; J) obtained by numbering the boxes from left to right and top to bottom,and reading 
olumnwise :2664 � 1 2 � 34 5 6 7 8� 9 � � 10� 11 12 � 133775 7! � = [4; 1; 5; 9; 11; 2; 6; 12; 3; 8; 10; 13℄ :
Subgroups asso
iated to a tabloidLet D be a diagram of n boxes in the plane. A tabloid of shape D is anynumbering of the boxes of D with the integers 1; 2; : : : ; n.Let P (t) be the sum of all permutations whi
h globally preserve the rowsof t. Then P (t) is 
onjugate to �!I , where I is any permutation of thenumber of boxes in the su

essive rows of D .For example, if t = 5 3 91 6 8 47 2and I = [4; 2; 3℄, !I = 4321 65 987 andP (t) = [1684 72 539℄ ��432165987 � [1684 72 539℄�1 :15



Given any 
omposition I whi
h is a permutation of the lengths of therows of a diagram D of n boxes, let DI be the obje
t obtained by numberingwith 1; 2; : : : ; n su

essively the boxes of D, from left to right in ea
h row,taking the rows in the order spe
i�ed by I (
hoosing any order between rowswith the same length).For example, for I = [4; 2; 3℄, the numbering of the pre
eding diagram isD423 = 7 8 91 2 3 45 6 :Let us note that the permutation 
onjugating P (t) is exa
tly the permu-tation obtained by reading the boxes of t in the order spe
i�ed by D423.Similarly, let N(t) be the alternating sum of all permutations whi
h pre-serve the 
olumns of t. Then N(t) is 
onjugate to r!(J), where J is anypermutation of the sequen
e of number of boxes in the su

essive 
olumns ofD. In the 
ase of the above tabloid, and J = [2; 2; 1; 1; 1; 2℄ thenN(t0) = [85 16 7 3 4 92℄ � r21 43 5 6 7 98 � [85 16 7 3 4 92℄�1 :Young took the 
ase where D is the diagram of a partition I. From whatwe have just seen, we know that for any tabloid t of shape I, the elementP (t)N(t) of the group algebra is equal to� ��!I � ��1 � � � r!J � ��1 ;where J is the partition 
onjugate to I and � and �, the two permutationsobtained by reading the boxes of t in a 
ertain order. Let us note thatthe permutation ��1� does not depend upon the tableau t, but only of thediagram, be
ause it is the permutation whi
h transforms the row-readinginto the 
olumn-reading.For example, if t = 5 32 64 7 1then � = [53 26 471℄, � = [524 367 1℄ and � ��1 = [135 246 7℄ and this permu-tation is the one obtained by reading 
olumnwise1 23 45 6 7 ! [135 246 7℄ :
16



'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooThe group algebra of the symmetri
 group'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooUp to now, we 
ould multiply permutations, but not add them. To re
overaddition, we shall work in the group algebra Q [Sn ℄ of the symmetri
 group,with rational 
oeÆ
ients.In other words, as a Q -ve
tor spa
e, Q [Sn ℄ is n!-dimensional, with a basis
onsisting of permutations. But moreover, two elements multiply a

ordingthe multipli
ation of permutations : X�2Sn 
� �!  X�2Sn d� �! =X� X� (
� d�) � � :Yang-Baxter elementsInstead of handling redu
ed de
ompositions, one 
an now take produ
tsof fa
tors of the type si + 
, with 
 2 Q . However our fundamental relations1s2s1 = s2s1s2 is not 
ompatible with a uniform shift :(1 + s1)(1 + s2)(1 + s1) = 2 + 2s1 + s2 + s1s2 + s2s1 + s1s2s16= (1 + s2)(1 + s1)(1 + s2) :Indeed 2s1 + s2 is not symmetri
al in s1; s2, and it implies that the elements(1 + s1)(1 + s2)(1 + s1) and (1 + s2)(1 + s1)(1 + s2) are di�erent. To re
overequality, one must use non 
onstant shifts. For example,(1 + s1)(12 + s2)(1 + s1) = (1 + s2)(12 + s1)(1 + s2) :The general rule to ensure equality is due to Yang and Baxter. Morepre
isely, we want an equality, with some 
onstants �; : : : ; 
0 :(s1 + 1�) (s2 + 1
 ) (s1 + 1� ) = (s2 + 1�0 ) (s2 + 1
0 ) (s1 + 1� 0 ) :We �nd that we must have � = � 0, � = �0 to ensure equality for the termsof length 2. Now, to re
over symmetry in the terms of length 1 :1
 � 1� + 1�� s1 + 1�� s2 ;17



one must have 
 = � + � :Of 
ourse, one 
an introdu
e parameters in the relation sisj = sjsi, ji�jj 6= 1,without breaking the 
ommutation: (si + 1�)(sj + 1� ) = (sj + 1� )(si + 1�).Finally, the braid relations have be
ome the Yang-Baxter relations(si + 1�) (si+1 + 1� + � ) (si + 1� ) = (si+1 + 1� ) (si + 1� + � ) (si+1 + 1�) (8)(si + 1�) (sj + 1� ) = (sj + 1� ) (si + 1�) ; ji� jj 6= 1 (9)Their graphi
al representation is easy to remember (taking i = 1) :[1 2 3℄s1 + 1� �� � s2 + 1�[2 1 3℄ [1 3 2℄s2 + 1�+� ���� 



 s1 + 1�+�[2 3 1℄ [3 1 2℄s1 + 1� �� � s2 + 1�[3 2 1℄
[1 2 3 4℄s1 + 1� �� � s3 + 1�[2 1 3 4℄ [1 2 4 3℄s3 + 1� � �� s1 + 1�[2 1 4 3℄Verti
al edges wear a parameter whi
h is the sum of the two on theopposite sides, other pairs of parallel edges have the same parameter.In short, forgetting about the labelling of verti
es, the index of the simpletranspositions si being spe
i�ed by the 
olor of edges, one needs only writethe parameters � used in the fa
tors si + 1=� (beware that usually we arewriting on edges the inverses of the parameters) :���� � �� ��+ � ���� 



� + �� �� �� � ��

���� � �� �� � �� �� (10)
The important 
onstraint is that the parameter on a verti
al edge is thesum of the parameters on the two opposite edges. Thus, instead of two18



parameters, one 
an take for S3 four independent parameters, keeping thetrivial 
ommutation relations for lozenges :���� � 
� �
 + Æ ���� 



�+ �� �� �� � Æ�
���� � Æ� �Æ � �� ��With M.P. S
h�utzenberger, we 
alled this relation Yin relation, and we solvedthe problem of labelling the edges of the permutohedron in su
h a way thatall sub-hexagons satisfy the Yin relation, and that all lozenges 
ommute [22℄.Sin
e braid relations 
onne
t any two redu
ed de
ompositions of the samepermutation, if we 
an label edges of a permutohedron with parameters insu
h a way as to satisfy relations (8,9), then all paths from the origin to agiven permutation will give the same element in Q [Sn ℄.To get a 
oherent 
hoi
e of parameters forSn, Yang [42℄ gave the followingre
epee, that we 
an interpret as enri
hing the permutohedron with a se
ondlabelling of verti
es, and of edges, a

ording to the following rule :� 
hoose an arbitrary system of \spe
tral parameters" [x1; : : : ; xn℄.� label ea
h vertex, say �, with [x�1 ; : : : ; x�n ℄� label the edge of 
olor si 
onne
ting � and � si with x�i+1 � x�iAn edge si with parameter � must be interpreted as a fa
tor (si+ 1�) anda path must be interpreted as the produ
t of its edges.In summary, given parameters [x1; : : : ; xn℄ all di�erent, then all paths inthe labelled permutohedron, starting from the origin to a permutation �,give in Q [Sn ℄ the same Yang-Baxter element that we shall denote Y� orY�(x1; : : : ; xn). We 
an formulate the pre
eding 
onstru
tion as follows :Proposition 6 For any 
hoi
e of spe
tral parameters [x1; : : : ; xn℄, all di�er-ent, there exists a Yang-Baxter basis whi
h is a linear basis of Q [x1 ; : : : ; xn℄(Sn),satisfying the following relations whi
h 
ara
terize it (together with normal-ization Y1 = 1) :Y� si = Y� �si + 1x�i+1 � x�i� when `(�si) > `(�) : (11)19



The permutohedron for S3 looks now like[x1 x2 x3℄s1 + 1x2�x1 �� � s2 + 1x3�x2[x2 x1 x3℄ [x1 x3 x2℄s2 + 1x3�x1 ���� 



 s1 + 1x3�x1[x2 x3 x1℄ [x3 x1 x2℄s1 + 1x3�x2 �� � s2 + 1x2�x1[x3 x2 x1℄
(12)

Quadrati
 formOne usually de�nes quadrati
 forms by taking 
onstant terms (in the 
aseof Q [Sn ℄, taking the 
oeÆ
ient of the identity permutation). We shall usehere another 
onvention.Denote by g ! eg the linear morphism on Q [Sn ℄ indu
ed by � ! ��1; � 2Sn, and by g \ ! the 
oeÆ
ient of ! in g. For any f; g 2 Q[Sn℄, let�f ; g� := f eg \ ! : (13)The linear basis of permutations is self-adjoint with respe
t to this form :�� ; !�� = 1 & �� ; �� = 0; � 6= !� : (14)The next proposition, due to [24℄, shows that the Yang-Baxter basis is also
ompatible with the quadrati
 form. Let Y� be a Yang-Baxter basis for theparameters [x1; : : : ; xn℄, and bY� be the Yang-Baxter basis for the reversedparameters [xn; : : : ; x1℄.Proposition 7 The Yang-Baxter basis fY�g is adjoint to the Yang-Baxterbasis f bY!�g, i.e. one has�Y� ; bY!�� = 1 & �Y� ; bY�� = 0; � 6= !� : (15)Proof. The proposition is true for bY1, be
ause only Y! has a term in !.Suppose it is true for bY�. We shall prove it for bY�si, `(�si) > `(�). Indeed,bY�si = bY�(si + �) for some �. ThereforeY� (si + �)fbY� = ��Y� + 
Y�si�fbY� ;20



for some 
onstants �; 
. Therefore, one has just to 
onsider the 
ases where� = !� or �si = !�, and this is where one sees that one had to take reversedparameters for the se
ond Yang-Baxter basis. QEDFor example, let us 
he
k that (Y231 ; bY321) = 0, taking the parameters[0; �; 
 = �+ �℄. Then there exists some 
onstants Æ; � su
h thatY231 bY321 = (s1 + 1�) (s2 + 1
 ) (s2 � 1� )| {z }Æ(s2� 1� )+� (s1 � 1
 )(s2 � 1�) :The fa
tor of � 
annot 
ontain !, and we 
an eliminate it. The triple (s1 +1�)(s2� 1� )(s1� 1
 ) 
an be transformed into (s2� 1
 )(s1� 1� )(s2+ 1�), but sin
e(s2 + 1�)(s2 � 1�) is a s
alar, the remaining expression 
annot either 
ontain!.Spe
ial Yang-Baxter elementsMany interesting elements of the group algebra of Sn 
an be written interms of Yang-Baxter elements, for di�erent 
hoi
es of parameters.We shall spe
ially use the two 
ases where [x1; : : : ; xn℄ = [1; : : : ; n℄ or[x1; : : : ; xn℄ = [n; : : : ; 1℄, denoting�� := Y�(1; : : : ; n) & r� := Y�(n; : : : ; 1) ; � 2 Sn :Let us noti
e that proposition 7 implies :Lemma 8 f��g and fr!�g are two adjoint bases.The elements �� and r� allow to write idempotents in the group algebra.Let us 
he
k for example that the sum of all permutations of Sn is equal to�! = Y!(1; : : : ; n), with ! = maximal permutation = [n; : : : ; 1℄.Be
ause we 
an start a path from the identity to ! by any simple transpo-sition si, then �! is su
h that it has at least one expression with a left fa
tor(si+1). The two 
anoni
al redu
ed de
ompositions that we have en
ounteredextends to two expressions of �!, whi
h are :�! = �(s1 + 11)��(s2 + 12)(s1 + 11)� � � ��(sn�1 + 1n� 1) � � � (s1 + 1)�= �(sn�1 + 11) � � � (s1 + 1n� 1)� � � ��(sn�1 + 11)(sn�2 + 12)��(sn�1 + 11)�Suppose that we have noti
ed that�321 =X�2S3 �21



We want to prove that the similar property holds for�4321 = �321(s3 + 13)(s2 + 12)(s1 + 1) :We use the fa
t that �P�2S3 �� � = P�2S3 � if � 2 S3. In other words,when multiplyingP�2Sn � by an expression involving only permutations inSn, one 
an repla
e in this expression ea
h permutation by 1.Therefore�321 13 (s2 + 12)(s1 + 1) = �321 13 (1 + 12)(1 + 1) = �321 :Similarly �321 s3 12 (s1 + 1) = �321 s3 12(1 + 1) = �321 s3Finally�321(s3 + 13)(s2 + 12)(s1 + 1) = �321(1 + s3 + s3s2 + s3s2s1) :The right hand side is indeed equal to the sum of all permutations of S4,be
ause it des
ribes how they are obtained from permutations of S3 by in-serting 4 in all possible manners.To pass from a general Sn to Sn+1, one needs to write the expansionwith some 
are. One de
omposes the produ
t (sn + 1=n) � � � (s1 + 1) into asums of termssn � � � sk+1 1k (sk�1 + 1k�1) � � � (s1 + 1) ; 0 � k � n ;
orresponding to the �rst time that in the su

esive fa
tors si + 1=k, one
hooses to take the s
alar instead of the simple transposition.The term right of 1k 
ommutes with the left part, and behaves like thes
alar (1 + 1k�1)(1 + 1k�2) � � � (1 + 1) = 1 when multiplied on the left byP�2Sn �. Therefore one �nds that�n+1 n:::1 = �n:::1�sn � � � s1 + sn � � � s2 + � � �+ sn + 1� ;and, as for n = 3, this proves that �n+1 n:::1 is the sum of all permutationsin Sn+1. Using the involution si ! �si, we also get that r! is equal to thealternating sum of all permutations :�! =X�2Sn � & r! =X�2Sn(�1)`(�!)� : (16)22



We shall use later that �! and r! are the two 1-dimensional quasi-idempotents of Sn, and are 
hara
terized, up to a s
alar, by�! si = �! = si�! & r! si = �r! = sir! ; 8i : 1 � i < nUsing this 
hara
terization would have saved us from the above 
omputa-tions, we performed them only to illustrate the te
hniques one should needto use for a general Yang-Baxter element ��.Let us see another more powerful approa
h, whi
h would also apply whendire
t expansions in the group algebra are not feasible. It 
onsists in iden-tifying ea
h element of Q [Sn ℄ to an operator on polynomials; two elements
oin
ide i� they have the same a
tion on polynomials. If we were testing thea
tion on the polynomials x1; x2; : : : ; xn, then we have just said that thereis no essential di�eren
e between a permutation � and the list [x�1 ; : : : ; x�n ℄.However, we shall use the fa
t that the ring of polynomials Q [x1 ; : : : ; xn℄is a module over the ring Sym(n) of symmetri
 polynomials. It is in fa
ta free module with basis the S
hubert polynomials X�; � 2 Sn. In otherwords, any polynomial is a linear 
ombination of S
hubert polynomials with
oeÆ
ients in Sym(n) (whi
h 
ommute with the a
tion of the symmetri
group).The only property that we shall need from these polynomials is that theyall are symmetri
al in at least one pair xi; xi+1, ex
ept for the maximal oneX! = x� := xn�11 xn�22 � � �x0n.Let us prove again thatr! = Y!(n; : : : ; 1) = X�2Sn(�1)`(!�) � ; (17)interpreting both sides as operators on polynomials.Both sides annihilate polynomials whi
h have at least one symmetry ina pair xi; xi+1 (be
ause (si � 1) annihilates su
h polynomials). Thus bothsides annihilate all the S
hubert polynomial, ex
ept the last one X! . Nowinstead of testing the a
tion on X! , one 
an take the Vandermonde � :=Qi<j(xi� xj). Ea
h simple transposition a
ts by multipli
ation by �1 on �,and therefore, Y!(n; : : : ; 1) a
ts by multipli
ation by the s
alar(�1� 11)(�1� 12)(�1� 11) � � � (�1� 1n) � � � (�1� 11) = �n! :Similarly, ea
h permutation � a
ts on the Vandermonde by (�1)`(�), andtheir alternating sum a
ts by �n!. Therefore, the two operators r! andP�� are equal. QED23



We shall justify in more details the pre
eding arguments, when des
ribingthe quotient of the ring Q [x1 ; : : : ; xn℄ by the ideal generated by symmetri
polynomials without 
onstant term. This quotient is isomorphi
, as a repre-sentation of Sn, to Q [Sn ℄. Therefore identities in the group algebra 
an bemoved to identities involving only polynomials.We shall need the Yang-Baxter elements Y�(1; : : : ; n) to 
ompute 
har-a
ters. In parti
ular, we shall need the Yang-Baxter \
y
les" of order k,2 � k � n, whi
h are� [k℄ := �23:::k1 = (s1 + 11)(s2 + 12) � � � (sk�1 + 1k�1) 1k (18)Permutation modulesFrom now on, let us write H for the group algebra Q [Sn ℄ (many state-ments 
an be generalized to the He
ke algebra, whi
h is a deformation ofQ [Sn ℄, this explains the use of H !).The elements �! and r! are su
h that �!H and r!H are two 1-dimensional modules1, 
alled the trivial representation and the alternatingrepresentation respe
tively.One 
annot get mu
h information from a 1-dimensional spa
e, but 
on-sidering the 
orresponding elements for Young sub-groups will be enough togenerate all representations.Let I = [i1; : : : ; ir℄ be a 
omposition of n, SI = Si1 � � � ��Sir ,! Sn bethe asso
iated Young sub-group, and !I its maximal element.From (16) one knows that�!I =X�2SI � & r!I =X�2SI (�1)`(�!I )� : (19)Proposition 9 Given a 
omposition I, the modules2 �!I H and r!I H havebasis f��; � 2 [!I ; !℄g and fr�; � 2 [!I ; !℄g respe
tively, where � runs overall permutations in the interval [!I ; !℄ of the permutohedron.The permutations in [!I ; !℄ are exa
tly those permutations whi
h have theinversions of !I, in other words, whi
h are shu�es of[i1 : : : 1℄; [(i2+i1) : : : (i1+1)℄; : : : ; [(i1+ � � �+ir) : : : (i1+ � � �+ir�1+1)℄ :The spa
e �!I H is isomorphi
 to the permutation representation of Snon words with 
ommutative evaluation xI .1We already used that �!� = �! and r!� = (�1)`(�)r! for any � 2 Sn.2
alled indu
ed from the trivial representation or alternating representation of SI24



Proof. The linear span of f��; � 2 [!I ; !℄g and f�!I !I�; � 2 [!I ; !℄g is thesame. Two permutations �; � in the same 
oset SI � are su
h that �!I � =�!I �. Conversely, the elements f��; � 2 [!I ; !℄g are linearly independent,having term of highest length �. This gives a basis of �!I H, and by theinvolution si ! �si, a basis of r!I H.Che
king the last statement is just a matter of rewriting the interval ofthe permutohedron, repla
ing 1; : : : ; i1 by a, i1+1; : : : ; i1+i2 by b, &
. Forexample, one has for I = [2; 2℄[2143℄


s2[2413℄s1� ���s3[4213℄ [2431℄s3��� �s1[4231℄


s2[4321℄
aabb


s2ababs1� ���s3baab abbas3��� �s1baba


s2bbaaThe two graphs 
an be interpreted as furnishing a basis: �!I�, and a basis ofwords of two modules, with the same a
tion of the symmetri
 group, be
ausethe right graph is obtained from the left one by making verti
es operate on the
ommutative monomial xaabb ( more simply, one 
an take x0011; we need onlytwo di�erent exponents. It is equivalent to use monomials in 
ommutativevariables x1; x2; : : :, or words in non-
ommutative letters a; b; : : :, or 0; 1; : : :,whi
h are interpreted as the exponents of the monomials, and of 
ourse,
anot be written in any order if one does not write the variables at the sametime). To be 
omplete, one should write on the graph loops at ea
h vertex,
orresponding to the simple transpositions whi
h preserve the vertex. QEDNoti
e that the stabilizer of a vertex is more evident on the right graphthan the left one. For example, xbaab = xb1xa2xa3xb4, or equivalently, x1001 arestable under s2, but 
he
king that [4213℄ = �2143s2s1 is invariant requireswriting �2143s2s1 s2 = �2143s1 s2s1 = �2143s2s1 :From the des
ription in terms of words, it is 
lear that the spa
es �!I Hand r!I H have dimension the multinomial 
oeÆ
ient � ni1;:::;ir�.Frobenius 
hara
teristi
 map 25



There are many ways to relate the group algebra Q [Sn ℄ to the ring ofsymmetri
 polynomialsSym. Let us follow the approa
h of Frobenius, whi
hgave birth to the theory of 
hara
ters.The Frobenius 
hara
teristi
 map is the linear morphism 
h : Q [Sn ℄ !Sym whi
h sends ea
h permutation � of 
y
le type � = 1�12�2 : : : to theprodu
t of power sums 	� := 	a11 	a22 � � � .Therefore, a 
onjuga
y 
lass of type � is sent to n!z� 	�, be
ause n!z� is theorder of the 
lass, with z� := 1�1�1!2�2�2! : : :.Frobenius' 
hara
teristi
 is not 
ompatible with produ
ts of permutations,ex
ept for dire
t produ
ts : if � belongs to a Young sub-group : � = �1 �� � � � �k 2 Si1�����ik , then
h(�) = 
h(�1) � � �
h(�k) :It is also 
ompatible with 
y
li
 permutations :
h(�� � � �� �) = 
h(� �� � � ��) ;be
ause the two elements that we have written are 
onjugate.Sin
e S
hur fun
tions are the fundamental basis of Sym, it is importantto �nd in the group algebra elements whi
h are sent to S
hur fun
tions underFrobenius' 
hara
teristi
. We shall see later that Young idempotents possessthis property. But already, we 
an �nd su
h elements. Let us �rst 
omputethe image of a Yang-Baxter 
y
le.Lemma 10 The image of the Yang-Baxter 
y
le � [n℄ under 
h is the 
om-plete fun
tion Sn.Proof. We have already seen that � [n℄ de
omposes into the sum of terms ofthe following type (i = 0; : : : ; n�1) :(s1 + 11)(s2 + 12) � � � (si�1 + 1i�1) 1i si+1 � � � sk�1 1kwhi
h are dire
t produ
ts of a Yang-Baxter 
y
le by a 
y
le. Supposing thelemma true for Yang-Baxter 
y
les of order less than n, one has
h(� [n℄) = n�1Xi=0 Si	n�i 1n :But this is the Newton-Brios
hi re
ursion between 
omplete fun
tions andpower sums, and therefore 
h(� [n℄) = Sn. QED26



Given any 
omposition I = [i1; : : : ; ir℄, de�ne�I := � [i1℄ � � � � � � [ir℄ :For example, � [3;2;4℄ := � [3℄ � � [2℄ � � [4℄ 2 S(3)�S(2)�S(4)is equal to(s1 + 11)(s2 + 12)13 (s4 + 11)12 (s6 + 11)(s7 + 12)(s8 + 13)14 :It is 
onvenient to extend the de�nition of � [k℄ to negative exponents andput � [k℄ = 0 for k < 0 ; � [0℄ = � [1℄ = 1Given any in
reasing partition I = [i1; : : : ; ir℄, let �I be the determinant��� [ik+k�h℄��1�h;k�r ;where the determinant is expanded from left to right and where produ
ts aredire
t produ
ts.Proposition 11 For any partition I, one has
h(�I) = SI : (20)Proof. Be
ause of the Ja
obi-Trudi formula expressing S
hur fun
tions asdeterminants of 
omplete fun
tions, the statement is equivalent to the fa
tthat 
h(� [i;j;:::;k℄) = SiSj � � �Sk, but this is a dire
t 
onsequen
e of lemma 10.QEDFor example,�23 = ����(s1 + 1)12 (s1 + 1)(s2 + 12)(s3 + 13)141 (s1 + 1)(s2 + 12)13 ����and4! 
h(�23) = 
h�4(s1 + 1)(s3 + 1)(s4 + 12)� 6(s2 + 1)(s3 + 12)(s4 + 14)�= �6 14 + 4 23 � 4 113 + 3 122 + 2 1112 +  1111= 4!S23 :One 
an also �nd produ
ts of elementary symmetri
 fun
tions. For any
omposition I = [i1; : : : ; ik℄, let us write !I for the maximal element of theYoung sub-group Si1�����ik i, and I! for i1! � � � ik!.27



Proposition 12 The image of �!I under 
h is a produ
t of 
omplete fun
-tions, the image of r!I , a produ
t of elementary symmetri
 fun
tions :
h��!I� = I!SI (21)
h�r!I� = I! (�1)`(!I) �I (22)Proof. Be
ause �!I and r!I are dire
t produ
ts, using that 
h is 
ompatiblewith dire
t produ
ts, we have only to 
he
k the 
ase I = [n℄, i.e. to prove thestatement for �!, the one for r! being obtained from it by the involutionsi ! �si. But 
h�X �� =XJ n!zJ	J = n!Sn ;as is well known sin
e Cau
hy. QEDDes
ribing the kernel of 
h is not immediate. For example, from propo-sitions (11,12), one gets that 6� [3℄ and �321 are both sent to 6S3, i.e. that
h�(s1 + 1)(s2 + 12)(s1 � 1)� = 0 ;the next 
ase being :6
h�(s1 + 1)(s2 + 12)(s3 + 13)� = 
h�(s1 + 1)(s2 + 12)(s3 + 13)(s1 + 1)(s2 + 12)(s1 + 1)�i.e. 
h�(s1 + 1)(s2 + 12)(s3 + 13)(6��321)� = 0ACE> Perm2p:= pro
(perm)
onvert( map(i->
at(p,i),Perm2Cy
leType(perm)),`*`)end:ACE> Sga2Sym:=pro
(f); # Frobenius' 
hara
teristi
if member(whattype(f),{`+`,`*`,`^`})then map(Sga2Sym,f)elif whattype(f)=`indexed` and op(0,f)=`A`then RETURN(Perm2p([op(f)℄)) ;else ffi;end:ACE> Sga2Carre(A[3,2,1,5,4℄); # 
ase I=[3,2℄A[3,1,2,5,4℄ + A[2,1,3,5,4℄ + A[1,2,3,4,5℄ + A[1,3,2,4,5℄+ A[3,2,1,5,4℄ + A[2,3,1,5,4℄ + A[3,1,2,4,5℄ + A[2,1,3,4,5℄+ A[3,2,1,4,5℄ + A[2,3,1,4,5℄ + A[1,3,2,5,4℄ + A[1,2,3,5,4℄28



ACE> Toh(Sga2Sym(%)); 12 h3 h2ACE> Toe(Sga2Sym(Sga2Nabla(A[3,2,1,5,4℄)));12 e3 e2

29



'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooYoung normal representations and Yang-Baxter bases'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooWe have already represesented permutations as matri
es. Indeed, to han-dle the (non-
ommutative) multipli
ation in the group algebra of the sym-metri
 group, the simplest tool is to realize it as a multipli
ation of matri
es.Instead of having only one representation of dimension n for Sn (i.e. embed-ding Sn into the linear group Gl(C n), one 
an try to use other linear groups.A representation over C of dimension N of Sn is a morphism' : Sn 3 � ! '(�) 2 Gl(C N )
ompatible with the mutipli
ation :'(� �) = '(�)'(�)(the image of the identity being the identity matrix).We also have impli
itely used another representation, the (left) regularrepresentation, whi
h is the n! dimensional representation of Sn a
ting byleft multipli
ation on the group algebra of itself (one has also a right regularrepresentation).ACE> Perm2RRep([2,3,1℄); [ 0 0 0 0 1 0 ℄[ 0 0 0 0 0 1 ℄[ 0 1 0 0 0 0 ℄[ 1 0 0 0 0 0 ℄[ 0 0 0 1 0 0 ℄[ 0 0 1 0 0 0 ℄Of 
ourse, with two representations, one 
an make a third one by takingmatri
es made of two diagonal blo
ks. One says that the resulting represen-tation is dire
t sum of the two original ones. Thus one wants representationswhi
h are not equivalent to a dire
t sum.Let us see a solution by Young to this problem for the symmetri
 group(his se
ond solution, as a matter of fa
t). We shall rewrite it in terms ofa Yang-Baxter graph, and this will make 
lear the 
onne
tion with Yang'sbasis.To any partition �, we asso
iate a word y�, by �rst writing the diagram of� as a diagram of boxes sta
ked in the North-East 
orner (the parts of � being30



the 
olumn lengths), then we �ll ea
h 
olumn with 
onse
utive numbers,in
reasing upwards and starting with 0 in the bottom boxes :� = [3; 2℄) � �� �� ) 1 20 10 ) word 10 210Now generate a graph, by allowing all possible transpositions of adja
entletters a; b, with a < b : [10:210℄


s2[1:20:10℄s1� ���s3[210:10℄ [1:2100℄s3��� �s1[21100℄The bottom element of the graph is the weakly de
reasing word 
ommuta-tively equivalent to y�. Ea
h edge has a 
olor si (transposition of 
omponentsi; i+1).The labels of verti
es are Yamanou
hi words3, i.e. words w su
h for ea
hfa
torisation w = w0w00, then the number of o

uren
es of i is bigger or equalto the the number of o

uren
es of (i+1), i = 1; 2; 3; : : :, in w00. This wewrite :w Yamanou
hi , 8w = w0w00; jw00j1 � jw00j2 � jw00j3 � � � � (23)We 
ould have also labelled verti
es by permutations: take the same under-lying graph, and put the maximal permutation (here [54321℄ at the bottom).Now the graph has be
ome an interval in the permutohedron. However, forfurther appli
ations, our present labelling is better.
Interval of the permutohedron [42:531℄


s2[4:52:31℄s1� ���s3[542:31℄ [4:5321℄s3��� �s1[54321℄3Some people say \latti
e permutations", but there is no latti
e here, and permutationsare hidden. 31



There is still another labelling, dire
tly equivalent to the one by Yamanou
hiwords, whi
h 
onsists in interpreting ea
h word as des
ribing the levels o
-
upied by the letters 1; 2; : : : ; 5 in the diagram of [3; 2℄ (top row is level 0) :2 51 43


s23 51 42s1� ���s33 52 41 4 51 32s3��� �s14 52 31
[10:210℄


s2[1:20:10℄s1� ���s3[210:10℄ [1:2100℄s3��� �s1[21100℄Transpositions a
t on the verti
es of the left graph by permuting values.As a Yang-Baxter graph, it is not yet totally de�ned, we have to 
hoosean initial ve
tor of spe
tral parameters.We take the 
ontent ve
tor 
�, obtained by �lling the diagram of �, thistime pa
ked in the North-West 
orner and the parts of � being the row lengths,with 
onse
utive numbers in ea
h 
olumn, in
reasing upwards, in su
h a wayto have 0 in the main diagonal. We read now the 
onse
utive rows, fromright to left, from bottom to top :� = [3; 2℄) � � �� � ) 0 � �� 0 ) 0 1 2�1 0 ) 
� = [0; �1; 2; 1; 0℄Now edges of the graph have not only a 
olor si, but also a label 1=(b�a),for the transposition of a and b. Labelling verti
es by their 
orresponding
ontent ve
tors (=images of the initial 
ontent ve
tor 
�), and writing 1instead of �1, one gets the graph 0 1 2 1 0

 130 2 1 1 012� ��� 122 0 1 1 0 0 2 1 1 012��� � 122 0 1 1 0The set of verti
es of the pre
eding graph is the pla
ti
 
lass4 of the word[0 1 2 1 0℄, we shall des
ribe it later in the 
hapter about Young tableaux.4The pla
ti
 relations are, for any triple a < b < 
, 
ab � a
b, ba
 � b
a, and for anypair a < b, baa � aba, bab � bba. The pla
ti
 
lass of a word is its 
losure under pla
ti
relations. 32



How to read matri
es from the graph ?The underlying ve
tor spa
e has a basis 
oded by the verti
es of thegraph. To represent any simple transposition si, one �rst erases all edgeswhi
h are not labelled by si. One is left with isolated verti
es (
orrespondingto 1-dimensional representations of S2), and pairs of verti
es 
onne
ted byan edge, 
orresponding to 2-dimensional representations.In this last 
ase, if � is the parameter written on the edge, then to de�nea two-dimensional representation of Sn, Young took the matrix� �� 11��2 �� :In the one-dimensional 
ase, if i; i+1 is a subword of the vertex, then therestri
tion of the representation is trivial (i.e. the matrix is 1), otherwise (ifi+1; i is a subword) it is the alternating representation (matrix = �1).Choosing a total order on the verti
es of the dire
ted graph, 
ompatiblewith its partial order, Young de�ned a matrix to represent the simple trans-position si by embedding these elementary matri
es into a N � N matrix,putting 0 in the other pla
es (N=number of verti
es).In other words, a single vertex gives a diagonal entry �1, an edge si
onne
ting vertex p and vertex q gives a submatrix h �� 11��2 � i on rows and
olumns p; q, and all other entries are 0.Continuing with the example, for shape [3; 2℄, here are the matri
es rep-resenting s1; : : : ; s4, for the ordering (here ACE has reversed the words andthe order)[0;�1; 1; 0; 2℄; [0;�1; 1; 2; 0℄; [0; 1;�1; 2; 0℄; [0; 1; 2;�1; 0℄; [0; 1;�1; 0; 2℄ :24 �1 0 0 0 00 �1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 135 2664 12 0 0 0 10 12 1 0 00 34 �12 0 00 0 0 1 034 0 0 0 �12 3775 264 �1 0 0 0 00 1 0 0 00 0 13 1 00 0 89 �13 00 0 0 0 1375 2664 12 1 0 0 034 �12 0 0 00 0 �12 0 3=40 0 0 1 00 0 1 0 12 3775 (24)
Verti
es are labelled in the order 1� �2 5� �3j4 . Edges [1; 5℄ and [2; 3℄ are labelleds2, and vertex 4 is an isolated point for s2. Therefore, the matrix representings2 is made of two Young-matri
es of order 2, plus a matrix of order 1, pla
edat the positions indi
ated : 24 [1;1℄ � � � [1;5℄� [2;2℄ [2;3℄ � �� [3;2℄ [3;3℄ � �� � � [4;4℄ �[5;1℄ � � � [5;5℄35. The parameters on the33



edges tell the pre
ise values of the entries; the entry [4; 4℄ is equal to 1 be
ause
omponent 2 of vertex 4 is smaller than 
omponent 3.It is 
lear that the square of any Young matrix is the identity (be
auseit is true for the 
ase of order 1 and 2). It is also 
lear that 
ommutingtranspositions give 
ommuting matri
es. It remains essentially to 
he
k the
ase a six dimensional representation of S3, with parameters �; �; 
 = �+�,i.e. to 
he
k that the matri
esM1;M2 
andidate to represente the two simpletranspositions satisfy M1M2M1 =M2M1M2 :Expli
itely, these two matri
es are
M1 :=

266666666664
���1 0 1 0 0 00 � (� + �)�1 0 0 1 01� ��2 0 ��1 0 0 00 0 0 ���1 0 10 1� (� + �)�2 0 0 (�+ �)�1 00 0 0 1� ��2 0 ��1

377777777775
M2 :=

266666666664
���1 1 0 0 0 01� ��2 ��1 0 0 0 00 0 � (� + �)�1 1 0 00 0 1� (� + �)�2 (�+ �)�1 0 00 0 0 0 ���1 10 0 0 0 1� ��2 ��1

377777777775 (25)
Arrived at this stage, instead of trying to perform the produ
t of matri
es,we remember that we have used in the pre
eding se
tion another interpreta-tion of a Yang-Baxter graph, as 
oding elements in the group algebra of Sn(verti
es 
an be labelled arbitrarily). We have to 
hoose an arbitrary ve
torof parameters. Afterwards, we obtain n! elements in the group algebra ofSn, by reading paths and interpreting them as produ
ts of simple fa
tors inthe group algebra.In general, one edge is labelled si + �, its two verti
es are Y� and Y� =Y� (s+ �), with � = �si. The linear span of Y� and Y� is a two dimensionalrepresentation of S2 a
ting on the right, and the matrix representing the34



a
tion of si is (reading by rows)� Y� ! Y�si = ��Y� + Y�Y� ! Y�si = (1� �2)Y� + �Y� , � �� 11��2 �� : (26)This is exa
tly Young's matrix.It means, that if we take S3 and the parameters [0; �; �+ �℄, then Yang-Baxter equation insures that M1M2M1 = M2M1M2 without any need to
he
k it 5. Therefore Young's matri
es represent the symmetri
 group.The expli
it matrix of 
hange of basis, with the ve
tor of parameters[0; a; a+ b℄ is (reading the expansion of a Yang element in ea
h row) :ACE> MatYang2Perm(3,[0,a,a+b℄), inverse(%);2666666666664
1 0 0 0 0 01b 1 0 0 0 01a 0 1 0 0 01(a+b)a 1a 1a+b 1 0 01b(a+b) 1a+b 1b 0 1 0ab+1(a+b)ba 1ab 1ab 1b 1a 1

3777777777775 ; 266666666664
1 0 0 0 0 0�1b 1 0 0 0 0� 1a 0 1 0 0 01ab � 1a � 1a+b 1 0 01ab � 1a+b 1b 0 1 0� ab+1(a+b)ba 1(a+b)a 1b(a+b) �1b � 1a 1

377777777775Apart from signs, these two matri
es have the same entries, but distributeddi�erently. This fa
t result from the fa
t, seen in the pre
eding se
tion, thatthe adjoint of a Yang-Baxter basis is a Yang-Baxter basis for the reversedparameters.For our running example, the representation is of dimension 5, and Yang-Baxter basis is 1??y 13s2+ 1312 . & 12(s2+ 13 )(s1+ 12 ) (s2+ 13 )(s3+ 12 )12 & . 12(s2+ 13 )(s1+ 12 )(s3+ 12 )5One nevertheless has to verify what happens in the degenerate 
ase, when one of thedi�eren
es of parameters is equal to �1; for Young, this is the 
ase where two 
onse
utiveintegers, in a tableau, are in the same row or same 
olumn (and thus in adja
ent boxes)35



The matri
es representing s1; : : : ; s4 have already been written in (24).There are other normalizations for Young's matri
es. Essentially, one
an take one of the following three matri
es for the 
ase of S2 (or theirtransposed, but of 
ourse, one must sti
k for Sn with one type only!)� �� 11��2 �� ; ��� 1+�1�� � � ; � �� p1��2p1��2 � � (27)The matrix on the right is unitary, and thus is the building blo
k of Youngorthonormal representations. Young �rst obtained them by orthonormalisa-tion of the matri
es in the natural representations.Here are now two 
opies of a bigger graph, for shape [3; 4℄; on the left,we write writing Yamanou
hi words; on the right, we take the 
ontents +1,to have positive numbers (this does not 
hange di�eren
es!).210:321021:30:210
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m m m m m4231201s1= = = ; s2==== ; s3 ; s4� � � ; s5����The verti
es of both graphs 
onstitute isomorphi
 pla
ti
 
lasses :ACE> Free2PlaxClass(w[2,1,0,4,3,2,1℄);w[4,2,1,0,3,2,1℄ +w[4,2,1,3,0,2,1℄ +w[4,2,1,3,2,0,1℄ +w[2,1,0,4,3,2,1℄+w[2,1,4,0,3,2,1℄ +w[2,1,4,3,0,2,1℄ +w[2,4,1,3,0,2,1℄ +w[2,4,1,0,3,2,1℄+w[4,2,3,1,2,0,1℄ +w[2,1,4,3,2,0,1℄ +w[2,4,1,3,2,0,1℄ +w[2,4,3,1,2,0,1℄+w[4,2,3,1,0,2,1℄ +w[2,4,3,1,0,2,1℄ACE> nops(%) - nops(Free2PlaxClass(w[2,1,0,3,2,1,0℄));036



Here are the matri
es representing s2 and s3 for this representation :ACE> latex(MatRepNormal([4,3℄,2)),latex(MatRepNormal([4,3℄,3));266666666666666666666666666666664
1=2 � � � � � � � � � � � � 1� 1=2 � � � � � � � 1 � � � �� � 1=2 � � � � 1 � � � � � �� � � 1=2 1 � � � � � � � � �� � � 3=4 �1=2 � � � � � � � � �� � � � � 1 � � � � � � � �� � � � � � 1 � � � � � � �� � 3=4 � � � � �1=2 � � � � � �� � � � � � � � 1 � � � � �� 3=4 � � � � � � � �1=2 � � � �� � � � � � � � � � 1=2 1 � �� � � � � � � � � � 3=4 �1=2 � �� � � � � � � � � � � � 1 �3=4 � � � � � � � � � � � � �1=2

377777777777777777777777777777775266666666666666666666666666666664
�1 � � � � � � � � � � � � �� �1 � � � � � � � � � � � �� � 1 � � � � � � � � � � �� � � 1 � � � � � � � � � �� � � � 1=3 1 � � � � � � � �� � � � 8=9 �1=3 � � � � � � � �� � � � � � 1 � � � � � � �� � � � � � � 1=3 1 � � � � �� � � � � � � 8=9 �1=3 � � � � �� � � � � � � � � 1 � � � �� � � � � � � � � � 1 � � �� � � � � � � � � � � 1=3 1 �� � � � � � � � � � � 8=9 �1=3 �� � � � � � � � � � � � � 1
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooYoung's natural representations'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooWe now 
ome to the heart of Young's work, who introdu
ed the funda-mental idea that 2-dimensional 
ombinatorial obje
ts were needed to workin the group algebra of the symmetri
 group.Young obtained the following key property (he was using only partitions,and not 
ompositions, but his method extends straightforwardly).Proposition 13 Let I, J be two 
onjugate 
ompositions. Then �!IHr!Jis a 1-dimensional module, and�!I � � � r!J 6= 0, � = �0 � �(I; J) � �00; �0 2 SI; �00 2 SJ ;where the permutation �(I; J) asso
iated to a pair of 
onjugate 
ompositionshas been de�ned above.Proof. The spa
e �!(I)Hr!(J) is generated by the permutations � of min-imum length in their double 
oset SI �SJ . These permutations are inbije
tive 
orresponden
e with tableaux of evaluation 1i12i2 � � � and shapej1 
 j2 
 � � � .Let us 
he
k that su
h a tableau gives a non-zero element �!I�r!J i�all the letters in every row separately are distin
t. Indeed, suppose on the
ontrary that a letter o

urs twi
e in a row. It means that there exists aninteger k su
h that sk 2 SI and su
h that � and sk � give the same elementmodulo SJ . We 
an equivalently write��!J = sk ��!J or �r!J = �sk �r!J or also (1 + sk) �r!J = 0 ;but now, be
ause (1 + sk) = �k is a right fa
tor of �!I , this last nullityimplies that of �!I �r!J .Finally, lemma 5 tells us that there is only one tableau of evaluation1i12i2 � � � and shape 1j1 
 1j2 
 � � � , and it 
orresponds to the permutation�(I; J). QEDFor example, for I = 232 and J = 331, �(232; 331) = 136 247 5, and the
39



di�erent 
ombinatorial obje
ts that we atta
hed to the pair I; J are :241 1 01 1 11 1 035 3 32 2 21 1 241 23 4 56 7 350�1matrix diagram numbering ! �(232; 331) = 136 247 5321 
 321 
 2 ! 631 
 742 
 5 ! 631 742 5the 
olumn reading of the last tableau is now the element of maximal lengthin its 
oset �(232; 331)S331 instead of being the element of minimum length.Proposition 13 is so important in Young's theory that we now give anotherformulation of it in terms of Yang-Baxter elements. The situation is evensimpler, we shall have a spa
e of dimension 1 be
ause there is only one non-vanishing element. On
e more, vanishing properties 
ome only from the fa
tthat, for any simple transposition, (si + 1)(si � 1) = 0.Proposition 14 Let � be a partition. Fill the su

essive 
olumns of thediagram of � (in the S-W 
orner) (resp. of �e, in the N-E 
orner) with1; : : : ; n. Let !0 and !00 the 
olumn readings of these two tableaux, and �, �their row-reading. Let J be the in
reasing reordering of of �, and I = �e .Then, for every permutation � greater than !0 (in the permutohedron),one has that ��r� 6= 0 i� � and � belongs to the same double 
oset SI �SJ.Moreover �!0 Hr!00 is 1-dimensional, with basis �� r!00, and ��r� is aquasi-idempotent, i.e.��r���r� = 
 ��r� ; for some 
 2 Z; 
 6= 0 :Proof. Let us take an expli
it partition, say � = [3; 2; 2℄, to avoid unne
essaryindi
es. In that 
ase, the �lled diagrams are3 62 51 4 7 ! � = [3625147℄; !0 = [3216547℄ & 2 4 71 3 65 ! � := [2471365℄; !00 = [2143765℄ :We have seen in proposition 9 that �!0H has a linear basis 
onsisting of��, � � !0 = [3216547℄ in the permutohedron, i.e. � having subwords321; 654; 7, to whi
h we shall attribute di�erent 
olors. Considering � mod-ulo SJ amounts writing an ordered sequen
e of sets (
all them baskets)f�1; �2g, f�3; �4g, f�5; �6; �7g instead of a permutation. Suppose that twointegers of the same 
olor are in the basket. All the integers between them40



also belong to the same basket, we 
an suppose that the two integers, sayj; j+1, are 
onse
utive.Therefore, �� is obtained from ��0 , where �0 is the element of minimumlength in the 
oset �SJ , by multipli
ation on the right by fa
tors of the typesk + �, with all sk 2 SJ , but one of the � being equal to 1 (
reated by theex
hange of j and j+1. Sin
e (sk + �)r!00 = (�1 + �)r!00, the produ
t ofthese fa
tors vanishes with r!00 . For example, when � = [63 75 241℄, then1; 2 have the same 
olor and lie in the same basket, and �6375241r2143765 =�6375124 (s5 + 1)(s6 + 13)r2143765 = 0.To avoid nullity, one must have that all integers of the same 
olor liein di�erent baskets, and on
e more, lemma 5 states that all permutationssatisfying su
h property belong to the same double 
oset.Moreover, �3625147r2143765 is non-zero, be
ause it has term of highestlength the produ
t [36 25 147℄[21 43 765℄ (whi
h is redu
ed).One passes from �!0 to �� by multipli
ation on the right by invertiblefa
tors si + 1� , � 6= 1; the spa
es ��Hr!00 and �!0 ;Hr!00 are the same.Finally, ��r���r�r!00 belongs to the spa
e �!0 ;Hr!00 . One has justto 
he
k that it is not null. We shall 
he
k later, and more easily, this typeof non-vanishing properties by using the a
tion of H on polynomials. QEDIn the following 
orollary, we shall take tabloids of shape a partition, tore
over statements dire
tly adapted from those of Young.Corollary 15 Given two tabloids u, v of shape the same partition I, then1) The spa
e P (u)HN(v) is 1-dimensional. Moreover P (u)N(u) andN(u)P (u) are two quasi-idempotents.2) If h 2 H is su
h that, for all � 2 Sn preserving the rows of u, onehas �h = h and for all � 2 Sn preserving the 
olumns of u, one has h� =(�1)`(�)h, then h is proportional to P (u)�(u; v)N(v), where �(u; v) is thepermutation transforming u into v.3) If u and v are two tabloids of shapes two di�erent partitions �, �, ofthe same number, � being stri
tly higher than � (with respe
t to the naturalorder on partitions, for whi
h 1n is the maximum), thenP (u)N(v) = 0 = N(v)P (u) :Proof. The �rst point is a dire
t 
onsequen
e of propositions 13,14, takinginto a

ount that all P (u), for u of shape I, are 
onjugate to �!I . Similarly,all N(v) are 
onjugate to r!J , for v of 
olumn-shape J (= 
onjugate of I).The invarian
e of h with respe
t to multipli
ations on its right and its leftby all the permutations belonging to some Young subgroups, implies that h41



is equal, up to a non-zero fa
tor, to P (u)hN(v), and thus proportional toP (u)�(u; v)N(v).This last point is as
ribed to Von Neuman by Weber [40℄.There is no 0-1 matrix of row-sums the shape I of u, and 
olumn-sums J ,the shape (by 
olumns) of v. It implies �!I Hr!J = 0, and by 
onjugation,P (u)N(v) = 0. QEDWe summarize now some of the di�erent 1-dimensional spa
es that wehave asso
iated to the partition [3; 3; 1℄.Pair[331℄; [223℄! h 1 1 11 1 10 0 1 i! h 1 2 34 5 6� � 7 i! �([331℄; [223℄) = [1425367℄Spa
e �3216547Hr2143765, with basis �3216547 [1425367℄r2143765or �3625147r2143765, 
oming from the tableau 3 62 51 4 7 .Pair[331℄; [322℄! h 1 1 11 1 11 0 0 i! h 1 2 34 5 67 � � i! �([331℄; [322℄) = [1472536℄Spa
e �3216547Hr3215476, with basis �3216547 [1472536℄r3215476or �3672514r3215476 
oming from the 
ontre-tableau 3 62 51 4 7 ! 3 6 72 51 4Let us analyze more pre
isely the vanishing property stated in the pre-vious proposition. Young [43℄, p.95, gives the following property6, whi
h is
ru
ial in his 
hara
terization of idempotents, and their bran
hing rules.Proposition 16 Given two 
onjugate 
ompositions I, J and an index k su
hthat ik � ik+1, let Iy be the 
omposition [: : : ; ik + 1; ik+1 � 1; : : :℄ di�eringfrom I only at the k-th and k+1-th 
omponents. Then�!I ��!Iy Hr!J = 0 = �!Iy ��!I Hr!J (28)Proof. There is no tableau of evaluation xIy and of shape 1j1 
 1j2 
 � � � andthus �!IyHr!J = 0. QEDIn the produ
t �!I � �!Iy , there are many repeated fa
tors. One 
an infa
t repla
e �!Iy by a smaller fa
tor. Indeed, suppose by 
onjugation thatk = 1 and write I = [a; b; : : :℄, Iy = [a+1; b�1; : : :℄, with a � b, and �ij for the6In terms of representations of the symmetri
 group, the proposition is equivalent tothe fa
t that Hom(SIy ; �J) = 0, where SIy denotes the representation indu
ed by thetrivial representation of the Young subgroup SIy , and �J the representation indu
ed bythe alternating representation of SJ .
42



transposition of i; j. Then!I = (a; : : : ; 1; a + b; : : : ; a+ 1; a+ b + 1; : : :)!Iy = (a+ 1; : : : ; 1; a + b; : : : ; a+ 2; a+ b + 1; : : :) and�a+1���1 = �a:::1(1 + �1;a+1 + � � �+ �a;a+1)�a+1���1 = �a:::1(sa + 1a) � � � (s1 + 1)Thus the elements �!I�!+I and �!I (1 + �1;a+1 + � � � + �a;a+1) are equal, upto a non-zero fa
tor, and (28) 
an be written�!I (1 + �1;a+1 + � � �+ �a;a+1)Hr!J = 0 ; (29)as stated by Young in QSA2, [43℄ p.95 (0 means here the zero-dimensionalspa
e).Similarly, multiplying on the left by �!Iy , and eliminating repeated fa
-tors, one gets the nullity(s1 + 1) � � � (sa + 1a)�!I Hr!J = 0 (30)used by [JMKO, prop.A2℄.For example, if I = (3; 3; : : :), then Iy = (4; 2; : : :), and one has thenullities of �4321 65:::�321 654:::Hr!(J)as well as of �321 654::: (1 + �14 + �24 + �34)Hr!(J)and of (�1 + 1)(�2 + 12)(�3 + 13) ��321 654:::Hr!(J) :Using the involution � ! (�1)`(�) �, and the right/left symmetry, onegets from proposition 16 the following identities, whi
h 
an be identi�edwith the lift of Pl�u
ker relations to the group algebra of Sn (Young ?).Proposition 17 1) Let I and J be two 
onjugate 
ompositions, I = (a; b; : : :),with a � b. Then�!J �(J; I)r!I �1� �1;a+1 � � � � � �a;a+1� = 0 (31)�!J �(J; I)r!I (sa � 1a) � � � (s1 � 1) = 0 (32)43



2) Let u be a tabloid of shape a partition. Let A;B be two 
olumns of u,with B on the right of A, and b an element of B. ThenP (u)N(u) = P (u)  Xa2A �a;b! N(u) : (33)For example, take I = [3; 2℄ and J = [2; 1; 2℄.ACE> aa:=Compo2Young([2,1,2℄) &!* A[op(DeuxCompo2Perm([2,1,2℄,[3,2℄))℄&!* Compo2Young([3,2℄,N):ACE> aa &!* (1-A[4,2,3,1℄-A[1,4,3,2℄-A[1,2,4,3℄);0ACE> aa &!* (A[1,2,4,3℄-1/3) &!* (A[1,3,2℄-1/2) &!* (A[2,1℄-1);0To illustrate the se
ond part of the proposition, take the se
ond and third
olumns of u = 63 5 71 2 4 , and b = 4.ACE> aa:=Word2YoungPN(w[6,3,5,7,1,2,4℄,P):ACE> bb:=Word2YoungPN(w[6,3,5,7,1,2,4℄,N):ACE> aa &!* (1 -A[1,4,3,2℄ -A[1,2,3,5,4℄) &!* bb;0From the �rst part of the proposition, one gets relations between produ
tsof minors of the Vandermonde matrix. Indeed, write �(i; j; : : :) =Q(xi�xj).Take now the monomial with exponent [0j1; 1j2; 2j3 : : :℄, supposing J to bea de
reasing partition. It is preserved by ea
h permutation of SJ , thus thea
tion of �!J is just multipli
ation by the order of SJ , one 
an ignore it.Now, the image of the image of the monomial under romegaI is a produ
t ofVandermonde determinants, that we shall write �([I℄), be
ause the image ofx012::k�1 under rk:::1 is �(1; : : : ; k). Therefore, equation (31) be
omes�([I℄) �1� �1;a+1 � � � � � �a;a+1� = 0 : (34)For the pair J = [2; 2; 1℄, I = [3; 2℄, one gets x00112�1435 = 4x00112. Under�([221℄; [32℄), it be
omes 4x01201, whi
h is sent by r32154 to 4�(123)�(45).Finally the relation is�(123)�(45)(1� �14 � �24 � �34) = �(123)�(45)��(423)�(15)��(143)�(25)��(124)�(35) = 0:Graphi
ally, one represents ea
h Vandermonde by a 
olumn, and the pre
e-dent relation is now displayed ash 32 51 4 i� h 32 54 1 i� h 34 51 2 i� h 42 51 3 i = 0 :44



In fa
t, this relation, 
alled Pl�u
ker relation7, is valid for minors of anymatrix, and not only minors of the Vandermonde matrix.We shall see with more details in the next se
tion that Young's identitiesimply minor identities.

7Pl�u
ker relations are quadrati
 relations between minors of order n of an n�1matrix,obtained (before Pl�u
ker) in the 18th 
entury through eliminations in systems of linearequations. Writing [A℄ for the minor taken on 
olumns spe
i�ed by an ordered set A, and[A℄ [B℄ for the produ
t of two minors, 
hoosing some arbitrary b in B, Pl�u
ker states :[A℄ [B℄ = Xa2A �a;b�[A℄ [B℄� :Noti
e that we have also written[13℄ [24℄�s1 � 12� (s2 � 1) = 0whi
h is not a standard form of a Pl�u
ker relation.45



We are now ready to study the fundamental modules �!I �(I; J)r!J Hor, equivalently (by inversion of permutations, and the involution si ! �si),H�!I �(I; J)r!J .Let us des
ribe, as a �rst example, �2143s2r2143H. Let v1 = �2143s2r2143,v2 = �2143s2r2143s2. They have di�erent leading terms, and thus are lin-early independent. We know the images of v1 under multipli
ation by asimple transposition: v1s1 = v1s3 = v1, v1s2 = s2. However, 
omputingv2s1 = v1s2s1 = v1s1s2s1 is less evident. It is ne
essary to use Young'srelation (31) : �2143 s2r2143�1� �13 � �23� = 0;whi
h shows that v1�13 = v2s1 belongs to the linear span of v1; v2 a similar
omputation giving also v2s3. Thus the module is a 2-dimensional represen-tation of S4.To des
ribe the general 
ase, re
all that a standard Young tableau of shape� is a �lling of the boxes of the diagram of � with unrepetited 
onse
utivenumbers 1; 2; : : :, in su
h a way that 
olumns stri
tly de
rease, and rowsin
rease. Let us write Tab(�) for the set of standard tableaux of 
olumnshape �.We shall identify for the moment a tableau with the permutation obtainedby reading its su

essive 
olumns, from left to right.The �rst des
ription that Young [Y1℄ gave of a representation of thesymmetri
 group, is the following (slightly adapted to our 
onventions) :Theorem 18 Let I be an in
reasing partition, J be the 
onjugate de
reasingpartition.Then �!I �(I; J)r!J H is a representation of the symmetri
 group withbasisf�!I �(I; J)rt : t 2 Tab(J)g or f�!I �(I; J)r!J !J t : t 2 Tab(J)g :Proof. The elements �!I �(I; J)rt are linearly independent, be
ause theirleading terms !I�(I; J) t are di�erent. One passes from f�!I �(I; J)rtg tofet := �!I �(I; J)r!J !J tg by a triangular matrix, we shall rather show thatfetg span the module, i.e. that any e� := �!I �(I; J)r!J !J�, � 2 Sn, is alinear 
ombination of et.If one 
odes e� by the tabloid obtained from e!J by repla
ing in the �rsttableau !J , 1; 2; : : : by �1; �2; : : :, then one has to show that every tabloid uis a linear 
ombination of standard tableaux.Of 
ourse, one 
an 
ommute the entries in ea
h 
olumn separately, itjust introdu
es a sign. Thus one 
an suppose that tabloids have de
reasing
olumns. If u is not a tableau, then there is at least one violation, i.e. two46



adja
ent entries a; b in the same row, with a > b. Starting with the violationa; b whi
h the furthest in the North-East, and inter
hanging b with all theelements of the pre
eding 
olumns thanks to relation (31), and repeatingthis pro
ess, Young shows that one 
an straighten the tabloid into a sum oftableaux. The deli
ate point is that one 
reates in general new violationsby 
orre
ting one, and one has to make sure that the algorithm 
onvergesinstead of looping. We shall avoid totally this analysis by produ
ing, asYoung did 30 years later, orthonormal bases. There is no more straighteningnow, but only evaluation of s
alar produ
ts. We shall also, in the next se
tion,gives another des
ription of natural representations, where straightening isrepla
ed by evaluation of s
alar produ
ts. QEDLet us 
he
k the module �13254 �(122; 32)r32154H. There are 5 tableaux,and 5 tabloids, with de
reasing 
olumns, whi
h are not tableaux. One has,modulo the spa
e generated by the �ve tableaux,43 52 1 = 43 52 
1 := 43 52 1��12 + �13 + �14� = 43 51 2 + 41 52 3 + 13 52 4 � 0 ;writing the letter whi
h is to be ex
hanged inside a disk. Similarly, ex
hang-ing 4 and 5, 53 42 
1 � 0. Now,54 23 
1 � 54 21 3 ; 54 
21 3 � 54 12 3 ; 54 12 
3 � 54 13 2 :Combining these relations with the pre
eding ones, one gets that54 23 1 � 0 � 54 32 1 � 54 31 2 :Already on that small example, one sees that one has to 
ombine severalPl�u
ker relations to remove one violation. In order to do that Young wroterelations more eÆ
ient than (31), whi
h involve summing on several lettersat a time8. We shall detail them later. In the present 
ase, one has32 51 4 � 42 51 3 + 43 51 2 + 52 41 3 � 53 41 2 + 54 31 2 = 0 ;and this gives in one step that the tabloid 54 31 2 belongs to the span of tableaux.
8they are 
alled Garnir relations [14℄. 47
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 group'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooAs a linear spa
e on whi
h a
ts Sn, the group algebra H = Q [Sn ℄ isisomorphi
 to the linear span of x� := xn�11 xn�22 � � �x0n, the 
orresponden
eex
hanging � and (x�)�.If instead of �, one takes another weight � = [�1; �2; : : : ; �n℄, then the lin-ear span V� of the orbit of x� is of dimension n!=dim(Stab(�)) = n!=�1!�2! � � � ,instead of n!, denoting by Stab(�) the subgroup of Sn leaving � invariant,and writing � = 1�12�2 � � � .The H-spa
es V� are 
alled permutation representations. We already metthese representations, as spa
es �!I H. One 
an start from these representa-tions to build the irredu
ible ones, but this approa
h does not furnish expli
itirredu
ible representation matri
es.We shall see that the images of some permutation modules modulo sym-metri
 fun
tions are irredu
ible modules, and that it is easy to write thematri
es representing the a
tion of the symmetri
 group on these quotientmodules.Let H be the quotient spa
e Q [x1 ; : : : ; xn℄=Sym+, of polynomials modulothe ideal Sym+ generated by polynomials without 
onstant term. Here, theuse of the letter H 
omes from the fa
t that this spa
e, also 
alled 
oinvariantspa
e of the symmetri
 group is isomorphi
, as an Sn-spa
e, to the spa
e ofharmoni
 polynomials.As a ve
tor spa
e, H is of dimension n!. It is easy to see by indu
tionon n that it has a basis 
onsisting of monomials x�, � � � = [n�1; : : : ; 0℄(i.e. �1 � n�1; �2 � n�2; : : :), and that it is isomorphi
 to the regularrepresentation of Sn9.A better linear basis of H 
onsists of the S
hubert polynomialsfX� = YJ ; � 2 Sn; J = 
ode(�)g ;that one index indi�erently with permutations, or with 
odes (some proper-ties are better seen, or some 
omputations are easier, on one indexing thanon the other, 
f. [℄).9But the ring of polynomials has a grading (=total degree in the xi's) and a produ
tthat has, a-priori, no natural 
ounterpart in Q[Sn ℄. Similarly, one does not see what
orresponds to the multipli
ation of permutations at the level of polynomials. We shallneed idempotents to see the 
orresponden
e.48



Re
all that every polynomial in x1; : : : ; xn is a linear 
ombination of S
hu-bert polynomial indexed by permutations belonging to symmetri
 groups ofarbitrary order, Sm being identi�ed with its embedding Sm�S1 into Sm+1.The ideal Sym+ is the linear span of all S
hubert polynomials indexed bypermutations whi
h 
annot be restri
ted to Sn. Therefore, on
e a polyno-mial is expressed into the S
hubert basis, one gets a representative of it in Hby just annhilating all S
hubert polynomials indexed by permutations whi
hmove at least one value > n.We shall need 
ongruen
es 10 whi
h 
ome from de
omposing X = fx1; : : : ; xnginto any pair of disjoint subsets X0 ; X00 .For any positive integer k and any subset X0 � X, let us note X0k :=fxk; x 2 X0g.Lemma 19 Let X = X0 [ X00 , and f(X0) be any symmetri
 fun
tions in X0.Then f(X0) � f(�X00) mod Sym+ (35)In parti
ular, for any positive integers k; r, writing 	J for the monomialsymmetri
 fun
tion of index the partition J, one has(�1)r	kr(X0) �XJ 	J(X00) ; (36)sum over all partitions of kr, with all parts multiple of k.Proof. Sin
e for any k, 	k(X0) = 	k(X) � 	k(X00) � 	k(�X00), the �rststatement is true for power sums, hen
e for any symmetri
 fun
tion. Inparti
ular, (�1)r	1r(X0) � Sr(X00) =XJ 	J(X00) ;sum over all partitions of r. Sin
e a fun
tion remains symmetri
al aftersubstitution of xi by xki , i = 1; : : : ; n, raising variables to power k produ
esthe se
ond statement from the pre
eding equation. QEDLet u = [u1; : : : ; u2Nn ; u � � be weakly de
reasing. Then the monomial(
alled dominant) xJ is equal to the S
hubert polynomial Yu. Suppose thatmoreover u is su
h that there exists i; r : i+ r � n� 1 su
h thatui = n�i; ui+1 = ui+2 = � � � = ui+r = n�i�r :Then, from Monk's rule [℄, one easily obtains the following property :10re
all that for any power sum 	k and any alphabet X, 	k(�X) := �	k(X). Thisde�nes the fundamental involution X ! �X of the ring Sym(X). In parti
ular, for anelementary symmetri
 fun
tion �k, one has �k(�X) = (�1)kSk(X).49



Lemma 20 For any polynomial f in r variables,f(xi+1; : : : ; xi+r)Yu � 0 mod Sym+(X), f(xi+1; : : : ; xi+r) � 0 mod Sym+(xi+1; : : : ; xi+r) : (37)In parti
ular, xni � 0, be
ause it is equal to Sn(xi) � �S1n(X � xi) = 0,the nullity 
oming from the fa
t that X 00 = X � xi has only n�1 letters.Similarly, Sn�1;n�1(X2) � 0, Sn�2;n�2;n�2(X3) � 0 &
., where X2; X3; : : : aresubsets of X of order 2; 3; : : : respe
tively.Quadrati
 form Computations in the quotient ring are made easy by de�ninga quadrati
 form 11(f; g) = (fg; 1) = (1; fg) := X�2Sn(�1)`(�) (fg)� 1� ���x1=0=x2=��� ; (38)where � := Qi<j(xi � xj) is the Vandermonde. In other words, given twopolynomials f; g, one builds an alternating fun
tion from their produ
t. Itsquotient by � is a symmetri
 fun
tion, the 
onstant term of whi
h one �ndsby spe
ializing all xi's to 0 (this amounts evaluating modulo the idealSym+).Expli
itely, the s
alar produ
t of two monomials xu; xv is(xu; xv) = (xu+v; 1) = �(�1)`(�) if u+ v = [: : : 210℄�0 otherwise (39)In this set-up, to evaluate the quadrati
 form, one has to test whether theve
tor u+v is a permutation of [n�1; : : : ; 1; 0℄ or not, and if so, keep the signof the permutation.Let us now 
ompare the modules r2143s2�2143H, x1100H, x2200H. Theirgenerator is invariant under s1; s3, and the a
tion of s2 produ
es an ele-ment whi
h is not proportional to it. But now x1100s2s3 = x1001 is nota 
ombination of x1100; x1010, though r2143s2�2143s2s1 is a 
ombination ofr2143s2�2143; r2143s2�2143s2. However,x2002+x2020+x2200 = x21(x22+x23+x24) = x21�(x21+x22+x23+x24)�x21� � �x41 � 0 ;11We 
ould have twisted this form, as we did forH, by taking the produ
t of f(x1; : : : ; xnwith g(xn; : : : ; x1). This is the 
onvention that we �rst 
hosed in the theory of S
hubertpolynomials, to have them 
onstitute a self-adjoint basis.50



and similarly x0220 also belongs to the span of x2200; x2020. Therefore, thetwo modules r2143s2�2143H and x2200H are isomorphi
. On the 
ontrary,x1100H is 5-dimensional, and not irredu
ible.Let us take a bigger example, with the 5-verti
es graph 
orresponding toshape [3; 2℄ that we already wrote many times. We write a 
opy of the graphstarting with the vertex [00033℄ :[00033℄


[00303℄� ���[03003℄ [00330℄��� �[03030℄
32 51 4


42 51 3� ���43 51 2 52 41 3��� �53 41 2Both graphs have 5 verti
es, related by the same permutations to the topone. Noti
e however, that s1; s2; s4 a
t by �1 on the top tableau, and by 1on the top monomial. We have des
ribed the spa
e 32 51 4 H by writing howtabloids de
ompose in the basis of tableaux. To the tabloid 32 51 4 � we asso
iatethe monomial x00033 �. Taking into a

ount signs, we have 
orrespondingequations0 = 43 52 1�1� �12 � �13 � �14�  ! x30003�1 + �12 + �13 + �14� = 0 ;but now, the equation on the right is easier to 
he
k, be
ause it readsx30003 + x03003 + x00303 + x00033 � �x00003x00003 = �x00006 � 0 :More interesting, the more sophisti
ated relation expressing the tabloid 54 31 2
orresponds tox03300 + x03030 + x03003 + x00330 + x00303 + x00033 � 0 ;but this is true be
ause the left-hand side is a symmetri
 fun
tion of x2; : : : ; x5.Therefore, a

ording to (??), it is 
ongruent to a symmetri
 fun
tion of x1of degree 6, and it must be null (already x51 � 0).Let us now evaluate the s
alars produ
ts of the verti
es of the left graphwith verti
es [01201℄; [01021℄; [00121℄; [01012℄; [00112℄, obtained by readingfrom right to left the verti
es of the original graph for shape [3; 2℄.51



The quadrati
 form is expressed by the following matrix (0 are repla
edby dots) : Q = " 1 � � � �� �1 � � �� � 1 � �� � � 1 ��1 � � � �1# :We know from (39) that we must obtain a matrix of 0;�1. That the diagonalhas no zero entry is 
lear, be
ause we started with a de
omposition of � =[01234℄ into [00033℄ + [01201℄, and a
ted with the same transpositions onboth ve
tors. But what is remarkable is that the matrix is lower triangular.Now, we 
an obtain relations by just evaluating s
alar produ
ts. For ex-ample, the expansion of x30003 is obtained from the matrix, and the evaluationof (x30003; x01201) = (x31204; 1), (x30003; x01021) = (x31024; 1), (x30003; x00121) =(x30124; 1), (x30003; x01012) = (x31015; 1) = 0, (x30003; x00112) = (x30115; 1) = 0.
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In the general 
ase, we pro
eed as follows.Given any two ve
tors u; v 2 Nn , let �uv� be the word in the biletters �uivi�.Given a partition � of n, re
all that we have de�ned a word y� by �lling itsdiagram (pa
ked in the North-East 
orner, parts of � being 
olumn lengths)with su

essive integers, starting from 0 in the bottom boxes, and then,reading su

essive 
olumns from left to right. Let u� = � � v� = [n�1 �v1; n�2� v2; : : : ; 0� vn℄.� = [422℄! 1 1 30 0 210y� = [10 10 3210℄ ! u� = [76543210℄�[10103210℄ 6 64 40 0 0 0u� = [66 44 000℄Let V� be the linear span of the orbit of xy� under Sn, and U� be the linearspan of the orbit of xu�.Lemma 21 Let � be a partition, u be any permutation of u�, v be any per-mutation of y�. Then(xu ; xv) 6= 0 i� �uv� � �u�v�� 
ommutatively :Proof. (xu ; xv) 6= 0 (and = �1) is equivalent to the fa
t that u + v is apermutation of �. But it is possible to get the 
omponents 0; 1; : : : ; �1�1only as 0 + 0; 0 + 1; : : : ; 0 + (�1�1). This determines �1 letters of the biword�uv�, and one pro
eeds by indu
tion on the length of �. QEDTake now the graph �� with its �rst labelling (the pla
ti
 
lass of y�),and a 
opy of it, that we denote �|� , taking now u� as top vertex. Denote by| the involution ex
hanging the labellings of verti
es (so that u� = y|� ).Lemma 22 Let u be a vertex of �|� , v be a vertex of ��. Then (xu; xu|) =�1. If (xu; xv) 6= 0, then v is smaller than u| for the lexi
ographi
 order,and u is smaller than v| for the right-lexi
ographi
 order.Proof. First, u + u| is a permutation of �. This proves the �rst assertion.Se
ondly, from lemma 21, we have that in the 
ase of non nullity of �uv�, forany b, then the set of biletters �b�� in �uv� is the same as in �u�y��. But in this lastbiword, the bottom letters are : : : ; 2; 1; 0. Therefore, any permutation of thebiletters � � � �b2��b1��b0� will give a word in the bottom letters lexi
ographi
allysmaller than ..................... QEDFor example, for .......................... but only v = ::::::::: are verti
es of ��.A more detailed analysis of the restri
tion of the quadrati
 form to U��V�is made in [3℄.Taking the lexi
ographi
 order on the verti
es of ��, and its image under| on the verti
es of �|� , one dedu
es from lemma 22 the following proposition.53



Proposition 23 Given a partition � of n, then the restri
tion of the 
anon-i
al quadrati
 form of Q [x1 ; : : : ; xn℄=Sym+ to U�� V� is a triangular matrixQ�, with a diagonal entries in f1; �1g.
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooJu
ys elements and the 
enter of the group algebra of Sn'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooGiven a non-
ommutative algebra, there are many ways to relate it tothe 
ommutative world. In this se
tion, we shall treat the related questionsof des
ribing the 
enter of the group algebra of Sn (i.e. the set of elementswhi
h 
ommutes with every permutation) and �nding a maximal 
ommuta-tive subalgebra.If g 2 Q [Sn ℄ 
ommutes with every permutation �, theng = � g ��1 = 1n! X�2Sn g = � g ��1 :Therefore, g is a linear 
ombination of 
onjuga
y 
lasses, and 
onversely, any
onjuga
y 
lass belongs to the 
enter Zn of Q [Sn ℄. As a result, one has :Lemma 24 Conjuga
y 
lasses are a linear basis of the 
enter Zn of Q [Sn ℄.The produ
t of two 
onjuga
y 
lasses is a sum of 
onjuga
y 
lasses.Des
ribing the multipli
ation 
onstants of Zn is not a straightforwardmatter, we shall see later how to do it with di�erential operators. Multipli-
ation of 
lasses 
an be translated into an operation on symmetri
 fun
tion,whi
h is implemented into ACE :ACE> ProdCC:= pro
(

1,

2) ## Enter 2 linear 
ombination of 
lassesTo
( SfCCProd(

1, 

2))end:ACE> ProdCC( 
[3,2,1℄,
[4,2℄);36 
[4,1,1℄+ 48 
[2,2,2℄+ 24 
[2,1,1,1,1℄+ 24 
[3,2,1℄+ 30 
[6℄Let us now look at 
ommutative sub-algebras. We shall follow Ju
ys[19℄, who des
ribed a Gelfand-Zetlin basis of the group algebra of su

essivesymmetri
 groups. Re
all that we embedded symmetri
 groups of su

essiveordersS1 ,! S2 ' S2 �S1 ,! S3 ' S3 �S1 : : :Sn�1 ' Sn�1 �S1 ,! Sn ;by identi�ying a permutation of Sk�1 to the permutation of Sk obtained byadding to it a �xed point k.The Gelfand-Zetlin sub-algebra Jn � Hn, n = 1; 2; : : : is the algebragenerated by the su

essive 
enters Z1; : : : ;Zn of H1; : : : ;Hn. It is 
lear55



that is 
ommutative. We shall see later that it is a maximal 
ommutativesub-algebra of Hn.Sin
e the sum of all transpositions belong to the 
enter, then Jn 
ontainsall elements Pi;j: i<j�k �ij, or equivalently the Ju
ys elements12�n := X1�i<j<n �in(it is 
onvenient to put �1 = 0).One 
an now use the Ju
ys elements to des
ribe the 
enter. We havealready said that it is linearly spanned by 
onjuga
y 
lasses. However, as analgebra, Farahat and Highman [8℄ have shown that the sumsPI:`(I)=n�k CI ,1 � k � n�1 generate it. Ju
ys proved the more pre
ise following property :Theorem 25 For ea
h k : 1 � k � n�1, the elementary symmetri
 fun
-tion �k(�1; : : : ; �n) of degree k in the Ju
ys elements is equal to the sumPI:`(I)=n�k CI of all 
onjuga
y 
lasses of length n�k (i.e. indexed by parti-tions of length n�k).For example, �1 = C21:::1�2 = C221:::1 + C31:::1�3 = C321:::1 + C41:::1� � � � � ��n�1 = CnProof. . By indu
tion on n, one has essentially to des
ribe the e�e
t ofmultipli
ation of a 
onjuga
y 
lass ofSn�1 by a transposition �in. If � 2 Sn�1has a 
y
le (a; : : : ; b; i; 
 : : :), then �in � will di�er from it just by the 
y
le(a; : : : ; b; i; n; 
 : : :).On the other hand,�k(�1 + � � �+ �n) = �k(�1 + � � �+ �n�1) + �n�k�1(�1 + � � �+ �n�1) :The �rst term 
orresponds to adding a 
y
le 
onstituted by n only, the se
-ond, to the multipli
ation by the sum of all transpositions involving n. QEDGiven Ju
ys' result , a natural question is : how to express the 
onjuga
y
lasses, whi
h 
onstitute the natural linear basis of the 
enter, as symmetri
polynomials in the �j's ?12the terminology Ju
ys-Murphy, or Murphy element is also used, the last one beingpredominent, but 
ontrary to the histori
al order; our 
hoi
e is meant to reestablish amore balan
ed average of 
itations. 56



We shall give, in the next proposition, a linear basis of produ
ts of ele-mentary symmetri
 fun
tions. For I a partition of n, and J := [j1; j2; : : : ; jk℄the 
onjugate partition, let�hIi := �j2 � � ��jk = �j2;:::;jn("produ
t" of the 
olumns of the diagram of I minus its �rst 
olumn).Proposition 26 The �hIi, jIj = n, 
onstitute a linear basis of Sym(�1; : : : ; �n),and the matrix of 
hange of basis is triangular by blo
ks (taking the naturalorder of partitions on the 
onjuga
y 
lasses CJ , and taking an order on the�hIi's, su
h that the weight jIj is in
reasing).For example, for n = 4; 5; 6, ACE 
omputes266666664

1111 
211 
22 
31 
4�h0i 1 : : : :�h1i : 1 : : :�h11i 6 : 2 3 :�h2i : : 1 1 :�h3i : : : : 1

377777775
26666666666664


11111 
2111 
221 
311 
32 
41 
5�h0i 1 : : : : : :�h1i : 1 : : : : :�h11i 1 : 2 3 : : :�h2i : : 1 1 : : :�h21i : 9 : : 4 6 :�h3i : : : : 1 1 :�h4i : : : : : : 1
3777777777777526666666666666666666664


111111 
21111 
2211 
3111 
222 
321 
411 
33 
42 
51 
6�h0i 1 : : : : : : : : : :�h1i : 1 : : : : : : : : :�h11i 15 : 2 3 : : : : : : :�h2i : : 1 1 : : : : : : :�h111i : 51 : : 6 9 16 : : : :�h21i : 14 : : 3 4 6 : : : :�h3i : : : : 1 1 1 : : : :�h22 85 : 28 37 : : : 11 12 20 :�h31i : : 13 12 : : : 6 7 10 :�h4i : : : : : : : 1 1 1 :�h5i : : : : : : : : : : 1

37777777777777777777775The inverse matri
es are
57



2666664 1 : : : :: 1 : : :6 : �1 3 :�6 : 1 �2 :: : : : 1
3777775

266666666664
1 : : : : : :: 1 : : : : :10 : �1 3 : : :�10 : 1 �2 : : :: 9=2 : : �1=2 3 :: �9=2 : : 1=2 �2 :: : : : : : 1

377777777775266666666666666666664
1 : : : : : : : : : :: 1 : : : : : : : : :15 : �1 3 : : : : : : :�15 : 1 �2 : : : : : : :: �4 : : 2 �7 10 : : : :: 13 : : �3 10 �12 : : : :: �9 : : 1 �3 3 : : : :54 : �7 18 : : : 3=5 �8=5 4 :�67 : 9 �19 : : : �4=5 9=5 �2 :13 : �2 1 : : : 1=5 �1=5 �1 :: : : : : : : : : : 1

377777777777777777775
Commutation relationsIt is immediate to 
he
k that the Ju
ys elements satisfy the followingrelations �k+1 sk � sk �k = 1 & �k si = si �k ; jk � ij > 1 : (40)Suppose now that h 2 Hn is an eigenve
tor for �1; : : : ; �n, with eigenvalues
1; : : : ; 
n : h �i = h 
i ; 1 � i � n : (41)Then one 
an easily generate other eigenve
tors :Lemma 27 Let h 2 Hn be a simultaneous eigenve
tor for the Ju
ys ele-ments, with di�erent eigenvalues 
1; : : : ; 
n. Then, for any i : 1 � i < n,g := h (si+ 1
i+1�
i ) is also eigenve
tor, with the same eigenvalues as h, ex
eptg �i = g 
i+1 & g �i+1 = g 
i :58



Proof. Be
ause of the 
ommutations (40), g is an eigenve
tor for all �j, j 6=i; i+1, with same eigenvalues as f . On the other handh�si + 1
i+1 � 
i� �i = h (xii+1 si + 1 + �i 1
i+1 � 
i= h�
i+1(si + 1
i+1 � 
i ) + �
i+1 + 
i+1 � 
i + 
i
i+1 � 
i � = g 
i+1 ;and the produ
t g�i+1 is determined by the fa
t that �i+�i+1 
ommutes withsi. QEDWe shall need more 
ommutation relations.Lemma 28 Let i; j; k three integers, 1 � i � k � j; let gi; gi+1; : : : ; gj belongto the algebra generated by the Ju
ys elements. Thensigisi+1si+1 � � � sjgj �k = �k+1 sigisi+1gi+1 � � � sjgj� sigisi+1 � � � gk�1 ; gksk+1 � � � sjgj : (42)Proof. The element �k 
ommutes with all the fa
tors of the right of si; now,si�i = �i+1si � 1 and �i+1 is free to rea
h the extreme left. QEDPNP and Ju
ys elementsTo �nd orthogonal idempotents starting from natural representations,Young used the elements13 P (t)N(t)P (t), for tableaux with rows �lled of
onse
utive integers, instead of taking P (t)N(t) or N(t)P (t).We are going to show that these elements have many remarkable proper-ties; they are, in parti
ular, two-sided eigenve
tors with respe
t to the Ju
yselements.Re
all Young's relations14 :N(t)P (t)�1 +Xa2A �a;b� = 0 ; (43)for any 
hoi
e of two rows of t, a varying over all the entries of a row, and bbelonging to a row of not bigger length.Given an integer k, then the Ju
ys element �k is the sum of all trans-positions whi
h ex
hange k with elements of lower rows, plus transpositions13P (t)N(t)P (t) 6= 0, be
ause P (t)N(t)P (t)N(t) = n!=dim(�)P (t)N(t), when t is ofshape �.14no signs, be
ause we took N(t)P (t) instead of P (t)N(t); Young's relations involve two
onse
utive parts of a 
omposition, or equivalently by 
onjugation, any pair of rows of atableau. 59



ex
hanging k with elements in the same row. For ea
h of the lower rows, onehas N(t)P (t) Pa �ak = �N(t)P (t), and ea
h transposition preserving therow where k lies is su
h that N(t)P (t) �ak = N(t)P (t). Summing up, andusing left and right multipli
ation, one obtains the following proposition :Proposition 29 Let t be a tableau with rows �lled of 
onse
utive integers(
all it a bottom tableau). Then P (t)N(t)P (t) is a two-sided eigenve
tor ofall the Ju
ys elements, with�i P (t)N(t)P (t) = 
(i; t)P (t)N(t)P (t) = P (t)N(t)P (t) �i ; (44)where 
(i; t) is the 
ontent of the box of t 
ontaining i, i.e. the distan
e of ito the main diagonal.In parti
ular, all the Ju
ys elements 
ommute with P (t)N(t)P (t).Yang-Baxter graphs and eigenve
torsGiven a partition �, we shall take again the Yang-Baxter graph ��, ver-ti
es being labelled by the 
ontent ve
tor. We shall still label ea
h edgev ! v si by the fa
tor �si + 1�� 1p1� ��2 ;where � = vi � vi+1 (noti
e the 
hange of sign !).Let t� be the bottom tableau of shape �. For any other tableau t of thesame shape, de�ne �(t�; t) to be the produ
t of the edges of any path t� ! t,and e�(t�; t) to be its image under the antiautomorphism of H indu
ed by� ! ��1. If �(t�; t) = �si + 1�� 1p1���2 � � ��sk + 1
� 1p1�
�2 , then e�(t�; t) =�sk + 1
� 1p1�
�2 � � � �si + 1�� 1p1���2 .Let et�t� be the idempotent proportional to P (t�)N(t�)P (t�). For anypair t; t0 of tableaux of shape �, de�neett0 = e�(t�; t) et�t� �(t�; t0) : (45)ThenTheorem 30 The n! elements ett0 , t; t0 standard tableaux of the same shape,are (non zero) two-sided eigenve
tors of Ju
ys elements, with eigenvalues�i et;t0 = 
(i; t) et;t0 & et;t0 �i = et;t0 
(i; t0) : (46)They are a linear basis of H and multiply as matrix units, i.e.et;t0 et0;t00 = et;t00 & et;t0 eu;t00 = 0 if u 6= t0 (47)60



Proof. For two tableaux of shape �, the et;t0 are obtained by multiplying theet�t� with invertible fa
tors, and therefore are non-zero. The 
ommutationrelations given by Lemma 27 show that�i et;t0 = 
(i; t) et;t0 & et;t0 �i = et;t0 
(i; t0) ;be
ause it is true for et�t�. Noti
e that it implies that the Ju
ys elements
ommute with all the diagonal elements ett. Moreover, the ett are also idem-potents.Sin
e the \
ontent ve
tors" are all di�erent, the et;t0 are linearly indepen-dent, and therefore, 
onstitute a linear basis of H.Sin
e P (t)N(t)HP (t0)N(t0) = f0g if t and t0 are not of the same shape,then et;t0 eu;u0 = 0 if t and u have not the same shape.Given any tableau of shape �, a produ
t et�t ett� = �e�(t�t)��1 ettett (�(t�t))�1is di�erent from 0. Multiplying it on the right and on the left by invertiblefa
tors, it implies that any produ
t et0tett00 is non zero. But it is a left andright eigenve
tor of the Ju
ys elements, and therefore, proportional to et0t00 .Sin
e ett is an idempotent, e�(t�t) et�t��(t�t)e�(t�t)et�t� = e�(t�t)et�t��(t�t), andet�t��(t�t)e�(t�t)et�t� = �(t�t)et�t� . One 
on
ludes that the fa
tor of propor-tionality is 1.In the 
ase of four tableaux t0; t; u; t00 of shape �, one writes the produ
tet0teuu0 as et0tetteuueut00 . If t 6= u, at least one �i has a di�erent eigenvalue onett and euu. But �i etteuu = ett �i euu, and therefore the produ
ts etteuu andet0teuu0 are null.
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Yang PolynomialsGiven a partition �, letu := [(�2+ � � �+�n)�1 ; (�3+ � � �+�n)�2 ; (�4+ � � �+�n)�3 ; : : : ; 0�n℄ ;and let t� be the bottom tableau of shape �. The monomial xu is equal tothe S
hubert polynomial Yu, and is invariant under the Young subgroup S�.In fa
t, from the theory of S
hubert polynomials, one easily obtain thefollowing 
hara
terization of Yu.Lemma 31 Let f be the 
lass of an homogenous polynomial of degree juj inthe quotient ring HH := C [x1 ; : : : ; xn℄=Sym+. If f is invariant under S� ,then it is proportional to the S
hubert polynomial Yu.Denote by �! = �1!�2! � � � the order of S�. The element P (t�)N(t�)P (t�)is a quasi-idempotent :(P (t�)N(t�)P (t�))2 = n!�!dim(�) P (t�)N(t�)P (t�) :Let e� be the idempotent proportional to P (t�)N(t�)P (t�):e� = dim(�)n!�! P (t�)N(t�)P (t�) :Lemma 32 The 
lass of the monomial xu in HH is invariant under e�.Proof. Clearly PNPxu is invariant under the left multipli
ation by elementsof S�. Therefore e� xu is proportional to xu. But the two modules H xu andHP (t�)N(t�)P (t�) are isomorphi
, and therefore the equalityP (t�)N(t�)P (t�)P (t�)N(t�)P (t�) = 
 P (t�)N(t�)P (t�)implies that P (t�)N(t�)P (t�) xu = 
 xu for the same 
onstant 
. QEDLet �� be the normalized Yang-Baxter graph for the partition �. Anyedge v ! v si is now labelled�si + 1�� �p�2 � 1 with � = jvi � vi+1j :Given any tableau t of shape �, let e�t and �t be respe
tively a path fromt to t�, and a path from t� to t (evaluated, as usual, as the produ
t of thelabels of its edges).De�ne, for any tableau t the Yang polynomial bt to bebt := e�t xu : (48)62



Theorem 33 Let � be a partition, and �! = �1!�2! � � � be the order of S�.Then for any pair of tableaux of shape �, one hasP (t�)�t0 bt � 0 ; t 6= t0 & 1�!P (t�)�t0 bt � xu : (49)Proof. P (t�)�t0 bt is proportional to xu, therefore, proportional toP (t�)N(t�)P (t�)�t0e�tP (t�)N(t�)P (t�)xu. The fa
t that the produ
t of thetwo idempotents e�t0 e� �t0 and e�t e� �t is 0 or e�t e� �t whether t 6= t0, or notimplies the theorem. QEDCorollary 34 Every polynomial in the spa
e H xu de
omposes uniquely inHH as f � Xt2Tab(�)� 1�! xuP (t�)(�t f)� bt : (50)
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooYoung idempotents as limits of Yang-Baxter elements'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooWe have already seen that Young matri
es are a solution of Yang-Baxterequation, and that Young orthogonal idempotents involve produ
ts of fa
torsof the type sk + 1
(t; k)� 
(t; k + 1)in whi
h the 
ontents 
(t; k) of standard tableaux appear (we have impli
itelyused the fa
t that that no two 
onse
utive 
ontents are equal).Another way to relate Young idempotents and Yang-Baxter elements isdue to Ju
ys and has been developped by Cherednik.It 
onsists mostly in taking only one Yang-Baxter element, the elementindexed by !, and in spe
ializing in it the ve
tor of spe
tral parameters toall the 
ontent ve
tors of standard tableaux. But, be
ause 
ontents are notall di�erent, the spe
ialization is not straightforward and must be obtainedas a limit.Thus, let us �rst "polarize" the 
ontents by using extra variables �1; : : : ; �nand puting, for a letter k in row i of a tableau t
+(k; t) := 
(k; t) + �i : (51)We 
an now use these modi�ed 
ontents as parameters in Yang-Baxterelements, sin
e they are all di�erent. Ju
ys [19℄ gave an inpre
ise version ofthe following theorem15, but this was 
orre
ted by Cherednik [?℄.Theorem 35 (Ju
ys-Cherednik) Let � be a partition of n, t be the bottomtableau of shape �. Then the limit ofY!(
+(1; t); : : : ; 
+(n; t))when all the �i tend towards 0, exists and is equal, up to a non zero fa
tor,to the Young element P (t)N(t)P (t)! :Nazarov has made a detailed analysis of why the above Yang-Baxter ele-ment has no pole (and extended his analysis to 
over the spin representationsof the symmetri
 group). Independently, [JMKO℄ 
hara
terized the left and15he took di�erent �'s for ea
h box of a diagram, and let all �'s tend independentlytowards 0. The limit does not exist in general for unrelated �'s.64



right ideals generated by the limit of Y! and thus provided another proof ofTheorem ??.We prefer to show that one 
an avoid getting involved into sophisti
atedstudies of limits, by just extending Yang-Baxter relations in su
h a way asto 
over the limit 
ase.We �rst noti
e that the limit of(s1 � 1) (s2 + 1� ) �s1 + 1�� 1�for �! 0 exists and is equal to (s1� 1) (s2s1� s2� 1), and, by symmetry, isalso equal to (s2s1 � s1 � 1) (s2 � 1). Therefore, one has(s1 � 1) (s2s1 � s2 � 1) = (s2s1 � s1 � 1) (s2 � 1) : (52)Thus, fa
tors of the type (s1 + 1)(s2s1 � s2 � 1) 
an be used instead ofthe troublesome (s1 + 1)(s2 + 1� ) �s1 + 1��1�.To be able to handle these spe
ial fa
tors in Yang-Baxter produ
ts, weneed to repla
e 
ommutations of the following type (the numbers 1,2,3 standfor any triple of 
onse
utive numbers, and � is a non-zero 
onstant) :�(s3 + 1�)(s2 + 1�� 1)(s1 + 1� )��(s3 + 1�� �� 1)(s2 + 1�� �)� =�(s2 + 1�� �� 1)(s1 + 1�� �)��(s3 + 1�� 1)(s2 + 1� )(s1 + 1�)� (53)by�(s3 + 1�)(s2s1 � s1 � 1)��(s3 + 1�� � 1)(s2 + 1��)� =�(s2 + 1�� � 1)(s1 + 1��)��(s3s2 � s2 � 1)(s1 + 1�)� (54)Yang-Baxter relations will be repla
ed by (52), (54) whenever spe
ialfa
tors are involved. We still 
an write enough Yang-Baxter type produ
tsto produ
e elements whi
h 
an be 
hara
terized by some of their right andleft possible fa
tors (in the group algebra)16.We are now ready to de�ne an element depending on parameters x1; : : : ; xnwhi
h 
an be spe
ialized to the 
ontents of any standard tableau with n boxes.16Re
all for example that the Yang-Baxter element Y!(x1; : : : ; xn) is, up to a s
alar, theonly element in Hn whi
h admits any si + 1=(xi+1 � xi) as a right or left fa
tor.65



De�nition 36 Given a partition J of n, let w = (�n�1 � � ��1)(�n�1 � � ��2) � � � (�n�1)be the maximal17 redu
ed de
omposition of !n. Then the Young-Yang elementof index J, YJ , is obtained as follows.Write the Yang-Baxter produ
t 
orresponding to w, spe
ialize the param-eters to the 
ontents of the diagram of J, but repla
e ea
h double fa
tor ofthe type (s� 1)(s0� 1=0), with s and s0 
onse
utive simple transpositions, bya fa
tor (ss0 � s� 1).This de�nition makes sense be
ause for the 
hoosen redu
ed de
omposi-tion, a fa
tor ss0 � 1=0 has always as a left neighbour a fa
tor s � 1. One
an in fa
t 
hara
terize all the redu
ed de
ompositions of ! having this prop-erty, and 
onsequently one is able to use all of them instead of taking only a
anoni
al redu
ed de
omposition.However, we need only have enough de
ompositions to be able to 
hara
-terize the Young-Yang element by its possible left and right fa
tors si + 1=�of degree 1, and we shall not 
onsider all possible fa
torizations of the Young-Yang element.Lemma 37 Let YJ be a Young-Yang element. Let [a + 1; : : : ; a+ k℄ be anyrow of the bottom tableau tJ of shape J. Then (sa+1 + 1); : : : ; (sa+k + 1) areleft fa
tors of YJ in the group algebra. Moreover, if the row is not the topone, then (sa+k � 1k )(sa+k�1 � 1k � 1) � � � (sa+1 � 1)is a left fa
tor of YJ .Proof. Suppose by indu
tion that the lemma is true for the partition I ob-tained from J by de
reasing by 1 its smallest part. Let YIy the image of YIunder the embedding Sn�1 7! S1 �Sn�1, n = jJ j. ThenYJ = (sn�1 + ?) � � � (s1 + ?)YIy ;where there are in the extra left fa
tor, as many fa
tors of the type (ss0�s�1)as there are entries other than n in the diagonal o

upied by n in tJ . Morepre
isely, apart from the 
ase of the top row, the subfa
tor involving theindi
es a+ 1; : : : ; a+ k is of the type(sa+k+ 1b�k ) � � � (sa+b+2+ 1�2) (sa+b+1sa+b�sa+b�1) (sa+b�1+11) � � � (sa+1+ 1b�1) :We know by indu
tion on n that (sa+2+1); : : : ; (sa+k+1) are left fa
torsof YIy , and so is (sa+2 � 1k )(sa+3 � 1k�1) � � � (sa+k+1 � 11).17with respe
t to the lexi
ographi
 order66



But the extended Yang-Baxter equations allow us to 
ommute these fa
-tors with (sa+k + 1=(b�k)) � � � (sa+1 + 1=(b�1)), produ
ing just a de
rease byone of the indi
es of the simple transpositions s. QEDFor example, let J = [5; 6; 10℄. The tableau tJ and its 
ontents are17 � � � 2111 � � � 15 161 � � � 5 6 � � � 10 �2� � � 2�1� � � 3 40 � � � 4 5 � � � 9The Young-Yang element fa
torizes into(s20 + 12� 1)(s19 + 12� 0)(s18 + 12� (�1))(s17 + 12� (�2))(s16 + 12� 4)(s15s14 � s14 � 1)(s13 + 12� 1)(s12 + 12� 0)(s11 + 12� (�1))(s10 + 12� 9) � � � (s5 + 12� 4)(s4s3 � s3 � 1)(s2 + 12� 1)(s1 + 12� 0)times Y4;6;10.We 
an now present an alternative to the result of Ju
ys and Cherednik.Theorem 38 Let J be a partition, tJ be the bottom tableau of shape J. Thenthe Young-Yang element YJ is equal to P (tJ)N(tJ)P (tJ)!, up to a non-zeros
alar.Proof. We shall 
he
k that YJ satis�es the left and right vanishing propertieswhi
h 
hara
terize P (tJ)N(tJ)P (tJ).Let i be an integer su
h that �i 2 SJ . Then si + 1 is a left fa
tor of YJand therefore (si � 1)YJ is null for all those i.Take now a row of tJ : a

ording to Lemma 37, one 
an fa
torize on theleft y := (sa+k � 1k)(sa+k�1 � 1k�1) � � � (sa+1 � 1). But the produ
t (sa+1 +1)(sa+2+ 12 � � � (sa+k+ 1k) y redu
es to (sa+1+1)(1� 1k2 ) � � � (1� 122 )(sa+1� 1),and thus is is null : the two modules HYJ and HP (t)N(t) are isomorphi
.The same reasoning applies to the fa
tors that one 
an extra
t from theright of YJ , up to the reversal of the parameters 
(1; tJ); : : : 
(n; tJ). Theseright and left vanishing properties show that YJ is equal, up to a fa
tor, toP (tJ)N(tJ)P (tJ)!. The leading term of YJ is !, and thus the 
oeÆ
ient of!! = 1 in P (t)N(t)P (t) determines the fa
tor of proportionality. QEDWe have already seen that P (tJ)N(tJ)P (tJ) is equal to the produ
t ofP (tJ)N(tJ) by invertible fa
tors s+1=
, 
 =2 f0;�1g. Thus from YJ , one 
anget P (tJ)N(tJ). This 
orresponds to starting with a redu
ed de
omposition67



of another permutation than the maximal one, or extra
ting fa
tors fromthe right of YJ . One 
ould as easily produ
e the idempotents 
orrespondingto other tableaux than the bottom one tJ . All these expressions are dire
tlyobtained from YJ and we shall not bother the reader with unne
essary details.For example, when J = [2; 2℄, the 
ontent ve
tor is [0; 1; �1; 0℄, spe
ializa-tion of [0; 1; �1; �℄. The Young-Yang element is(s3 + 1)�s2s1 � s1 � s1�(s3 � 12)(s2 � 1)(s3 + 1)whi
h is indeed the expression obtained from the maximal Yang-Baxter ele-ment (s3 + 11 + �)�(s2 + 1�� 1)(s1 + 1� )�(s3 � 1=2)(s2 � 1)(s3 + 1) :Using the 
omutations ? , it 
an also be written(s3 + 1)(s1 + 1)�s2s1 � s2 � s1�(s3 � 12)(s2 � 1)(s3 + 1) ;expression whi
h shows that P (t22) 
an be fa
torized on its left (we have tomultiply it by the permutation ! = [4; 3; 2; 1℄ to be able to fa
torize P (t22)on the right).On the other hand, the element PNP , for the tableau 3 41 2 , is equal to�2143s2r2143s2�2143 = 4 + � � �and therefore 4Y22 ! = P (t22)N(t22)P (t22) :
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooGelfand-Zetlin bases, and Ju
ys-Murphy 
onstru
tion'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooThe requirement to build re
ursively obje
ts for su

essive symmetri
groups Sn 
ompatible with the embeddings Sn ,! Sn+1 is a very strong
ondition, and determines these obje
ts as soon as one �xes them for the
ase of S2.Let us �rst look at orthogonal idempotents.Taking all standard tableaux t, Young asso
iated to them quasi-idempotentsP (t)N(t). These quasi-idempotents are not mutually orthogonal; for a pair oftableaux t; t0 of the same shape, one 
an have non-zero produ
ts P (t)N(t)P (t0)N(t0).Young des
ribed 
ompli
ated bran
hing rules for these quasi-idempotents18 We des
ribe this 
onstru
tion of Young in the appendix.Moreover, Young gave an orthogonalisation pro
ess, but unfortunatelyhis des
ription is 
ompli
ated, not really fully expli
ited and not 
anoni
albe
ause he leaves the 
hoi
e of di�erent orderings of tableaux.Thrall [38℄ gave a simpler 
onstru
tion whi
h is 
learly 
ompatible withthe bran
hing pro
ess.For a standard tableau t of n letters, let tnn denote the tableau obtainedby erasing the letter n.Following Thrall, de�ne elements ft, where t runs over all standard tableaux,re
ursively by : 
(t) ftnn(t)P (t)N(t) ftnn ; (55)putting e1 = 1 for the tableau with 1 box, 
(t) being a 
ertain spe
i�
 non-zero 
onstant that we shall make pre
ise later.For any pair of tableaux t; t0 of the same shape, let nowftt0 = 
(t; t0) ft �(t; t0) ft0 & ftt = ft ; (56)where �(t; t0) is the permutation (t)�1t0 (
onsidering standard tableaux aspermutations), and 
(t; t0) some spe
i�
 
onstant.Theorem 39 (Thrall) The produ
ts f(t)f(t0) are null if t 6= t0.For tableaux of the same shape u; t; t0; u0, then the produ
ts eut et0u0 arenull if t 6= t0.There exist of 
hoi
e of the 
onstants �(t); �(t; t0) su
h that f(t)2 = f(t),and fut ftu0 = fuu0, i.e. su
h that the ftt0 are matrix units.18Of 
ourse, at the level of 
hara
ters only, the rule is very simple, redu
ing to addinga new box to a diagram, in all possible positions. But this does not give the relationsbetween the elements P (t)N(t) and P (t0)N(t0) when t0 is obtained by adding a letter to t.69



Proof. If t and t0 have not the same shape, then we have seen thatP (t)N(t)HP (t0)N(t0) = 0, and therefore ftft0 = 0. Supposing now t and t0to have the same shape, but be di�erent, then tnn is not equal to t0nn, andby indu
tion on n one has ftnnft0nn = 0. This implies in turn that ftft0 = 0and fut ft0u0 = 0.To 
he
k that the elements f(t) are non zero, and that there exist 
on-stants su
h that they are idempotents, we shall show that they are non-zeromultiples of the elements ett seen in the pre
eding se
tion.Let �n = P1�i<j�n. We have seen Young quasi-idempotents P (t)N(t)and N(t)P (t), for any tableau t, are two-sided eigenve
tors for this 
entralelement : �n P (t)N(t) = P (t)N(t) �n = (Xi 
(i; t))P (t)N(t) : (57)Noti
e that the sum of all 
ontents Pi 
(i; t) does not depend on t, but onlyon the shape � of t. Let us denote it 
(�).We shall now exploit one of the main feature of Gelfand-Zetlin bases. Inthe present 
ase, it will be that the property satis�ed by (�n; t), for t with nboxes, will be valid for any pair (�n; t).Proposition 40 The ftt0 are two-sided eigenve
tors for the Ju
ys elements.One has, for all i = 1; : : : ; n,�i ftt0 = 
(i; t) ftt0 ; ftt0 �i = ftt0 
(i; t0) : (58)Proof. Supposing the theorem to be true for n � 1, then we know that ftt0is a two sided eigenve
tor for �1; : : : ; �n�1, with eigenvalues the 
ontents of1; : : : ; n�1. But we know from (57) that ftt0 is also a two sided eigenve
torfor �n with eigenvalue 
(�), and it implies that it is a two-sided eigenve
torfor �n with the 
ontents of n in t and t0 as eigenvalues on the left and on theright respe
tively. QEDCorollary 41 Thrall elements ftt0 are non zero-multiple of the units ett0 de-�ned in ?Ju
ys-Murphy 
onstru
tion of idempotentsThe 
hara
terization of the elements ett as two-sided eigenve
tors for allthe �i's naturally lead to another re
ursive de�nition of them, due to Ju
ys,then Murphy. 70



Given a standard tableau u with n�1 boxes, let Sons(u) := fv : vnn = ugbe the set of all standard tableaux obtained by adding a letter n to u. Givensome t 2 Sons(u), we 
all the other v 2 Sons(u) the brothers of t and denotetheir set Broth(t).De�ne re
ursively elements gt indexed by standard tableaux by :gt := gtnn Yv2Broth(t) �n � 
(n; v)
(n; t)� 
(n; v) : (59)Theorem 42 The gt are two-sided eigenve
tors for the Ju
ys-Murphy ele-ments and 
oin
ide with Young's orthogonal idempotents ett.Proof. Let �(x1; : : : ; xn) be any polynomial in n variables. Then, be
ause theeuv are eigenve
tors of the Ju
ys elements, one has for every pair of tableaux(u; v) with at least n boxes :gt(�1; : : : ; �n) euv = gt(
(1; u); : : : ; 
(n; u)) euv ;euv gt(�1; : : : ; �n) = euv gt(
(1; v); : : : ; 
(n; v)) ;i.e. the produ
t of euv by gt is obtained by repla
ing ea
h �i by the 
ontentof i in u or v.But, by 
onstru
tion gt(
(1; u); : : : ; 
(n; u)) vanish if the restri
tion of u ton boxes does not 
oin
ide with t. Sin
e feu;vg, where (u; v) runs over all pairsof standard tableaux of the same shape with n boxes is a linear basis of Hn,the gt 
oin
ide with the ett up to a s
alar fa
tor. However, ett is invariant bymultipli
ation by any fa
tor (�i�y)=(
(i; t)�y), for any y 6= 
(i; t). Thereforeettgt = gtett = ettand gt 
oin
ide with ett. QEDBoth Ju
ys and Murphy kept in the expression of the gt in terms of Ju
yselements unne
essary fa
tors, de�ning elements f 0t by the following re
ursiong0t := f 0tnn �n � n
(n; t)� n � � � \�n � 
(n; t0 � � � �n + n
(n; t) + n ; (60)with the fa
tor having 0 in denominator omitted.Of 
ourse, be
ause gt is an eigenve
tor, multiplying it by extra fa
tors(�i�y)=(
(i; t)�y) does not 
hange its value, as long as y 6= 
(i; t) and thereforeg0t = gt.Ju
ys and Murphy's proof that the g0t are simultaneous eigenve
tors, with-out assuming previous knowledge of the ett, mostly redu
es to 
he
king thefollowing lemma : 71



Lemma 43 Let Pn(x) := (x� n) � � �x � � � (x+ n). Then for any i � n,Pn(�i) = 0 :Proof. By indu
tion on n, one has Pn(�i) = 0, i < n. The 
entral elementPn(�1) + � � �+ Pn(�n) is thus equal to Pn(�n), and it is 
hara
terized by thevalue of its restri
tion to a 
opy of ea
h irredu
ible representation. But wehave already seen that Young's relations give in ea
h representation elementswhi
h are eigenve
tors of all �i's, with whi
h one 
an 
he
k the extra nullityof Pn(�n). QEDJu
ys and Murphy expression of idempotents 
learly en
odes the fa
t thatthey are eigenve
tors, with eigenvalues the 
ontents. It also shows that theett0 are a Gelfand-Zetlin basis. However, it has disadvantages. Developingexpressions (59) or (60) in Hn is 
ostly, be
ause of the number of fa
tors,and be
ause ea
h Ju
ys element is a sum of transposition.On the other hand, with Yang-Baxter elements, we need only 
ompute,for ea
h shape �, the element P (t�)N(t�)P (t�) (whi
h is obtained by enu-meration of double 
osets, and not by produ
ts in Hn), and then we obtainthe other idempotents by multipli
ation by fa
tors of the type (si + 1=x)a

ording to the Yang-Baxter graph ��.
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'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooNotes'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'oooooo 'ooooooSpa
es of Tableaux and Garnir relationsMany spa
es that we obtained 
an be identi�ed with linear spans oftabloids of a given shape, the symmetri
 group a
ting by permutation ofthe entries of the tabloids.Tabloids are not linearly independent, and we want the relations that theysatisfy to be su
h that tableaux be a linear basis. Young gave su
h relations,using di�erent approa
hes depending on the type of representations he wasdes
ribing.The simplest relations have been des
ribed by Garnir [14℄, but in fa
t, arespe
ial 
ases of 
lassi
al relations between minors, and also of generalizationsof the Lagrange interpolation formula.Suppose for the moment that tabloids satisfy the following relations :1. They are invariant under permutations preserving rows.2. Given two 
onse
utive rows of lengths p; q (p � q) of a tabloid t, letA be the entries of the �rst row, B [ C the entries of the se
ond row,with 
ard(A) + 
ard(C) = q + 1. ThenX�2S(A[C) � (t) = 0 : (61)Be
ause tabloids are invariant under permutations in rows, instead ofsumming on the group S(A[C), one needs only enumerate 
omplementarysubsets (written in
reasingly) A0; C 0, repla
ing A by A0 and C by C 0 in t.For example, for p = 2; q = 3, A = fa1; a2g, A = f
1; 
2g, the sum onthe symmetri
 group S(a1; a2; 
1; 
2) is equal to 2! � 2! the sum on pairs of
omplementary subsets of 
ardinality 2.a1 a2b 
1 
2 + a1 
1b a2 
2 + a1 
2b a21 
1 + a2 
1b a1 
2 + a2 
2b a1 
1 + 
1 
2b a1 a2 = 0 :Let � be a partition, Tbl(�) the set of tabloids of shape �. Then thefollowing proposition shows that Garnir relations are suÆ
ient to expressany tabloid in terms of tableaux. 73



Proposition 44 Let n be an integer. Let V be an Sn-module, linearlyspanned by tabloids invariant under permutations in rows, and satisfyingrelations (61). Then any tabloid is a linear 
ombination of tableaux of thesame shape.Proof. De�ne a violation ............. Taking an extremal violation (with respe
tto the order on the plane, that is there is no other violation in its North-East
orner), then using Garnir relation ... QEDNoti
e that we have not forbidden tableaux to be linearly dependent.Usually, one �rst 
he
ks dire
tly their independen
e. The usual strategy forthe se
ond step is to prove that there is no non-zero morphism between spa
esof tabloids of di�erent shapes, and to use some general results on representa-tions of �nite groups on C , to 
on
lude that the above spa
es are irredu
iblerepresentations, and that every irredu
ible representation of the symmetri
group is isomorphi
 to one of su
h spa
es. However, we prefered to explainhow Young 
onstru
ted expli
it representations without any knowledge ofgroup theory.Let us review the di�erent interpretations of Garnir's relations, or ofsimilar relations, that we have en
ountered.Let us begin with the group algebra. We take an in
reasing partition J ,and I a 
omposition (weakly) 
onjugate to J . Filling the diagram of J with
onse
utive numbers, from top to bottom, we isolate a pair of 
onse
utiverows of lengths p; q, p � q,[: : : ; �; : : : ; �℄ ; [�+1; : : : ; 
; : : :℄taking �; 
 in su
h a way that 
 � � � q. Then, one has (??)r!I H�!0 �!J = 0 ; (62)where !0 = [1; : : : ; ��1; 
; : : : ; �; 
+1; : : :℄ (and therefore, �!0 =P�2S(�;:::;
)).Be
ause one 
an fa
tor P�2S(�;:::;�) � �P�2S(�+1;:::;
) � on the left of �!J ,the pre
eding relation 
an be redu
ed tor!I HX� ��!J = 0 ; (63)where � runs over 
osets representatives ofS(�; : : : ; 
)=S(�; : : : ; �)�S(�+1; : : : ; 
).For example, writing the letters whi
h 
ommute freely between themselvesin boldfa
e, one has the following relation (� = 5; � = 7; 
 = 12) :0 =X 1 2 34 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 21 22 $ r!44432221 H�1234 12:::5 15:::22�!3478 = 0 :74



Multiplying from the right the left hand side by any permutation �, onegets a relation involving permutations of letters in 
onse
utive rows of anarbitrary tabloid of shape J .We also des
ribed representations in the quotient ring C [x1 ; : : : ; xn℄=Sym+,and needed Garnir relations in this set-up. To a partition J we asso
iated amonomial xu, with u = [� � � (�1 + �2)�3 ; ��21 ; 0�1 ℄, � = de
reasing reorderingof J , and we obtained xu�!0 � 0 ; (64)taking the same de�nition of !0 as in (62). Again, one 
an redu
e the summa-tion to 
osets representatives ofS(�; : : : ; �)�S(�+1; : : : ; 
)nS(�+1; : : : ; 
),in whi
h 
ase the a
tion of �!0 
an be interpreted as a summation on 
om-plementary subsets of �xed 
ardinality.There are other possible equivalent families of relations than (64). Onehas for example the following lemma.Lemma 45 Let � be a de
reasing partition of n, � be the ve
tor � = [; 0; �1; �1+�2; �1 + �2 + �3; : : :℄, u = [��11 ; ��22 ; ��33 ; : : :℄. For any integer j < `(�), anyk : 1 � k � �j+1, let v be the ve
tor obtained from u by 
hanging the blo
k��j+1j+1 into �kj ��j+1�kj+1 . Thenxu � xv  �kj (x�j+1; : : : ; x�j+�j ) mod Sym(x1; : : : ; xn) : (65)For example, for � = [5; 4; 3; 3℄, and j = 2, k = 2, one has � = [0; 5; 9; 12℄,u = [0; 0; 0; 0; 0; 5; 5; 5; 5; 9; 9; 9; 12; 12; 12℄,v = [0; 0; 0; 0; 0; 5; 5; 5; 5; 5; 5; 9; 12; 12; 12℄. The relation isxu � xv 	44(x6; x7; x8; x9) mod Sym(x1; : : : ; x15) :In other words, one has in
reased by 4 in all possible manners the exponentsin xv of two of the indeterminates x6; x7; x8; x9.Identify now a 
olumn A = [a1; : : : ; ak℄ with the Vandermonde �(A) =Qi<j(xai � xaj ), and a tabloid with the produ
t of its 
olumns. For the two-
olumns tableau t = �... Æ... ...� 
... ...1 �+1 the original Garnir relations, relative to Spe
htrepresentations, areX�(�1)`(�)���(�; : : : ; 1)�(Æ; : : : ; �+1)� = 0 : (66)75



As before, the summation 
an be redu
ed to 
osets representatives, and onestill has nullity when taking two arbitrary 
olumns (
onse
utive or not, butordered by length) in a tabloid. The other 
olumns introdu
e a 
onstantfa
tor, and by 
onjugation, one passes from 1; : : : ; Æ to any set of Æ integers.For example, taking 
olumns 1 and 3, and summing on subsets of f2; 3; 7; 8g,one has the following nullity :3 6 92 5 8 111 4 7 10 � 7 6 92 5 8 111 4 3 10 + 8 6 92 5 7 111 4 3 10 + 7 6 93 5 8 111 4 2 10 � 8 6 93 5 7 111 4 2 10 + 8 6 97 5 3 111 4 2 10 = 0 :The above relations are implied by the following generalization of La-grange interpolation, given by Sylvester (?). For two alphabets A , B , writeR(A ; B ) for the resultant R(A ; B ) :=Qa2A ;b2B (a� b).Lemma 46 Let n; n0; n00 be three integers, n = n0+n00, and X be an alphabetof 
ardinality n. Let Sym(n0; n00) be the spa
e of polynomials symmetri
al inthe �rst n0 indeterminates, and also symmetri
al in the last n00 ones. Thenthe following morphism19 from Sym(n0; n00) to Sym(n)f !XX0[X00=X f(X0 ;X00)=R(X0 ;X00) (67)sends polynomials of degree < n0n00 to 0, and sends (x1 � � �xn0)n00 to 1.Amore general property is the following \ex
hange lemma" for resultants,that is useful in rational interpolation [?℄.Lemma 47 Let A ; B ; C be three alphabets of respe
tive 
ardinals n; n0; n00,n = n0 + n00. ThenXA=A 0[A 00 R(A 0 ; B )R(A 0 ; C )R(A 0 ; A 00) = R(B ; C )R(A ; C ) (68)XA=A 0[A 00 R(A 0 ; B )R(A 00)R(A 0 ; A 00) = R(B ; C ) ; (69)sum over all disjoint de
ompositions A = A 0 [ A 00 of A , with 
ard(A 0) = n0.The Vandermonde determinants in (66) are minors of the same Vander-monde matrix hxjiij�0;1�i�n, and the relation they satisfy results in fa
t from19This is the Gysin morphism, for the 
ohomology of a relative Grassmannian. It 
anin fa
t be rewritten as a summation on the full symmetri
 group Sn, in whi
h 
ase itbe
omes evident [?℄ 76



quadrati
 relations on minors of order n of any n�1 matrix20 M , due, on
emore, to Sylvester.Given a set of integers A of 
ardinality n, write [A℄ for the minor ofM taken on 
olumns spe
i�ed by A. Then one has the following relation,generalizing Pl�u
ker relations.Lemma 48 Let M be an n�1 matrix, �; � be integers su
h that �+� = n.Then[1; : : : ; ��1; �; : : : ; n℄ [n+1; : : : ; �; �+1; : : : ; 2n℄X�2S(�;:::;�)(�1)`(�)� = 0 ;(70)where the permutations a
t on the indi
es of the pair of minors.As always, one 
an restri
t to a summation on 
osets representatives, andtake sets of 
olumns whi
h are not 1; 2; 3; : : :. In other words, let A;B;C bethree sets of integers, with 
ard(B) � n + 1. Then, one has the followingquadrati
 relation : XB0[B00=B �[A;B0℄ [B00; C℄ = 0 ; (71)sum over all dire
t de
ompositions B = B0 [ B00, with 
ard(B0) = n �
ard(A), 
ard(B00) = n�
ard(C), the sign being the sign of the permutation(B0; B00)! B.There is in fa
t a dire
t 
onne
tion between spa
es of minors and Youngde
ompositions of spa
es of polynomials a

ording to their types of symme-try. It involves using S
hur fun
tors21 and representations of the linear groupinstead of representations of the symmetri
 group. As a matter of fa
t, su
ha 
onne
tion is provided by the S
hur-Weyl duality, but Young was alreadyusing the a
tion of his idempotents on the tensor spa
e �nV 
n.Thus, let us take a ve
tor spa
e V , interpreting integers as ve
tors in V ,and the 
olumns of the matrix M as elements of the exterior power ^n(V).Now, a produ
t of two minors is an element of ^n(V)
^n(V), but Garnirrelations show that it belongs to the 
omponent S2n(V ), where S2n is theS
hur fun
tor of index the partition 2n. We shall refer to the book of Fulton[13℄ for an elementary introdu
tion to representations of the linear group.20a matrix of order n �m 
an be 
onsidered as an in�nite matrix by adjoining to it an�1 null matrix.21I was using in my thesis S
hur fun
tions with modules as arguments, instead of setsof variables, but Verdier made me use the term S
hur fun
tor, whi
h remained.77
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