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Permutations
PPl P

Given a positive integer n, a permutation of order n is a bijection o from
{1,...,n} to itself.

We denote it by the list [0; =0(1), ..., 0, =0(n)] of the successive images
of 1,...,n.

More generally, one can use any totally ordered finite set with n elements
(one needs a total order, to be able to list images without specifying sources).

With these conventions, erasing letters in [0y, .. ., 0,,] produces a permutation
without having to shift the remaining entries to 1,2,3, .. ..
A cycle is an orbit i, o(i), (0 (i), ..., o(...0(o(i))...). The cycle de-

composition of a permutation is the collection of its different orbits.

A cycle can be thought as a collection of numbers written on a cir-
cle; considering the numbers to be beads, then a cycle is to be interpreted
as a necklace. To write it one-dimensionally, one decides to begin by its
smallest element i, and this gives the sequence (i, (i), o(o(i)), ...), with
i =min(i,o(i),...). Therefore, given a bag with k different beads, there are
(k-1)! different possible necklaces that can be made from it.

The permutation o = [7,5,2,1,10,6,4,11,8,3,9] has cycle decomposi-

tion :
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It is easy to compute powers of a permutation starting its cycle decompo-
sition. One has just to understand what is the fate of each individual cycle,
independently of the others. For example, the preceding permutation has
square :

o o \7 \11

The cycle type of a permutation is the (decreasing) list of the lengths of
its cycles. A permutation is a full cycle if it has only one cycle.



Given a partition 1 = [u1, ..., y], then one defines ¢, to be the following
direct product of cycles :

C/L = (]" 27 s 7#1)(/'Ll+]-7 s 7/'L1+M2) e (/‘L1+ te '+/'Ln—1+]-a ceey Mt +Nn)
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All permutations having cycle type ;1 are conjugate to ¢, and, conversely,
a permutation conjugate to (, has cycle type p (the conjugates of a permu-
tation ¢ are all permutations of the type v(v!)

Indeed, if u = [3, 3, 1, 1] for example, given any permutation o of order 8,
then (33110~ " has cycle decomposition

(01,02,03) (04,05, 06) (07) (08) -

Conjugating amounts to changing the values of the beads, not the cycle
lengths!

The conjugacy class of type pu is the subset of permutations having p as
cycle type. To count how many permutations it contains, one can reason as
follows: first we have to put the beads in bags of size pq,..., u,. There are
n!/(p1! -+ p,!) possibilities. But there are bags of the same size that we must
not distinguish. If y = 11 2™2 .. then to account for equal sizes, one has
to divide by [](m;!). But now, with 7 beads, one can make (i-1)! different
necklaces so that finally the order of the conjugacy class is
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We already have met the denominator, it is a scalar product of power sums :

g =[] mat = (o) (2)

(1)

There is another graphical representation of a permutation, by braids,
which is used in knot theory and allows easy multiplication and inversion.
One writes two horizontal copies of 1,2,...,n on top of each other, and
connect each pair 7,0; by an edge. Multiplying permutations consists in
stacking them and erasing the intermediate levels.
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Permutohedron

The simple transposition s; is the permutation with only fixed points,
except for a cycle (i,i+1). Starting with the identity permutation, and writing
the multiplication by s; on the right as an edge of colour ¢ if it produces a
new permutation, one gets a directed graph, the Permutohedron with vertices
all the permutations in &,,. This representation of a group from a set of
generators is due to Cayley. One could have chosen multiplication from the
left, in which case one would have obtained the inverse Permutohedron, with
labels exchanged by inversion from those of the Permutohedron.

Given a permutation o, any path from the origin to o is called a reduced
decomposition of o.

Classifying all reduced decompositions of a permutation is an interesting
problem that we shall encounter in different occasions later. But already, one
can notice in the Permutohedron special subgraphs : lozenges and hexagons,
which account for the braid relations

SiSi+1Si = Si+1SiSit1 (3)
sisj = sjsi |i=j|#1 (4)

The graphical display of these relations is (taking the smallest symmetric
groups in which they appear) :
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Braid relations allow to deform a path in the Permutohedron without
changing its end points. Let us check that two arbitrary reduced decompo-
sitions of a permutation are related by a sequence of braid relations.

First, let us observe that

(51) (s5251) (s38251) =+ (Sp—1"""51) (5)

is a reduced decomposition of the mazimal permutation w := [n,...,1] (we
have added parentheses because we want to distinguish some factors).
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Recall that a composition is a vector with integral non-negative compo-
nents.

Lemma 1 Given a composition I = [iy,...,i,] € N, I < [1,2,...,n-1],
then the word w; which the product of the left factors of (s1) (s2s1)... of
respective lengths vy, v, . .. is a reduced decomposition of a permutation o (we
shall see that it is lexicographically minimal among all reduced decompositions
of o). The composition I is called the cocode of o. Evaluating such words
in &, gives a bijection with G,,.

Now, we shall show how to transform a reduced decomposition into a
lexicographically minimal one using a sequence of braid relations.

Let w be a reduced decomposition of ¢ in &,,. If s,_; does not occur in
w, then o fixes n and we are done by induction on n. In the contrary case,
let us call column of length r the word s,_1 - s,_,.

We shall iterate the operation of “canonizing” a pair (column , s;), defined
as follows:

(Siz1, Sn1**Sp_y) if @ >n-r
(Snfl Tt Snor, Si) — (@ y Sp—1""" sn—r—l) if i=n-r-1
(Si1, Sn-1-" Sny) if 1 <n-r-1

The case 1 = n—r cannot occur, otherwise the decomposition would not be
reduced; the canonization use only braid relations.
Graphically, it says

7
6—)5 : 3—>§ : 1—>1
3

Take now the leftmost occurrence of s,_; in w. Then w = w's,,_;s;w",
with s, 1 ¢ w'. Starting with the pair (s,_1,s;), we iterate canonization,
and this swallows all letters on the right of the column, increasing eventually
it, and concatenating letters to the left factor w’. The process stops when
there is no more letter on the right of the column, on a word of the type
w" s, 18y, with s, 1 & w". Canonizing w" and iterating, one gets a
word which is of the type w(v) for some vector v < [1,...,n-1].

Each operation gives a word which is lexicographically smaller than the
preceding one (or identical), therefore w(v) is the smallest reduced decom-
position among all reduced decompositions of the same permutation.

NS N
NS N
IR IC N
IR IC N
NS N

Canonize:=proc(left,column,i) local k;
k:=column[nops(column];



if i>k+1 then [[op(left),i-1],column]
elif i=k then lprint(‘NOT REDUCED®)
elif i=k-1 then [left, [op(column),i]]
else [[op(left),il,column]
fi;
end:
ItereCano:=proc(rd) local nn,i,j,left,res;
nn:=max (op(rd));
member (n,rd,’j’);
left:=[seq(rd[k],k=1..j-1)]1;
res:=[left, [nn]];
for k from j+1 to nops(rd)-1 do
res:=Canonize (op(res), rd[k])
od;
res
end:

ACE> ItereCano([4,3,4,2,3,4,1,2,3,4]);
(] 4] 3

(] (4, 31 4

[3] [4, 3] 2

[3] (4, 3, 21 3

[3, 2] (4, 3, 21 4

[3, 2, 3] (4, 3, 2] 1
[3, 2, 3] (4, 3, 2, 11 2
[3, 2, 3, 1] (4, 3, 2, 11 3
[3, 2, 3, 1, 2] [4, 3, 2, 11 4
(s, 2, 3, 1, 2, 31, [4, 3, 2, 1]1]
Inversions

Because braid relations preserve the lengths of decompositions, all re-
duced decompositions of a permutation o have the same length, which is
called the length ¢(o) of o.

In fact, ¢(o) is the number of inversions of o, i.e. the number of sub-words
of type ba, withb > a, of [0y, ...,0,]. When multiplying o by a transposition
s; such that ¢(os;) > (o), then one increases the set of inversions by exactly
one inversion, namely [0, 0;].

It is easy to characterize the set of pairs [b, a] which are the set of in-
versions of a permutation. Given a permutation o € &,,, one associates to



it a directed graph with vertices 1,...,n, such that the underlying graph is
complete, with an arrow from b to a if ba is an inversion, or from a to b
otherwise. The graph just represents the sets of subwords of length 2 of the
permutation. It is of course sufficient to know the inversions.

Lemma 2 A subset £ of {[j,i] : m > j >1i > 1} is the set of inversions of a
permutation iff the associated graph has no cycle.

Proof. We shall show that the last (or first) component of the permutation
is easy to characterize from the set of inversions. This will prove existence
and unicity.

There is at least a vertex of the complete graph which is a sink (no arrow
escapes from it) because otherwise one would have infinite paths (and this is
impossible, the graph is finite and has no cycle). This sink is unique, because
there is an edge between any two vertices. Erasing this sink and the arrows
arriving to it, one can conclude by induction. We refer to the book of Berge
2] for more details. QED

For example, the complete graph for o = [3,5,6,2,1,4] is :

1 = 2

A

T~

VAN
E -

Y

The set of inversions is closed by transitivity: if ¢ > b > a and ba and
cb are inversions, then ca is also an inversion. Otherwise, one would have a
cycle on a, b, c.

Because of this property, one does not need to write the complete graph.
One just writes an arrow for primitive inversions (not resulting by transitivity
from other inversions). Let m be the maximal value of the end points of this
graph. Then m = o, and one can iterate on n.



ACE>Perm2ListInv(Perm2Inv([2,5,7,4,1,6,3])) ;#inversions on places for ACE!
({1,2},{1,4},{1,5%,{1,7},{3,4},{3,5},{3,6},{3,7},{4,5},{4,7},{6,7}]

The reduced graph corresponding to the above set of inversions, and its
successive images after suppression of the maximal end point, are

7 — 6 7T — 6 7
e ¢ e e
5 - 4 — 3 5 — 4 , b5 — 4 .
¢ ¢ ¢
2 — 1 2 — 1 2 — 1

from which one sees that o; = 3, then 04 =6, 05 =1,....

Rothe diagram

A permutation o can be represented by a matrix M (o), which describes
its action on the vector space with basis 1,2,...,n. Explicitly, M (o) has
entries 1 in positions [i, 0;], and 0 elsewhere (taking the usual coordinates of
matrices, not the Cartesian plane).

Rothe[33] found in 1800 a graphical display of the inversions of o, starting
from M (o) (though, of course, matrices had still to wait 50 years to appear),

which leads to many combinatorial properties of permutations.
0.1

For each pair of 1’s in M (o) in relative position : write a box [J at
i

the intersection of the up-most row and leftmost column containing these
entries, thus obtaining ? 1

The planar set of such boxes is called the Rothe diagram of o. The list of
the number of boxes in the successive rows is called the code C(o0) of 0. The
morphism o — C(o) is a bijection from &,, onto the set of integral vectors
le1, o e <001, .00 n —1].

Indeed, given ¢, then o1 = ¢; + 1, and [ea, . . ., ¢,] is the code of a permu-
tation [og,...,0,] of {1,...,51,...,n}.

One can read a reduced decomposition from the Rothe diagram: just
number boxes in each row by consecutive numbers, starting from the number
i in row i. Now read rows from right to left, from top to bottom (interpreting
ias s;).

The following lemma, easy to check, states that this word is a reduced
decomposition. An equivalent description of it is by taking right factors, of
respective lengths specified by the code, in the following reduced decompo-
sition of w (different from the one in eq.5):

w=(Sp—1""51) (Sn—1""52) *** (Sn_15n-2)(Sn—1) (6)



Lemma 3 Given a permutation o € &, let v = [vy, V9, ..., v,_1] be its code.
Then the concatenation of the right factors of (Sp_1-+-81) *+*(Sn_1)( ) of
respective lengths vy, vg, . .. coincides with the word obtained from the labelling
of the Rothe diagram of o, and is a reduced decomposition of o.

For example, the code [3,1, 3,2, 3,0,0,0] of a permutation in &g gives the
reduced decomposition

(e000321) (s0sss2) (s0543) (s054) (765) (o0) (o) ( ) .

In the ACE output, boxes are numbered, each 0 is replaced by a dot, and
each 1 is replaced by a cross.

ACE> Perm2Code([4, 2, 6, 5, 8, 1, 3, 71);
(3, 1, 3, 2, 3, 0, 0, 0]

ACE> Perm2Rothe([4, 2, 6, 5, 8, 1, 3, 71);

[1 2 3 p' ]
[2 . . . . ]
(3 . 4 : 5 X ]
[4 ) 5 ) ) ) ]
[5 ) 6 ) ) ) 7 x]
[x . . ]
[. . X . . . . ]
[. . . . . . X ]

ACE> Perm2Rd([4, 2, 6, 5, 8, 1, 3, 71);
[3, 2,1, 2, 5, 4, 3, 5, 4, 7, 6, 5]

To build the Rothe diagram, instead of taking pairs of 1’s, one can use
the fact that there is no box right of a 1 in its row, and no box below a 1
in the same column. The Rothe diagram occupies the places which are not
eliminated and which do not contain a 1.

OO 1 AEEEnm
lEE--HN DI EEEEEN
n OECOECO 1 E N
: CECEN I EEN
. HEHHT

1
forbidden region AN  EEEERN

EEEEEN 1N

There is another natural labelling of the boxes of the Rothe diagram, by
writing in the box corresponding to an inversion (ji) a variable x;;. We shall



see in the next section how to get this labelling by matrix multiplication.

T41 X492 43 1 0 0 0 0
g 10 0 0 0 0 O
Te1 0 T63 0 ZTeh 1 0 0
T51 0 T53 0 1 0 0 0
zg1 0 x5 0 0 0 257 1

10 0 0 0 0 0 O

0O 0 1T 0 0 0 0 O
0 0 0 0 0 0 1 0

Four diagrams

In the matrix representing a permutation, there are in fact four types of
0’s, depending on the relative positions of the 1’s which are in the same row
or same column: right or left, up or down. The 0’s which have been replaced
by the boxes of the Rothe diagram are one of the four types, let say the NW
type.

Therefore, one has four Rothe diagrams, NW-Rothe, NE-Rothe,SW-Rothe,
SE-Rothe, which partition the space occupied by the 0’s of the matrix M (o).

0 —1 —1 1 1
i gives 4 , 1 gives 0 ,
1 1 0 —1 —1
1+ 0 1+ 1 1
4 gives l , T gives T
1 1 1+ 0 1+
Perm2fourRothe([4, 2, 6, 5, 8, 1, 3, 71);
3 [a a a 1 b b b b]
1 [a 1 b d b b b b]
3 [a c a c a 1 b b]
2 [a c a c 1 d b b]
3 [a Cc a c C C a 1]
0 [1 d b d d d b d]
0 [c c 1 d d d b d]
0 [c c c c c c 1 d]
0 1 0 3 2 3 0 3

In ACE, boxes of are labelled a, b, ¢, d instead of NW, NE, SW, SE.

10



Counting the number of a’s by rows, one gets [3,1,3,2,3,0,0,0], that is,
the code; counting the number of d’s by columns, one gets [0, 1,0, 3,2, 3,0, 3],
that is the cocode.

Rothe diagrams are related to the matrix of ranks of M (o); it is defined

to be {r[i,j]] , T[4, j] being the rank of the sub-matrix of M (o) taken
1<i,j<n

,

on rows 1,...,i and columns 1,..., .
As shown in exercise ? they are easily obtained from the matrix giving
the partial row or column sums of M (o).

Rothe diagrams by matrix multiplication

The simplest non trivial Rothe diagram is [ ¥} ]. Instead of putting a
box, one can use a parameter x, and consider [ ¢ | ], or more generally, for i:
1 <i < n, replace the matrix representing M (s;) by

-1 -

— 8
O =

1

Let r be an integer and I = [iy,...,i,] € {1,..., n-1}", such that
s = s5;, ---5; is a reduced decomposition of a permutation o. Define

Ti(xq,...,2,) to be the product
Ti(x) =Ti(x1,... wp) = Tiy (1) -+ T, () (7)

The matrix 77(x) depends on the choice of the reduced decomposition of
0. When specializing all z;’s to 0, one recovers M(c~!). The combinatorial
properties of the matrix 77(x) are studied in [20] (I have kept the conventions
of this paper: the two axes of coordinates have been exchanged; equivalently,
one takes o~! instead of o, or one reads reduced decompositions from right
ot left). Let us just mention the simplest of them.

Proposition 4 Given I € N' such that s’ is a reduced decomposition of a
permutation o', then the matriz T;(x) has entries different from 0 and 1
exactly in the positions occupied by the boxes of the Rothe diagram of o. Fach
polynomial entry restricts in degree 1 to a single variable.

11



T41
X42
X43

Proof. The proposition is easy to check by induction on the length of the
reduced decomposition. Indeed, start from a reduced decomposition of o. Let
M = T;(x) be the corresponding matrix, and let j be such that ¢(os;) > £(0).
Multiplying M by T;(z) amounts to replace the two columns C,C" at positions
j, 7+1 of M by xC+C', C. All the elements in the new first column are of
degree > 1, except the term z 1. If one takes a parameter x = z;; recording
the inversion created, then one sees that the matrix restricted to its terms of
degrees 0 and 1 is the transpose of the Rothe diagram described at the end
of last section. QED

Here are two succesive diagrams, for the multiplication by s,, which mod-
ifies column 2 and column 3 and creates the inversion 62 :

To1 Ter Ty Tgr 1o - Ty ToTe2 +Te1 Tor Tz Ty 1
1 . . . e Tao T2 1
T3 Tz rgy 1 - T43 63 © 53 wgy - 1
1
| . A . Tes . 1
1 . . e . 1
xgr - - 1 . . . -oxer - -1
I K . . . 1 |

TT:=proc(i,n,x)
diag(1$(i-1) ,matrix([[x,1],[1,0]1),1$(n-i-1))
end:
# parameters = inversions ; input a reduced decomposition
Rd2Rothe_xx:=proc(rd) local i,j,k,n,mm,perm;
n:=max (op(rd))+1;
mm:=diag(1$n); perm:=[seq(i,i=1..n)];
for i from 1 to nops(rd) do
jir=perm[rd[il]; k:=perm[rd[i]+1];
mm:=multiply(mm, TT(rd[i],n, cat(x,10%k+j)));
perm:=MultPerm(perm,SgTranspo (rd[il));
od;
eval (mm) ;
end:

Cosets and double cosets

Given a composition I = [iy,...,i,] of n, let &; = &;; X -+ X &;, be the
Young subgroup it determines.

Cosets &,/6; are equivalence classes of permutations modulo multipli-
cation by &; on the right. It can be interpreted as cutting permutations

12



(considered as words) into blocks of successive lengths iy, ..., 4,, and per-
muting freely elements inside each block. One can also decide to write in-
creasingly the elements inside each block, obtaining a row (=row-tableau)
that one usually represents in a box.

Similarly, cosets &7\&,, are obtained by cutting the set of values into
blocks, and identifying elements inside a block, for example, giving them
new names a, b, ... (letters in a totally ordered alphabet).

Double cosets &,\6,,/S, are equivalence classes modulo the action of
the two Young subgroups, and can be represented by a sequence of rows of
lengths ji, jo, ... using in all 7; times the letter a, i, times the letter b, &c.

For example, double cosets G393\ Sg/S44 are obtained by cutting permu-
tations into two blocks of lengths 4, and identifying 1,2,3 to a, 4,5 to b,
6,7,8 to c.

The double coset containing o = 63715824 can thus be coded by

aacc| ® |abbc

(we shall consider it later as a skew Young tableau, direct product of two
rows, of shape 4 ® 4).

One can also code such a tableau by an integral matrix of size 3 x 2, each
row of the matrix being the degree (as a vector) of the successive rows of the
tableau:

‘ a b ¢ ‘ row sums
aacc|] =a’b’c? |2 0 2| 4
abbc| =a'b?c' |1 2 1| 4
column sums ‘ 3 2 3 ‘

The row sums of the matrix are the sizes of the successive lengths of the
rows (i.e. are J = 4,4), the column sums are the commutative evaluation of
the word a?b°c?alb?c! = ab?c3.

More generally, double cosets &;\S,, /& are in bijection with integral
matrices: the (h, k) entry of the matrix counts the number of occurences of
letter xx in row h of the corresponding skew tableau of shape j; ® js--- and
commutative evaluation 7.

In particular, the number of double cosets &;\&,,/S; is equal to the
number of integral matrices with row sums I and column sums J. This
number has many interpretation, we already seen that it is equal to the

scalar product of two products of complete symmetric functions, (S’,S7).

ACE> GenMat([4,4]1,1[3,2,3]1);
3 1 0 [83 o 1] [2 2 0 [2 1 11 [2 o 2]

13



(0o 1+ 31 [0 2 2] [t o 3 [t 1 21 [1 2 1]

[t 2 11 [t 1 21 [t o 3 [0 2 21 [0 1 3]
2 o 2] [2 1 11 [2 2 0 [8 0O 11 [8 1 0]
ACE> SfScalar (h4~2,h3%h2%h3);
10

One can require each box to contain only different letters. In that case,
one writes it as a column (i.e. a strictly decreasing sequence of letters). A
direct product of columns of lengths 7, j2,... will be considered as a skew
tableau of shape 17'®172®- - -. Such tableaux are in bijective correspondence
with (0, 1)-matrices with row-sums .J and column-sums 1.

5
= |3 - 01101
slolslel?lels|o [P 1T
120 % 2% 0100 1

X 01101

(the first column is 532, which are the positions occupied by 1 in the first
row of the matrix).

In our exemple, there is only one 0-1 matrix with row-sums [3, 5, 2, 3] and
column-sums [1,4, 3,1, 4] (we shall see that this is because [5332] and [44311]
are conjugate partitions) :

ACE> GenMat1([3,5,2,3]1,[1,4,3,1,4]);

[0 1 1 0 1]
[1 1 1 1 1]
[0 1 0 0 1]
[0 1 1 0 1]
ACE> GenMat([3,5,2,3],[1,4,3,1,4],’nb’);
2816
ACE> SfScalar(e3*eb*e2*e3, hlxh4*h3*xh1xh4) ;
1

The number of such matrices is equal to a scalar product between a product
of elementary symmetric functions and a product of complete functions.

The case where there is only one such matrix is fundamental in the theory
of representations of the symmetric group.

Let us say that two compositions are weakly conjugate iff the two par-
titions obtained by sorting them are conjugate (the word conjugate has a
more restricted sense imposed by the theory of non-commutative symmetric
functions).

14



Lemma 5 Let I and J be two weakly conjugate compositions. Then there is
only one 0-1 matriz of row-sums I and column-sums J.

Proof. Let r be the maximum of the components of J. Then one sees that
if j, = r, then all entries in the h-th row of the matrix must have a 1 in
each position k such that ip # 0, and 0 otherwise. Suppressing these rows
and substracting r to each non-zero component of I, one gets the lemma by
induction. QED

One can also interpret the matrix as coding a diagram of boxes, writing
in each box its level (the diagram is obtained by transposing the 0-1 matrix,
then replacing each 1 by a box, each 0 by a void) :

5]5]5]5]
4_
3]3] [3
2]2]2]2
1]

To the 0-1 matrix is also associated a permutation that we shall note
¢(I,J) obtained by numbering the boxes from left to right and top to bottom,
and reading columnwise :

-1 2 - 3
L.l S 6 ?180 = (=1[4,1,5,9,11,2,6,12,3,8,10,13] .
11 12 13

Subgroups associated to a tabloid

Let D be a diagram of n boxes in the plane. A tabloid of shape D is any
numbering of the boxes of D with the integers 1,2,..., n.

Let P(t) be the sum of all permutations which globally preserve the rows
of t. Then P(t) is conjugate to OJ,,, where I is any permutation of the
number of boxes in the successive rows of D .

For example, if
L=15731 [9]
1/6]8]4]
17]2
and T = [4,2,3], w; = 432165 987 and

P(t) = [1684 72 539] - Dazpiesosr - [168472539] .

15



Given any composition I which is a permutation of the lengths of the
rows of a diagram D of n boxes, let D; be the object obtained by numbering
with 1,2,...,n successively the boxes of D, from left to right in each row,
taking the rows in the order specified by I (choosing any order between rows
with the same length).

For example, for I = [4,2, 3], the numbering of the preceding diagram is

73423:'7’? 9
1]2]3]4]
5|6

Let us note that the permutation conjugating P(¢) is exactly the permu-
tation obtained by reading the boxes of ¢ in the order specified by Dyss3.

Similarly, let N(¢) be the alternating sum of all permutations which pre-
serve the columns of £. Then N(t) is conjugate to Vs, where .J is any
permutation of the sequence of number of boxes in the successive columns of
D.

In the case of the above tabloid, and J = [2,2,1,1,1, 2] then

N(t") = [851673492] - Varuss670s - 851673492 " .

Young took the case where D is the diagram of a partition /. From what
we have just seen, we know that for any tabloid ¢ of shape I, the element
P(t)N(t) of the group algebra is equal to

V.le.,fl.n.vw.nfl ,
where J is the partition conjugate to I and v and 7, the two permutations
obtained by reading the boxes of ¢ in a certain order. Let us note that
the permutation v~'n does not depend upon the tableau ¢, but only of the
diagram, because it is the permutation which transforms the row-reading
into the column-reading.

For example, if

=513
26
4l7]1]

then v = [5326471], n = [524367 1] and v ="' = [135246 7] and this permu-
tation is the one obtained by reading columnwise

112 — [135 246 7] .

34
506]7]
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The group algebra of the symmetric group
WP BEPE B E P

Up to now, we could multiply permutations, but not add them. To recover
addition, we shall work in the group algebra Q[S,,] of the symmetric group,
with rational coefficients.

In other words, as a Q-vector space, Q[S,,] is n!-dimensional, with a basis
consisting of permutations. But moreover, two elements multiply according
the multiplication of permutations :

(Z c(,J) (Z dyu> :Za:zyj(c(,d,,)ay.

ceG, veG,

Yang-Baxter elements

Instead of handling reduced decompositions, one can now take products
of factors of the type s; + ¢, with ¢ € Q. However our fundamental relation
$189S81 = S981S9 1s not compatible with a uniform shift :

(14 s1)(1+59)(1+ 81) =2+ 281 + 89 + 182 + 281 + 15281
#(1+s5)(1+s1)(1+s2) .

Indeed 2s; + s, is not symmetrical in s, s9, and it implies that the elements
(14 s1)(1+s9)(1+s1)and (14 s9)(1 4+ s1)(1+ s9) are different. To recover
equality, one must use non constant shifts. For example,

(1+sl)(%+sg)(1 +s1) = (1+32)(% +s1)(1+ 59)

The general rule to ensure equality is due to Yang and Baxter. More

precisely, we want an equality, with some constants ..., :
1 1 1 1 1 1
(51+E)(52+§)(81+E) :(524—&)(824—7)(514‘@) .

We find that we must have a = ', 5 = o' to ensure equality for the terms
of length 2. Now, to recover symmetry in the terms of length 1 :

1 1+1 +1
—|=—+=) si+—s
~ o /B 1 OL/B 2
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one must have
y=a+p.
Of course, one can introduce parameters in the relation s;s; = s;s;, [i—j| # 1,
without breaking the commutation: (s; + +)(s; + %) = (s; + %)(sZ + 4.
Finally, the braid relations have become the Yang-Baxter relations

) (50 5) = (511 + ) 5+ =) (01 + =) (9

a+f B B +5

(50 ) (514 5) = (5 ) (s o5 i =] #1 )

Their graphical representation is easy to remember (taking i = 1) :

1
(S,‘ + E) (S,‘_H +

123
St N 1234]
213] 132] Sitae N
+_ﬂ‘ st o 2134] 1243]
231] 312] 5345\ IR
51+%\\ S s+ 4 [2143]
321]

Vertical edges wear a parameter which is the sum of the two on the
opposite sides, other pairs of parallel edges have the same parameter.

In short, forgetting about the labelling of vertices, the index of the simple
transpositions s; being specified by the color of edges, one needs only write
the parameters o used in the factors s; + 1/a (beware that usually we are
writing on edges the inverses of the parameters) :

Yy -
. . @ \5
a+ a+p . . (10)
. \ BN Za
BN S« .

The important constraint is that the parameter on a vertical edge is the
sum of the parameters on the two opposite edges. Thus, instead of two

18



parameters, one can take for G3 four independent parameters, keeping the
trivial commutation relations for lozenges :

‘oo .

. . o« U
v+4 a+f . .

. . S\ a

BN\, /3 :

With M.P. Schiitzenberger, we called this relation Yin relation, and we solved
the problem of labelling the edges of the permutohedron in such a way that
all sub-hexagons satisfy the Yin relation, and that all lozenges commute [22].

Since braid relations connect any two reduced decompositions of the same
permutation, if we can label edges of a permutohedron with parameters in
such a way as to satisfy relations (8,9), then all paths from the origin to a
given permutation will give the same element in Q[S,,].

To get a coherent choice of parameters for &,,, Yang [42] gave the following
recepee, that we can interpret as enriching the permutohedron with a second
labelling of vertices, and of edges, according to the following rule :

« choose an arbitrary system of “spectral parameters” [y, ..., x,].
« label each vertex, say o, with [z4,,...,2,]

o label the edge of color s; connecting o and o s; with x,,,, — 7,

An edge s; with parameter v must be interpreted as a factor (s;+ <) and
a path must be interpreted as the product of its edges.

In summary, given parameters [x1,...,z,| all different, then all paths in
the labelled permutohedron, starting from the origin to a permutation o,
give in Q[S,,] the same Yang-Baxter element that we shall denote )Y, or
Vo(1,...,2,). We can formulate the preceding construction as follows :

Proposition 6 For any choice of spectral parameters [z, . .., x,], all differ-
ent, there exists a Yang-Baxter basis which is a linear basis of Qx1, ..., x,](S,),
satisfying the following relations which caracterize it (together with normal-
ization Yy = 1) :

Vosi =Vs <sz~ + ﬁ) when ((os;) > {(0) . (11)
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The permutohedron for &3 looks now like

[l‘l 9 .Ig]
1 1
s1+ T2—T1 // \ §2 1 T3—T2
[x9 21 23] (71 3 2]
1 12
$2 + 3—T1 51+ 3—T1 ( )
[xo 23 21] (23 1 2]
51+ 722 N\ R
[1'3 9 .Il]

Quadratic form

One usually defines quadratic forms by taking constant terms (in the case
of Q[&,], taking the coefficient of the identity permutation). We shall use
here another convention.

Denote by g — ¢ the linear morphism on Q[&,,] induced by 0 — 071, 0 €
S, and by g Nw the coefficient of w in g. For any f, g € Q[6,], let

(fr9):=fgnw. (13)
The linear basis of permutations is self-adjoint with respect to this form :
(U,wa):l & (J,l/):[),ugéwa. (14)

The next proposition, due to [24], shows that the Yang-Baxter basis is also
compatible with the quadratic form. Let ), be a Yang-Baxter basis for the
parameters [zq,...,2,], and ), be the Yang-Baxter basis for the reversed
parameters [z,,...,x1].

Proposition 7 The Yang-Bazter basis {Y,} is adjoint to the Yang-Baxter
basis {YVuo}, i.e. one has

(ya: j)\wa) =1 & (ycr; j)\u) =0, v#wo. (15)

Proof. The proposition is true for )71, because only }, has a term in w.
Suppose it is true for J,. We shall prove it for Y., £(vs;) > £(v). Indeed,
Vs, = Vu(s; + ) for some a. Therefore

yo' (Si + CY)S)/:; - (Bya + ’Yyasi) 3\)\; )
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for some constants 3, . Therefore, one has just to consider the cases where
0 = wv or 0s; = wr, and this is where one sees that one had to take reversed
parameters for the second Yang-Baxter basis. QED

For example, let us check that (Ya31, V321) = 0, taking the parameters
[0,,¥ = a+ f]. Then there exists some constants 0, ¢ such that

-~ 1 1 1 1 1
Voz1Vs01 = (s1+ =) (s2+ =) (s2— =)(s1 — —)(s52 — —) .
(4 ) 4 ) 2= on = Do = )
5(527%)+e

The factor of € cannot contain w, and we can eliminate it. The triple (s; +
L) (59— %)(51 - %) can be transformed into (sy — %)(5 — %)(32 +1), but since
(82 + é)(52 - é) is a scalar, the remaining expression cannot either contain

W.

Special Yang-Baxter elements

Many interesting elements of the group algebra of &,, can be written in
terms of Yang-Baxter elements, for different choices of parameters.

We shall specially use the two cases where [xy,...,z,] = [1,...,n] or
[z1,...,24) = [n,..., 1], denoting

O, =Y,(1,...,n) & V,:=Y,(n,...,1), c€6,.
Let us notice that proposition 7 implies :

Lemma 8 {[J,} and {V,,} are two adjoint bases.

The elements [, and V,, allow to write idempotents in the group algebra.
Let us check for example that the sum of all permutations of &,, is equal to
O, = Vu(1,...,n), with w = maximal permutation = [n,...,1].

Because we can start a path from the identity to w by any simple transpo-
sition s;, then [J,, is such that it has at least one expression with a left factor
(si+1). The two canonical reduced decompositions that we have encountered
extends to two expressions of [J,, which are :

0o = (14 ) (24 61+ D) (G + ) (51 + 1))
_ ((sn—l I %) (s L)) ((Sn—l 4 %)(Sn_Q i %)) ((sn—l 4

n—1

Suppose that we have noticed that

DSQI - ZO’EG g
3
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We want to prove that the similar property holds for

1 1
D4321 = D321(83 + g)(SQ + 5)(81 + 1) .
We use the fact that (Zaeeg o)v = Y vee, 0 if ¥ € B3 In other words,
when multiplying deen o by an expression involving only permutations in
S,,, one can replace in this expression each permutation by 1.
Therefore

1 1 1 1
|:|321 — (82 + _)(81 + 1) = |:|321 — (1 + _)(]. + 1) = |:|321 .

3 2 3 2

Similarly
1 1

Uso1 53 5 (s1+1) = Os91 53 5(1 + 1) = Os91 53

Finally
1 1
D321 (83 + g)(SQ + 5)(81 + 1) = D321(1 + S3 + 5359 + 838281) .

The right hand side is indeed equal to the sum of all permutations of &y,
because it describes how they are obtained from permutations of &3 by in-
serting 4 in all possible manners.

To pass from a general &, to G,,.1, one needs to write the expansion
with some care. One decomposes the product (s, +1/n)---(s; + 1) into a
sums of terms

1 1
Sn"'sk_HE(Sk_l-f‘m)"'(sl-i-l) s ngén,
corresponding to the first time that in the succesive factors s; + 1/k, one
chooses to take the scalar instead of the simple transposition.

The term right of % commutes with the left part, and behaves like the
scalar (1 + 5)(1 4+ =) ---(1 + 1) = 1 when multiplied on the left by
> sca, 0- Therefore one finds that

Dpyin.t :Dn...1(5n"'51+Sn"'52+"'+5n+1) ;

and, as for n = 3, this proves that [J,,;,.1 is the sum of all permutations
in G,,,1. Using the involution s; — -s;, we also get that V, is equal to the
alternating sum of all permutations :

U = deen o & V,= degn(—l)f(”“)a : (16)
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We shall use later that [0, and V, are the two 1-dimensional quasi-
idempotents of &,,, and are characterized, up to a scalar, by

Oy si = Uy = s Uy, & vwsi:—vw:SiVW,Vi11§i<n

Using this characterization would have saved us from the above computa-
tions, we performed them only to illustrate the techniques one should need
to use for a general Yang-Baxter element [,,.

Let us see another more powerful approach, which would also apply when
direct expansions in the group algebra are not feasible. It consists in iden-
tifying each element of Q[&,,] to an operator on polynomials; two elements
coincide iff they have the same action on polynomials. If we were testing the

action on the polynomials 1, xs,..., x,, then we have just said that there
is no essential difference between a permutation o and the list [z, ,..., 2, |.
However, we shall use the fact that the ring of polynomials Q[zy,. .., z,]

is a module over the ring Gym(n) of symmetric polynomials. It is in fact
a free module with basis the Schubert polynomials X,, 0 € &,,. In other
words, any polynomial is a linear combination of Schubert polynomials with
coefficients in &Gym(n) (which commute with the action of the symmetric
group).

The only property that we shall need from these polynomials is that they
all are symmetrical in at least one pair x;, x;,1, except for the maximal one
X, = o = tah 220,
Let us prove again that

Vo=Yuln,....1)= > (-1) g (17)

ceG,

interpreting both sides as operators on polynomials.

Both sides annihilate polynomials which have at least one symmetry in
a pair z;, z;41 (because (s; — 1) annihilates such polynomials). Thus both
sides annihilate all the Schubert polynomial, except the last one X,. Now
instead of testing the action on X,, one can take the Vandermonde A :=
Hi<j(mz~ — x;). Each simple transposition acts by multiplication by -1 on A,
and therefore, ), (n,...,1) acts by multiplication by the scalar

1 1 1 1 1

—1-—=)(-1-=)(-1-=)--(-1—==)---(=1—==)==%n!.

(-1 D)1= (1= 1)+ (-1 = 2) o (-1 = 5) = %0
Similarly, each permutation o acts on the Vandermonde by (—1)%?) and
their alternating sum acts by +n!. Therefore, the two operators V, and
> 4o are equal. QED
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We shall justify in more details the preceding arguments, when describing
the quotient of the ring Q[xy,...,x,] by the ideal generated by symmetric
polynomials without constant term. This quotient is isomorphic, as a repre-
sentation of &,,, to Q[S,,]. Therefore identities in the group algebra can be
moved to identities involving only polynomials.

We shall need the Yang-Baxter elements V,(1,...,n) to compute char-
acters. In particular, we shall need the Yang-Baxter “cycles” of order k,
2 < k < n, which are

1 1 11
(M= Oyg1 = (51 + I)(SQ + ;) ERICIINE ;) & (18)

Permutation modules

From now on, let us write # for the group algebra Q[&,,] (many state-
ments can be generalized to the Hecke algebra, which is a deformation of
Q[&,,], this explains the use of H !).

The elements O, and V, are such that O,H and V,H are two 1-
dimensional modules!, called the trivial representation and the alternating
representation respectively.

One cannot get much information from a 1-dimensional space, but con-
sidering the corresponding elements for Young sub-groups will be enough to
generate all representations.

Let I = [i,...,i,] be a composition of n, §; = &;, x -+ x &; — &, be
the associated Young sub-group, and wy its maximal element.

From (16) one knows that

O, = ZUEGI o & V, = ZUEGI(—MW% . (19)

Proposition 9 Given a composition I, the modules* O,,, H and V,, H have
basis {0,, 0 € [wr,w]} and {V,, 0 € [wr,w]} respectively, where o runs over
all permutations in the interval [wy, w] of the permutohedron.

The permutations in [wy, w] are exactly those permutations which have the
inversions of wr, in other words, which are shuffles of

[iv ... 1], [(Go+ir) ... (G+1)], ooy [(Gr+ - +ap) oo (g + -+ +1)]

The space U, H is isomorphic to the permutation representation of &,

on words with commutative evaluation z!.

'We already used that 0,0 = O, and V0 = (-=1)4@)V, for any ¢ € &,,.
2called induced from the trivial representation or alternating representation of &
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Proof. The linear span of {{J,, 0 € [wr,w]} and {O,, w0, 0 € [wy,w]} is the
same. Two permutations 7, v in the same coset G; 7 are such that O,, n =
O, v. Conversely, the elements {{J,, 0 € [w;,w]} are linearly independent,
having term of highest length o. This gives a basis of [,, H, and by the
involution s; — —s;, a basis of V,,, H.

Checking the last statement is just a matter of rewriting the interval of
the permutohedron, replacing 1,...,4; by a, i;+1,...,i;+i3 by b, &c. For
example, one has for T = [2, 2]

[2143] aabb

| |

[2413] abab
s1/ N\ 53 51/ N\ 53
[4213] [2431] baab abba
$3 N\ /$1 $3 N\ /$1

[4231] baba

| |

[4321] bbaa

The two graphs can be interpreted as furnishing a basis: [,,n, and a basis of
words of two modules, with the same action of the symmetric group, because
the right graph is obtained from the left one by making vertices operate on the
commutative monomial 2%%* ( more simply, one can take 2°°!!; we need only
two different exponents. It is equivalent to use monomials in commutative
variables x1, zo, ..., or words in non-commutative letters a, b, ..., or 0,1,...,
which are interpreted as the exponents of the monomials, and of course,
canot, be written in any order if one does not write the variables at the same
time). To be complete, one should write on the graph loops at each vertex,
corresponding to the simple transpositions which preserve the vertex. QED

Notice that the stabilizer of a vertex is more evident on the right graph
than the left one. For example, 2°9% = 28222828, or equivalently, 2!%! are
stable under sy, but checking that [4213] = 143898 is invariant requires
writing

Uo1435251 S2 = [la1azst $251 = Lorazsasy -

From the description in terms of words, it is clear that the spaces UJ,,, H

and V,, H have dimension the multinomial coefficient (i1 " Z.T).

Frobenius characteristic map
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There are many ways to relate the group algebra Q[&,] to the ring of
symmetric polynomials Gym. Let us follow the approach of Frobenius, which
gave birth to the theory of characters.

The Frobenius characteristic map is the linear morphism ch : Q&,] —
Gym which sends each permutation o of cycle type p = 1912%2 ... to the
product of power sums W* := W' W32 ...

Therefore, a conjugacy class of type pu is sent to :—; UH because :—; is the
order of the class, with z, := 1% 12%%2a,! . . ..

Frobenius’ characteristic is not compatible with products of permutations,
except for direct products : if o belongs to a Young sub-group : ¢ = o! x
ox ok e G, x--xi,, then

ch(o) = ch(c') ---ch(o") .
It is also compatible with cyclic permutations :

ch(ov---pn) =ch(nov---pu),

because the two elements that we have written are conjugate.

Since Schur functions are the fundamental basis of Gym, it is important
to find in the group algebra elements which are sent to Schur functions under
Frobenius’ characteristic. We shall see later that Young idempotents possess
this property. But already, we can find such elements. Let us first compute
the image of a Yang-Baxter cycle.

Lemma 10 The image of the Yang-Bagzter cycle (™ under ch is the com-
plete function S,.

Proof. We have already seen that ([" decomposes into the sum of terms of
the following type (i =0,...,n-1) :

1 1 11 1
(51 + I)(SQ + ;) s (st Z_—l) 7S Sk g

which are direct products of a Yang-Baxter cycle by a cycle. Supposing the
lemma true for Yang-Baxter cycles of order less than n, one has

n—1
1
ch(¢M) =) "5 v, ~.
i=0

But this is the Newton-Brioschi recursion between complete functions and
power sums, and therefore ch(¢) = S,,. QED

26



Given any composition I = [iy, ..., i,|, define
¢hi=cmlxoox ¢l
For example,
¢B24 = (Bl (P (M e &(3) x &5(2) x &(4)
is equal to
(14 )+ 25 (a0 (54 D)oy 2)ss+ )5

It is convenient to extend the definition of (!¥! to negative exponents and
put
(M=0fork<0 , ("=c"=1

Given any increasing partition I = [iy,...,14,], let (; be the determinant

ir+k—h
‘C[Zk }‘1§h,k§r ’
where the determinant is expanded from left to right and where products are
direct products.

Proposition 11 For any partition I, one has
Ch((]) = SI . (20)

Proof. Because of the Jacobi-Trudi formula expressing Schur functions as
determinants of complete functions, the statement is equivalent to the fact
that ch(¢[#9*) = S;S; ... Sy, but this is a direct consequence of lemma 10.
QED

For example,

(s = (s1+1)5 (s1+1)(s2+3)(s

1 (s14+1)(s

and
1 1 1
Alch(G) = ch(4(s1+ 1)(ss+ (sa+ ) = 6(s2 + 1) (50 + ) (s + )
— _6¢14+4w23 _4w113+3w122+2w1112 +w1111
== 4' 523 .

One can also find products of elementary symmetric functions. For any
composition I = [iy, ..., ], let us write w; for the maximal element of the
Young sub-group &;, «...xi, i, and I! for ¢! - - ¢!
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Proposition 12 The image of U, under ch is a product of complete func-
tions, the image of V,,, a product of elementary symmetric functions :

ch(d,,) = I'S’ (21)
ch(V,,) = I(=1)" Al (22)

Proof. Because [J,,, and V, are direct products, using that ch is compatible
with direct products, we have only to check the case I = [n], i.e. to prove the
statement for [l,, the one for V, being obtained from it by the involution

s; — —s;. But
n!
h( ) N Byl — s,
n(So) =3 v =n
as is well known since Cauchy. QED

Describing the kernel of ch is not immediate. For example, from propo-
sitions (11,12), one gets that 6¢*) and [sy;, are both sent to 65, i.e. that

ch((s, +1)(s2 + %)(51 “1)) =0,

the next case being :

6Ch((81 + 1)(82 + %)(83 + %)) = ch((31 + 1)(82 + %)(83 + %)(81 + 1)(82 + %)(81 + 1))
e, ch((si+1)(s2 + %)(53 + %)(6 D)) =0

ACE> Perm2p:= proc(perm)
convert ( map(i->cat(p,i),Perm2CycleType(perm)), ‘*°)

end:
ACE> Sga2Sym:=proc(f); # Frobenius’ characteristic
if member (whattype(f),{‘+‘, *‘,“"‘})
then map(Sga2Sym,f)
elif whattype(f)=‘indexed‘ and op(0,f)=‘A¢
then RETURN (Perm2p ([op(£)1)) ;
else f
fi;
end:

ACE> Sga2Carre(A[3,2,1,5,4]); # case I=[3,2]
A[3,1,2,5,4] + A[2,1,3,5,4] + A[1,2,3,4,5] + A[1,3,2,4,5]
+ A[3,2,1,5,4] + A[2,3,1,5,4] + A[3,1,2,4,5] + A[2,1,3,4,5]
+ A[3,2,1,4,5] + A[2,3,1,4,5] + A[1,3,2,5,4] + A[1,2,3,5,4]

3 3
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ACE> Toh(Sga2Sym (%)) ;
12 h3 h2
ACE> Toe(Sga2Sym(Sga2Nabla(A[3,2,1,5,41)));
12 e3 e2
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Young normal representations and Yang-Baxter bases
BEETEEETEEEITEEE Y

We have already represesented permutations as matrices. Indeed, to han-
dle the (non-commutative) multiplication in the group algebra of the sym-
metric group, the simplest tool is to realize it as a multiplication of matrices.
Instead of having only one representation of dimension n for G,, (i.e. embed-
ding &,, into the linear group GI(C"), one can try to use other linear groups.
A representation over C of dimension N of &,, is a morphism

0: 6,30 ¢(0) € GICN)
compatible with the mutiplication :

plov) = (o) p(v)

(the image of the identity being the identity matrix).

We also have implicitely used another representation, the (left) regular
representation, which is the n! dimensional representation of &,, acting by
left multiplication on the group algebra of itself (one has also a right regular
representation).

ACE> Perm2RRep([2,3,11);

(o T e T s T s B s B |
O O O O O
O O O = O O
= O O O O O
O = O O O O
O O O O O =
O O O O = O
[N T N Ty Yy N |

Of course, with two representations, one can make a third one by taking
matrices made of two diagonal blocks. One says that the resulting represen-
tation is direct sum of the two original ones. Thus one wants representations
which are not equivalent to a direct sum.

Let us see a solution by Young to this problem for the symmetric group
(his second solution, as a matter of fact). We shall rewrite it in terms of
a Yang-Baxter graph, and this will make clear the connection with Yang’s
basis.

To any partition A, we associate a word y,, by first writing the diagram of
A as a diagram of boxes stacked in the North-East corner (the parts of A being
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the column lengths), then we fill each column with consecutive numbers,
increasing upwards and starting with 0 in the bottom boxes :
= word 10 210

0 1
A=[3,2]= 00 =0

ooo
o=

Now generate a graph, by allowing all possible transpositions of adjacent
letters a, b, with a < b :

[10.210]
|
[1.20.10]
s1,/ NN
[210.10] [1.2100]
53\ /51
[21100]

The bottom element of the graph is the weakly decreasing word commuta-
tively equivalent to y,. Each edge has a color s; (transposition of components
i, i+1).

The labels of vertices are Yamanouchi words®, i.e. words w such for each
factorisation w = w'w"”, then the number of occurences of i is bigger or equal

to the the number of occurences of (i+1), i = 1,2,3,..., in w”. This we
write :
w  Yamanouchi & Vw =w'w", [w"|; > |w"]y > |w"[z > - (23)

We could have also labelled vertices by permutations: take the same under-
lying graph, and put the maximal permutation (here [54321] at the bottom).
Now the graph has become an interval in the permutohedron. However, for
further applications, our present labelling is better.

[42.531]
=
[4.52.31]
Interval of the permutohedron 1/ N\ 53
[542.31] [4.5321]
$3 N\ /51
[54321]

3Some people say “lattice permutations”, but there is no lattice here, and permutations
are hidden.
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There is still another labelling, directly equivalent to the one by Yamanouchi
words, which consists in interpreting each word as describing the levels oc-
cupied by the letters 1,2,...,5 in the diagram of [3, 2] (top row is level 0) :

25
'3 10.210]
‘ > ‘ 52
35
1 [1.20.10]
51/ NN s1/ N\ 53
%% 1‘% 210.10] [1.2100]
53\ /s
I 13 & " g
1

Transpositions act on the vertices of the left graph by permuting values.

As a Yang-Baxter graph, it is not yet totally defined, we have to choose
an initial vector of spectral parameters.

We take the content vector c,, obtained by filling the diagram of A, this
time packed in the North-West corner and the parts of A being the row lengths,
with consecutive numbers in each column, increasing upwards, in such a way
to have 0 in the main diagonal. We read now the consecutive rows, from
right to left, from bottom to top :

A=332=0"=20"= ;%= &=[0,-1,2,1,0]

Now edges of the graph have not only a color s;, but also a label 1/(b—a),
for the transposition of a and b. Labelling vertices by their corresponding
content vectors (=images of the initial content vector cy), and writing 1
instead of -1, one gets the graph

01210

20110

The set of vertices of the preceding graph is the plactic class* of the word
[01210], we shall describe it later in the chapter about Young tableaux.

4The plactic relations are, for any triple a < b < ¢, cab = ach, bac = bca, and for any
pair a < b, baa = aba, bab = bba. The plactic class of a word is its closure under plactic
relations.
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How to read matrices from the graph ?

The underlying vector space has a basis coded by the vertices of the
graph. To represent any simple transposition s;, one first erases all edges
which are not labelled by s;. One is left with isolated vertices (corresponding
to 1-dimensional representations of &,), and pairs of vertices connected by
an edge, corresponding to 2-dimensional representations.

In this last case, if § is the parameter written on the edge, then to define
a two-dimensional representation of &,,, Young took the matrix

-8 1
i
In the one-dimensional case, if 7,i+1 is a subword of the vertex, then the
restriction of the representation is trivial (i.e. the matrix is 1), otherwise (if
i+1,4 is a subword) it is the alternating representation (matrix = —1).
Choosing a total order on the vertices of the directed graph, compatible
with its partial order, Young defined a matrix to represent the simple trans-
position s; by embedding these elementary matrices into a N x N matrix,
putting 0 in the other places (N=number of vertices).
In other words, a single vertex gives a diagonal entry +1, an edge s;

connecting vertex p and vertex ¢ gives a submatrix [1:22;; on rows and
columns p, ¢, and all other entries are 0.

Continuing with the example, for shape [3, 2], here are the matrices rep-
resenting sy, ..., sq, for the ordering (here ACE has reversed the words and

the order)

0,-1,1,0,2],]0,-1,1,2,0],]0,1, —1,2,0],[0,1,2,—1,0],[0,1,—1,0,2] :

1 1
1ooo1 _ 11 000
ooy [ oo i
0 -1000 03 100 . 13 000
0 0100 035100 005 10 0 0 =Lo03/4 (24)
0 0010 008 =Lyp
0 0001 00 010 9 3 00 010
3 -1 1
20005 00001 00 10 3
1
VRN

Vertices are labelled in the order . " Edges [1,5] and [2, 3] are labelled
\

4
s9, and vertex 4 is an isolated point for s5. Therefore, the matrix representing
s9 is made of two Young-matrices of order 2, plus a matrix of order 1, placed

[1’1} : ' ' [1’5}
[ - [2,2] [2,3] - . -|

at the positions indicated : [ -+ [3.2] [3,3] " . The parameters on the
. . - [4,4] -
[551} ' [555}J
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edges tell the precise values of the entries; the entry [4, 4] is equal to 1 because
component 2 of vertex 4 is smaller than component 3.

It is clear that the square of any Young matrix is the identity (because
it is true for the case of order 1 and 2). It is also clear that commuting
transpositions give commuting matrices. It remains essentially to check the
case a six dimensional representation of G5, with parameters a, 8,7 = a+ [3,
i.e. to check that the matrices M, M, candidate to represente the two simple
transpositions satisfy

M1M2M1 - MQMlMQ .

Explicitely, these two matrices are

[ —a”! 0 1 0 0 0
0 —(a4+8)"" 0 0 1 0
M 1—a? 0 a~! 0 0 0
0 0 0o -p! 0 1
0 1—(a+pB)2> 0 0 (a+8)"" 0
) 0 0 1-4°72 0 B

B A 0 0 0 0
1—p2 gt 0 0 0 0

My e 0 0 —(a+p)" 1 0 0 25)

0 0 1—(a+8)" (a+p)" 0 0
0 0 0 0 —at 1

.0 0 0 0 l1—a? a ']

Arrived at this stage, instead of trying to perform the product of matrices,
we remember that we have used in the preceding section another interpreta-
tion of a Yang-Baxter graph, as coding elements in the group algebra of &,
(vertices can be labelled arbitrarily). We have to choose an arbitrary vector
of parameters. Afterwards, we obtain n! elements in the group algebra of
&, by reading paths and interpreting them as products of simple factors in
the group algebra.

In general, one edge is labelled s; + 3, its two vertices are ), and ), =
Y, (s+ ), with n = 0s;. The linear span of J, and Y, is a two dimensional
representation of &, acting on the right, and the matrix representing the
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action of s; is (reading by rows)

{ya_)yasi = _5ya+yn PN |:_5 1:|

Vo= Vs = (1— 32V, + 8, 15 B (26)

This is exactly Young’s matriz. ‘

[t means, that if we take &3 and the parameters [0, o, « + ], then Yang-
Baxter equation insures that M;M,M;, = MsM;M, without any need to
check it 5. Therefore Young’s matrices represent the symmetric group.

The explicit matrix of change of basis, with the vector of parameters
[0, a,a+ b] is (reading the expansion of a Yang element in each row) :

ACE> MatYang2Perm(3,[0,a,a+b]), inverse(%);

1 0 0 0 00 i 1 0 0 0 0 07
L1 0 000 1 1 0 0 0 0
L0 1 000 1 0 10 0 0
1 11 ; 1 1 1

(a+b)a a a+b 100 ab T T ath 1 0 0
1 1 1 1 1 1

War awp 5 O 10 @ e 5 0 10

b+l 1 11 1 4 __ab+1l 1 1 _1 1 q

| (a+b)ba  ab ab b a i L (a+b)ba  (a+b)a  b(a+b) b .

Apart from signs, these two matrices have the same entries, but distributed
differently. This fact result from the fact, seen in the preceding section, that
the adjoint of a Yang-Baxter basis is a Yang-Baxter basis for the reversed
parameters.

For our running example, the representation is of dimension 5, and Yang-
Baxter basis is

1
3
Sz-l—%

1 1
2 / \ 2
(52+%)(81+%) (52+%)(83+é)
1 1
2 \( / 2

(S2+%)
(81+%)
(s3+3)

5One nevertheless has to verify what happens in the degenerate case, when one of the
differences of parameters is equal to +1; for Young, this is the case where two consecutive
integers, in a tableau, are in the same row or same column (and thus in adjacent boxes)
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The matrices representing sq, . .

There are other normalizations for Young’s matrices.

., 84 have already been written in (24).

Essentially, one

can take one of the following three matrices for the case of G, (or their
transposed, but of course, one must stick for &,, with one type only!)

o 15 A
1-p* gl (18 B - p

P (27)

%

The matrix on the right is unitary, and thus is the building block of Young
orthonormal representations. Young first obtained them by orthonormalisa-
tion of the matrices in the natural representations.

Here are now two copies of a bigger graph, for shape [3,4]; on the left,
we write writing Yamanouchi words; on the right, we take the contents +1,
to have positive numbers (this does not change differences!).

210.3210

21.30.210

2.310.210 21.320.10

z N
7 h / \\'\
z ~

3210.210 2.31.20.10 21.32100

| = ‘

=
2.31.2100

| ==

321.20.10
_ =
_ =
\’\_
RV

RV

2.3210.10

\\\\
~\f\,¥2\:if:?
= =

32210.10 321.2100 2.321100

3221100

s1 52 53
- )

2104321

2140321

7

2410321 2143021

Y N
z N / \‘\\
Y N

4210321 2413021 2143201

]

2413201

| _ =
_ =

—
| ==

4213021 2431021

- = - =
/4\%\,\ /4\%\,\
4231021 4213201 2431201

=
\“\r¥ ‘ _ = =
=
\,\ 44
4231201
Sq S5
_ - — AN

The vertices of both graphs constitute isomorphic plactic classes :

ACE> Free2PlaxClass(w[2,1,0,4,3,2,1]);

wl4,2,1,0,3,2,1] +w[4,2,1,3,0,2,1] +w[4,2,1,3,2,0,1] +w[2,1,0,4
+w[2,1,4,0,3,2,1] +w[2,1,4,3,0,2,1] +w[2,4,1,3,0,2,1] +w[2,4,1,0
+w[4,2,3,1,2,0,1] +w[2,1,4,3,2,0,1] +w[2,4,1,3,2,0,1] +w[2,4,3,1

+w[4,2,3,1,0,2,1] +w[2,4,3,1
ACE> nops (%) - nops(Free2PlaxClass(w[2,1,0,3,2,1,0]));

36



Here are the matrices representing s, and sz for this representation :

ACE> latex(MatRepNormal([4,3],2)),latex(MatRepNormal([4,3],3));

ro1/2 . . . . . . . . . . . . 1

1/2 . . . . . . . 1 .

1/2 . . . . 1 . .

1/2 1 S : -

3/4 —1/2 . . : .

1 . . .

. 1 . . .

3/4 . - S —12 -

. 1 . .

3/4 . . - S : S—1)2 -

1/2 1 .

3/4 —1/2 -

1 .
L 3/4 . . . . . . . . . . . . —-1/2 |
’- —1 . . . . .
. 1 . . . . .
. 1 . . . .
. 1 . . .
- 1/3 1 - S
8/9 —1/3 - S
1 . . .
- 1/3 1 S
8/9 —1/3 . -
1 .
T
. . . . . . . . . . . 1/3 1 .
. . . . . . . . . . . 8/9 —-1/3 .

We now give the 16-dimensional representation of &g, for shape [1,2, 3] :

0.10.210
/ N
100.210 0.1.20.10
//// \\\\\

10.20.10 _ - 0.210.10 _ - 0.1.2100
7 Tl TN
1.200.10 _ - 20.10.10 _ - 10.2100 0.21100
\ \:7\/::::: \:%::::\ /
2100.10 _ - 1/20.100 ~20.1100

N :/5/: SN > /
1.21000 ~210.100
\ s
21100
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52
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Young’s natural representations
BT EEITEEE Y

We now come to the heart of Young’s work, who introduced the funda-
mental idea that 2-dimensional combinatorial objects were needed to work
in the group algebra of the symmetric group.

Young obtained the following key property (he was using only partitions,
and not compositions, but his method extends straightforwardly).

Proposition 13 Let I, J be two conjugate compositions. Then O, HV,,
1s a 1-dimensional module, and

Oy, 0V, #0&0=0"-((I,J) 0", 0 €&, 0" €&, ,

where the permutation ((I,.J) associated to a pair of conjugate compositions
has been defined above.

Proof. The space U,y H V() is generated by the permutations v of min-
imum length in their double coset G;v &;. These permutations are in
bijective correspondence with tableaux of evaluation 1%12%... and shape
J1®Ja® .

Let us check that such a tableau gives a non-zero element U, vV, iff
all the letters in every row separately are distinct. Indeed, suppose on the
contrary that a letter occurs twice in a row. It means that there exists an
integer k such that s, € G; and such that v and s; v give the same element
modulo &;. We can equivalently write

vy, =sxgrvd,, or vV, =—svV,,oralso (1+s;)rV,, =0,

but now, because (1 + s;) = Oy is a right factor of O,,, this last nullity
implies that of O,, ¥ V.

Finally, lemma 5 tells us that there is only one tableau of evaluation
1712% ... and shape 1 ® 172 ® -- -, and it corresponds to the permutation
(I, J). QED

For example, for I = 232 and J = 331, ((232,331) = 1362475, and the
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different combinatorial objects that we attached to the pair I, .J are :

110 12

11 1] 373 3 4 5

L1 0] ofaf2] 67 5 ((232,331) = 136 247 5
11

0-lmatriz diagram numbering

3| |3 6| |7
H@H@%H@I@ — 631 742 5
1 |1 1 |2

the column reading of the last tableau is now the element of maximal length
in its coset ((232,331)S33; instead of being the element of minimum length.

Proposition 13 is so important in Young’s theory that we now give another
formulation of it in terms of Yang-Baxter elements. The situation is even
simpler, we shall have a space of dimension 1 because there is only one non-
vanishing element. Once more, vanishing properties come only from the fact
that, for any simple transposition, (s; + 1)(s; — 1) = 0.

Proposition 14 Let A be a partition. Fill the successive columns of the
diagram of X (in the S-W corner) (resp. of X°, in the N-E corner) with
1,...,n. Let w' and W" the column readings of these two tableauz, and v, n
their row-reading. Let .J be the increasing reordering of of A, and I = X~ .

Then, for every permutation o greater than w' (in the permutohedron),
one has that 0,V, # 0 iff o and v belongs to the same double coset S;v S .

Moreover Oy H 'V i is 1-dimensional, with basis U, Vi, and 0,V is a
quasi-idempotent, i.e.

0,v,0,V, =c0,V, , for somec€ Z,c#0.
Proof. Let us take an explicit partition, say A = [3, 2, 2], to avoid unnecessary

indices. In that case, the filled diagrams are

24

— v = [3625147], ' = [3216547] & 136 — 1 = [2471365], w" = [2143765] .

— DN W
= otoy
Ty~

7

We have seen in proposition 9 that [J,» H has a linear basis consisting of
O,, 0 > W' = [3216547] in the permutohedron, i.e. ¢ having subwords
321, 654, 7, to which we shall attribute different colors. Considering ¢ mod-
ulo &; amounts writing an ordered sequence of sets (call them baskets)
{01,029}, {03,04}, {05,06,07} instead of a permutation. Suppose that two
integers of the same color are in the basket. All the integers between them
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also belong to the same basket, we can suppose that the two integers, say
J,j+1, are consecutive.

Therefore, [, is obtained from [J,, where ¢’ is the element of minimum
length in the coset 0 &, by multiplication on the right by factors of the type
sk + «, with all s, € &, but one of the a being equal to 1 (created by the
exchange of j and j+1. Since (s + a)Vyr = (-1 + @)V, the product of
these factors vanishes with V.. For example, when o = [63 75 241], then
1,2 have the same color and lie in the same basket, and Ug375041 V13765 =
Oesrsi24 (S5 + 1) (s6 + %) V3765 = 0.

To avoid nullity, one must have that all integers of the same color lie
in different baskets, and once more, lemma 5 states that all permutations
satisfying such property belong to the same double coset.

Moreover, [3g25147 V2143765 18 non-zero, because it has term of highest
length the product [36 25 147][21 43 765] (which is reduced).

One passes from 0, to [J, by multiplication on the right by invertible
factors s; + i, a # 1; the spaces [, H V» and O/, H V,» are the same.

Finally, 00, V,0,V,V,» belongs to the space [, H V. One has just
to check that it is not null. We shall check later, and more easily, this type
of non-vanishing properties by using the action of H on polynomials. QED

In the following corollary, we shall take tabloids of shape a partition, to
recover statements directly adapted from those of Young.

Corollary 15 Given two tabloids u, v of shape the same partition I, then

1) The space P(u)H N(v) is 1-dimensional. Moreover P(u)N(u) and
N(u)P(u) are two quasi-idempotents.

2) If h € H is such that, for all 0 € &, preserving the rows of u, one
has oh = h and for all 0 € &,, preserving the columns of u, one has ho =
(=1)%9)h, then h is proportional to P(u)((u,v)N(v), where ((u,v) is the
permutation transforming u into v.

3) If u and v are two tabloids of shapes two different partitions X\, p, of
the same number,  being strictly higher than X\ (with respect to the natural
order on partitions, for which 1" is the mazimum), then

P(u) N(v) =0= N(v) P(u) .

Proof. The first point is a direct consequence of propositions 13,14, taking
into account that all P(u), for u of shape I, are conjugate to [J,,. Similarly,
all N(v) are conjugate to V,,, for v of column-shape J (= conjugate of 7).

The invariance of h with respect to multiplications on its right and its left
by all the permutations belonging to some Young subgroups, implies that A
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is equal, up to a non-zero factor, to P(u)hN(v), and thus proportional to
P(u)((u,v)N(v).This last point is ascribed to Von Neuman by Weber [40].
There is no 0-1 matrix of row-sums the shape I of u, and column-sums J,
the shape (by columns) of v. It implies O,, # V,,, = 0, and by conjugation,
P(u)N(v) = 0. QED

We summarize now some of the different 1-dimensional spaces that we
have associated to the partition [3, 3, 1].

Pair[331], [223] — [

O =

1
1
0

=

| = [438] = (331, [223)) = [1425367]

Space 3216547 H V2143765, With basis Csoies47 [1425367] Va143765

. 36
or D3625147V2143765, coming from the tableau % 2 .

Pair[331], [322] — H ] [%]] = [}%E%] 5 ([331], [322]) = [1472536]

Space 3216547 H V3215476, With basis Osoie547 [1472536] Via15476

. 36 36
or |:|3672514V3215476 coming from the contre-tableau % Z ; — %

NN EN]

Let us analyze more precisely the vanishing property stated in the pre-
vious proposition. Young [43], p.95, gives the following property®, which is
crucial in his characterization of idempotents, and their branching rules.

Proposition 16 Given two conjugate compositions I, J and an index k such
that iy, > ipyq, let IT be the composition ..., i, + 1, ige1 — 1,...] differing
from I only at the k-th and k+1-th components. Then

Cuy * Ouyy HVs, =0=0,, O, H V., (28)
Proof. There is no tableau of evaluation 2’ and of shape 1 ® 122 @ - - - and
thus O, H V.., = 0. QED

In the product 0, - Dot s there are many repeated factors. One can in
fact replace Uo,; by a smaller factor. Indeed, suppose by conjugation that
k =1 and write I = [a,b,...], I = [a+1,b-1,...], with a > b, and 7;; for the

6In terms of representations of the symmetric group, the proposition is equivalent to
the fact that Hom(ST', A7) = 0, where ST’ denotes the representation induced by the
trivial representation of the Young subgroup &;¢, and A7 the representation induced by
the alternating representation of & ;.
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transposition of 7, j. Then

wr = (a,...,1, a+b,...;a+1,a+b+1,...)

wit = (a+1,. ..,1,a+b La+2,a+b+1,...) and
Uag1.0 = U 1(1+71a+1+ +7'a,a+1)
Oog1q = Ha1(8a ) o (s1+1)

Thus the elements O, Dw;r and Oy, (1 4+ Ty g1 + -+ + Taep1) are equal, up
to a non-zero factor, and (28) can be written

le (1 + Tl,a+1 4+ -+ Ta,a+1) H ij = 0 y (29)

as stated by Young in QSA2, [43] p.95 (0 means here the zero-dimensional
space).

Similarly, multiplying on the left by [, .. and eliminating repeated fac-
tors, one gets the nullity

1
(514 1)+ (50 + ) Oy H V., =0 (30)

used by [JMKO, prop.A2].
For example, if I = (3,3,...), then IT = (4,2,...), and one has the
nullities of
Uizt 65... U321 654... H V()

as well as of
Os21654... (1 + Tia + Toa + T34) H Vi

and of

1
=) - Os21654.. H V()

(m+m@+;m+3

Using the involution ¢ — (—1)4?) o, and the right/left symmetry, one
gets from proposition 16 the following identities, which can be identified
with the lift of Pliicker relations to the group algebra of &,, (Young 7).

Proposition 17 1) Let I and J be two conjugate compositions, I = (a,b,...),
with a > b. Then

Ou, C(LI) Vi, (L= Tra01 — - — Taqp1) = 0 (31)
Ty €U T) Vi (50 = 1)+ (51 = 1) = 0 (32)
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2) Let u be a tabloid of shape a partition. Let A, B be two columns of u,
with B on the right of A, and b an element of B. Then

P(u)N(u) = P(u) (Z m) N(u) . (33)

a€A
For example, take I = [3,2] and J = [2,1,2].

ACE> aa:=Compo2Young([2,1,2]) &!'!* Al[op(DeuxCompo2Perm([2,1,2],[3,2]))]
&!* Compo2Young([3,2],N):
ACE> aa &!*x (1-A[4,2,3,11-A[1,4,3,2]1-A[1,2,4,3]);
0
ACE> aa &'x (A[1,2,4,3]1-1/3) &'x (A[1,3,2]-1/2) &'!'x (A[2,1]-1);
0

To illustrate the second part of the proposition, take the second and third
columns of u = %gz, and b = 4.

ACE> aa:=Word2YoungPN(w[6,3,5,7,1,2,4],P):

ACE> bb:=Word2Y0ungPN(w[6,3,5,7,1,2,4],N):

ACE> aa &!*x (1 -A[1,4,3,2] -A[1,2,3,5,4]) &!* bb;
0

From the first part of the proposition, one gets relations between products
of minors of the Vandermonde matrix. Indeed, write A(7, 7,...) = [[(@;i—z;).
Take now the monomial with exponent [071,172, 27 | ], supposing .J to be
a decreasing partition. It is preserved by each permutation of &, thus the
action of O, is just multiplication by the order of &;, one can ignore it.
Now, the image of the image of the monomial under V,c4q, is a product of
Vandermonde determinants, that we shall write A([Z]), because the image of
12k~ under Vi1 is A(1, ..., k). Therefore, equation (31) becomes

A([ID (1 —Tla+1 — " — 7—a,aJrl) =0. (34)

For the pair J = [2,2,1], T = [3,2], one gets z°°"12[0y,35 = 42°°""2. Under
¢([221], [32]), it becomes 4x°20! which is sent by V3g54 to 4A(123) A(45).
Finally the relation is

A(123) A(45)(1 — 714 — Tog — 734) = A(123)A(45)
— A(423)A(15) — A(143)A(25) — A(124)A(35) = 0.

Graphically, one represents each Vandermonde by a column, and the prece-
dent relation is now displayed as

1) [5] - [Hs] - [He] =



In fact, this relation, called Plicker relation”, is valid for minors of any
matrix, and not only minors of the Vandermonde matrix.

We shall see with more details in the next section that Young’s identities
imply minor identities.

"Pliicker relations are quadratic relations between minors of order n of an n x co matrix,
obtained (before Pliicker) in the 18" century through eliminations in systems of linear
equations. Writing [A] for the minor taken on columns specified by an ordered set A, and
[A] [B] for the product of two minors, choosing some arbitrary b in B, Pliicker states :

[A][B] = ) 7as ([A]B]) -

acA

Notice that we have also written
1
[13] [24] (sl — 5) (so—1)=0

which is not a standard form of a Pliicker relation.
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We are now ready to study the fundamental modules O, ¢(I, J) V,,,
or, equivalently (by inversion of permutations, and the involution s; — —s;),
HO,, C(I,J)V,,.

Let us describe, as a first example, [Jo14359 V143 H. Let v1 = [o14359 Vo143,
vy = [914352Vo14389. They have different leading terms, and thus are lin-
early independent. We know the images of v; under multiplication by a
simple transposition: v;s; = v183 = vy, V1S9 = sg. However, computing
VgS1 = V18987 = 1818951 is less evident. It is necessary to use Young’s
relation (31) :

Uo143 52V2143(1 — T13 — 7'23) =0,

which shows that v;73 = v9s; belongs to the linear span of vy, vy a similar
computation giving also vss3. Thus the module is a 2-dimensional represen-
tation of &y.

To describe the general case, recall that a standard Young tableau of shape
A is a filling of the boxes of the diagram of A with unrepetited consecutive
numbers 1,2,..., in such a way that columns strictly decrease, and rows
increase. Let us write Tab()\) for the set of standard tableaux of column
shape .

We shall identify for the moment a tableau with the permutation obtained
by reading its successive columns, from left to right.

The first description that Young [Y1] gave of a representation of the
symmetric group, is the following (slightly adapted to our conventions) :

Theorem 18 Let I be an increasing partition, J be the conjugate decreasing
partition.

Then O, (I, J) Vy, H is a representation of the symmetric group with
basis

(O, C(I,)V, : teSab(])y or {0, C(I,J)Ve,wst : t € Tab(J)} .

Proof. The elements [, (I, J) V, are linearly independent, because their
leading terms w;( (1, J)t are different. One passes from {(J,, (I, J) V;} to
{e; :==0,, C(I,J) V,, wyt} by a triangular matrix, we shall rather show that
{e;} span the module, i.e. that any e, := O, ((I,J)V,,wso, 0 € &,, is a
linear combination of e;.

If one codes e, by the tabloid obtained from e,,, by replacing in the first
tableau wy, 1,2, ... by 01,09, ..., then one has to show that every tabloid u
is a linear combination of standard tableaux.

Of course, one can commute the entries in each column separately, it
just introduces a sign. Thus one can suppose that tabloids have decreasing
columns. If u is not a tableau, then there is at least one violation, i.e. two
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adjacent entries a, b in the same row, with a > b. Starting with the violation
a,b which the furthest in the North-East, and interchanging b with all the
elements of the preceding columns thanks to relation (31), and repeating
this process, Young shows that one can straighten the tabloid into a sum of
tableaux. The delicate point is that one creates in general new violations
by correcting one, and one has to make sure that the algorithm converges
instead of looping. We shall avoid totally this analysis by producing, as
Young did 30 years later, orthonormal bases. There is no more straightening
now, but only evaluation of scalar products. We shall also, in the next section,
gives another description of natural representations, where straightening is
replaced by evaluation of scalar products. QED

Let us check the module [ly3054 (122, 32) V39154 H. There are 5 tableaux,
and 5 tabloids, with decreasing columns, which are not tableaux. One has,
modulo the space generated by the five tableaux,

4

4 4 4 4 1
35 =35 = 35T+ T +7’>:35+15+35
21 2D 21(12 13 14 12 23 24

0,

writing the letter which is to be exchanged inside a disk. Similarly, exchang-
5
ing 4 and 5, gé) = 0. Now,

W Ot
Il
— s Ot
DO =~ Ot
—

I
ok Ot

2 to=1
©) 30 1 %) =33 5
Combining these relations with the preceding ones, one gets that

0

Lok Ot

2
1

Ii
N o Ot

5
3 = 43 .
1 12

Already on that small example, one sees that one has to combine several
Pliicker relations to remove one violation. In order to do that Young wrote
relations more efficient than (31), which involve summing on several letters
at a time®. We shall detail them later. In the present case, one has

—DN W
—ND

+

—0 HS
— s O

5+
2

=N Ot
— ot

5 5 4 —34+4+43 =0,
4 3 3 2 2

and this gives in one step that the tabloid 4?1 3 belongs to the span of tableaux.

8they are called Garnir relations[14).
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Polynomial representations of the symmetric group
BEPPBEPPPE LI Y P

As a linear space on which acts &, the group algebra H = Q[&,] is
isomorphic to the linear span of 2 := 2 2% ?...2%, the correspondence
exchanging o and (z°)°.

If instead of p, one takes another weight A = [A;, Ay, ..., \,], then the lin-

ear span V* of the orbit of z* is of dimension n!/dim(Gtab())) = n!/ay! ay! - - -

instead of n!, denoting by Gtab()) the subgroup of &,, leaving A invariant,
and writing A = 141292 ...

The H-spaces V* are called permutation representations. We already met
these representations, as spaces [J,,, . One can start from these representa-
tions to build the irreducible ones, but this approach does not furnish explicit
irreducible representation matrices.

We shall see that the images of some permutation modules modulo sym-
metric functions are irreducible modules, and that it is easy to write the
matrices representing the action of the symmetric group on these quotient
modules.

Let H be the quotient space Qz1, ..., z,]/&ym,, of polynomials modulo
the ideal Gym__ generated by polynomials without constant term. Here, the
use of the letter H comes from the fact that this space, also called coinvariant
space of the symmetric group is isomorphic, as an &,,-space, to the space of
harmonic polynomials.

As a vector space, H is of dimension n!. It is easy to see by induction
on n that it has a basis consisting of monomials 2*, A\ < p = [n-1,...,0]
(ie. A1 < n-1, Ay < n-2,...), and that it is isomorphic to the regular
representation of &,,°.

A better linear basis of H consists of the Schubert polynomials

{X,=Y;,0€6,, J=code(o)},

that one index indifferently with permutations, or with codes (some proper-
ties are better seen, or some computations are easier, on one indexing than
on the other, cf. []).

9But the ring of polynomials has a grading (=total degree in the x;’s) and a product
that has, a-priori, no natural counterpart in Q[&,,]. Similarly, one does not see what
corresponds to the multiplication of permutations at the level of polynomials. We shall
need idempotents to see the correspondence.
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Recall that every polynomial in x4, ..., x, is a linear combination of Schu-
bert polynomial indexed by permutations belonging to symmetric groups of
arbitrary order, G,, being identified with its embedding G,, X &, into G,,,11.
The ideal Gym, is the linear span of all Schubert polynomials indexed by
permutations which cannot be restricted to &,,. Therefore, once a polyno-
mial is expressed into the Schubert basis, one gets a representative of it in H
by just annhilating all Schubert polynomials indexed by permutations which
move at least one value > n.

We shall need congruences '° which come from decomposing X = {z1,...,,}
into any pair of disjoint subsets X', X".

For any positive integer £ and any subset X' C X, let us note X =
{z¥ v e X}.

Lemma 19 Let X =X UX", and f(X') be any symmetric functions in X .
Then
f(X) = f(-X") mod GSym, (35)

In particular, for any positive integers k,r, writing V; for the monomial
symmetric function of index the partition .J, one has

T ! — 1!
(1) () = 3wy (36)
sum over all partitions of kr, with all parts multiple of k.

Proof. Since for any k, U*(X') = U¥(X) — U¥(X") = U¥(-X"), the first
statement is true for power sums, hence for any symmetric function. In
particular,

(1) (X) = 5,(X) = 37 Wy(x).

sum over all partitions of r. Since a function remains symmetrical after
substitution of z; by z¥, i = 1,...,n, raising variables to power k produces
the second statement from the preceding equation. QED

Let u = [uy,...,ueN", u < p be weakly decreasing. Then the monomial
(called dominant) z” is equal to the Schubert polynomial Y,. Suppose that

moreover u is such that there exists ¢,7 : 2 4+ r < n — 1 such that
Ui = N1, Ujp] = Ujag =+ = Uiy = N—1—T .

Then, from Monk’s rule [|, one easily obtains the following property :

Orecall that for any power sum ¥* and any alphabet X, ¥*(—X) := —Wk(X). This
defines the fundamental involution X — —X of the ring Gym(X). In particular, for an
elementary symmetric function A*, one has A*(—X) = (-1)*S*(X).
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Lemma 20 For any polynomial f in r variables,

f(@it1,. ., Tipr) Yu =0 mod Gym_ (X)
= f(SEH_l, - ,ZEZ'_H«) =0 mod 60m+(xi+1, c ,ZEZ'_H«) . (37)

In particular, ' = 0, because it is equal to S, (z;) = £51»(X — ;) =0,
the nullity coming from the fact that X" = X — z; has only n-1 letters.
Similarly, Sp_1,-1(X2) =0, Sp—an—2n-2(X3) =0 &c., where X5, Xj3,... are
subsets of X of order 2,3, ... respectively.

Quadratic form Computations in the quotient ring are made easy by defining

a quadratic form !

1

= = = — f(g) 7 _
(h9)= (g =0 f0) = X 0O g 5| @)
ceG,
where A := [];_;(z; — 2;) is the Vandermonde. In other words, given two

polynomials f, g, one builds an alternating function from their product. Its

quotient by A is a symmetric function, the constant term of which one finds

by specializing all z;’s to 0 (this amounts evaluating modulo the ideal Sym, ).
Explicitely, the scalar product of two monomials 2%, 2V is

_1\(o) ; _ o
== (U S L g
In this set-up, to evaluate the quadratic form, one has to test whether the
vector u+ v is a permutation of [n-1,...,1,0] or not, and if so, keep the sign
of the permutation.

Let us now compare the modules Vai435909143 H, 2110 H, 22290 H. Their
generator is invariant under sq,s3, and the action of s, produces an ele-
ment which is not proportional to it. But now z''%s,s53 = !9 is not
a combination of 2% 21910 though Vai43520091435251 is a combination of

Vara359009143, Va1435200914350. However,

2002 2020 2200
_l’_

T 427 = g (a3 +ai+a]) = i (o] +as+a3+a))—2]) = —21 =0,

"'We could have twisted this form, as we did for #, by taking the product of f(z1,...,z,
with g(zy,...,x1). This is the convention that we first chosed in the theory of Schubert
polynomials, to have them constitute a self-adjoint basis.
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and similarly 2922 also belongs to the span of 22290 2920 Therefore, the

two modules V4350005143 H and 222°° A are isomorphic. On the contrary,
2119 % is 5-dimensional, and not irreducible.

Let us take a bigger example, with the 5-vertices graph corresponding to
shape [3, 2] that we already wrote many times. We write a copy of the graph
starting with the vertex [00033] :

3
[00033] i
[00303] %g
/ AN / N\
[03003] [00330] ‘% ; % :
AN /
[03030] N 7, 4
12

Both graphs have 5 vertices, related by the same permutations to the top
one. Notice however, that s, so,s4 act by -1 on the top tableau, and by 1
on the top monomial. We have described the space %Z ‘H by writing how

tabloids decompose in the basis of tableaux. To the tabloid % 5 owe associate

the monomial 200933

equations

o. Taking into account signs, we have corresponding

0=

N O~

?(1—712—713 —7'14> — $30003<1+7'12+7'13+714> =0,

but now, the equation on the right is easier to check, because it reads

30003 | 03003 | 100303 | 00033 — _.00003,00003 _ _ 00006 — ()
More interesting, the more sophisticated relation expressing the tabloid %%
corresponds to

03300 4 403030 4 103003 4 100330 | 00303 | 00033 — )
but this is true because the left-hand side is a symmetric function of x5, . . ., x5.

Therefore, according to (?7), it is congruent to a symmetric function of x;
of degree 6, and it must be null (already z7 = 0).

Let us now evaluate the scalars products of the vertices of the left graph
with vertices [01201],[01021],[00121],[01012],[00112], obtained by reading
from right to left the vertices of the original graph for shape [3, 2].
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The quadratic form is expressed by the following matrix (0 are replaced
by dots) :

We know from (39) that we must obtain a matrix of 0, £1. That the diagonal
has no zero entry is clear, because we started with a decomposition of p =
[01234] into [00033] + [01201], and acted with the same transpositions on
both vectors. But what is remarkable is that the matrix is lower triangular.

Now, we can obtain relations by just evaluating scalar products. For ex-

ample, the expansion of 23093 is obtained from the matrix, and the evaluation

of (5630003,5601201) — (5631204, 1), (5630003,5601021) — (3731024, 1), (3730003,3700121) —

(x30124, 1)’ (.’E30003,IE01012) — (1,31015’ 1) — 0, (1,30003’1‘00112) — (x30115, 1) = 0.
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In the general case, we proceed as follows.

Given any two vectors u,v € N*, let (z) be the word in the biletters (Z)

Given a partition A of n, recall that we have defined a word y, by filling its
diagram (packed in the North-East corner, parts of A being column lengths)
with successive integers, starting from 0 in the bottom boxes, and then,

reading successive columns from left to right. Let uy = p — vy = [n-1 —
V1, =2 — v, ...,0 — vyl
113 66
002 44
A =[422] — § — uy = [76543210]—[10103210] 0000
yx = [10103210] uy = [66 44 000]

Let V) be the linear span of the orbit of z¥* under &,,, and U, be the linear
span of the orbit of x">.

Lemma 21 Let )\ be a partition, u be any permutation of uy, v be any per-
mutation of yx. Then

(2", 2%) A0 iff <u> = <UA> commutatively .
v Ux

Proof. (z*, ") # 0 (and = +1) is equivalent to the fact that u + v is a
permutation of p. But it is possible to get the components 0,1,..., A\;-1
only as 04+ 0,0+1,...,0+ (A-1). This determines \; letters of the biword
(;‘), and one proceeds by induction on the length of \. QED

Take now the graph T') with its first labelling (the plactic class of y,),
and a copy of it, that we denote F‘A", taking now u) as top vertex. Denote by
& the involution exchanging the labellings of vertices (so that uy = y*).

Lemma 22 Let u be a vertez of I*, v be a vertex of Ty. Then (zv, 2"*) =
+1. If (2%, 2%) # 0, then v is smaller than u® for the lexicographic order,
and u is smaller than v® for the right-lexicographic order.

Proof. First, u + u® is a permutation of p. This proves the first assertion.
Secondly, from lemma 21, we have that in the case of non nullity of (Z), for

any b, then the set of biletters (f) in (;‘) is the same as in (Z;) But in this last
biword, the bottom letters are ...,2,1,0. Therefore, any permutation of the
biletters - - - (g) (2) (g) will give a word in the bottom letters lexicographically
smaller than ..................... QED

For example, for ...............ccoo. but only v = ... are vertices of T').

A more detailed analysis of the restriction of the quadratic form to Uy x V),
is made in [3].

Taking the lexicographic order on the vertices of I'y, and its image under
& on the vertices of F‘I‘, one deduces from lemma, 22 the following proposition.
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Proposition 23 Given a partition A of n, then the restriction of the canon-
ical quadratic form of Qx1, ..., x,]/Gym, to Uy x V) is a triangular matriz
Qx, with a diagonal entries in {1,-1}.
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Jucys elements and the center of the group algebra of G,
CEEECEPPIOCERE Y d

Given a non-commutative algebra, there are many ways to relate it to
the commutative world. In this section, we shall treat the related questions
of describing the center of the group algebra of &, (i.e. the set of elements
which commutes with every permutation) and finding a mazimal commuta-
tive subalgebra.

If g € Q[&,] commutes with every permutation o, then

_ 1 _
g=o0go 1=ﬁZgzaga v
'UEGn

Therefore, ¢ is a linear combination of conjugacy classes, and conversely, any
conjugacy class belongs to the center Z, of Q[&,]. As a result, one has :

Lemma 24 Conjugacy classes are a linear basis of the center Z, of Q[&,].
The product of two conjugacy classes is a sum of conjugacy classes.

Describing the multiplication constants of Z, is not a straightforward
matter, we shall see later how to do it with differential operators. Multipli-
cation of classes can be translated into an operation on symmetric function,
which is implemented into ACE :

ACE> ProdCC:= proc(ccl,cc2) ## Enter 2 linear combination of classes
Toc( SfCCProd(ccl, cc2))

end:

ACE> ProdCC( c[3,2,1],c[4,2]);
36 cl[4,1,1]1+ 48 c[2,2,2]+ 24 c[2,1,1,1,1]+ 24 c[3,2,1]+ 30 c[6]

Let us now look at commutative sub-algebras. We shall follow Jucys
[19], who described a Gelfand-Zetlin basis of the group algebra of successive
symmetric groups. Recall that we embedded symmetric groups of successive
orders

61;)62262X61%63263X61...6n_126n_1X61;)6n,

by identifiying a permutation of G;_; to the permutation of & obtained by
adding to it a fixed point k.

The Gelfand-Zetlin sub-algebra J, C H,, n = 1,2,... is the algebra
generated by the successive centers Zi,..., 2, of Hy,...,H,. It is clear
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that is commutative. We shall see later that it is a maximal commutative
sub-algebra of #H,,.

Since the sum of all transpositions belong to the center, then 7, contains
all elements Tij, or equivalently the Jucys elements'?

gn = Z Tin

1<i<j<n

ijri<j<k

(it is convenient to put & = 0).

One can now use the Jucys elements to describe the center. We have
already said that it is linearly spanned by conjugacy classes. However, as an
algebra, Farahat and Highman [8] have shown that the sums ;.7 _,  Cr,
1 < k < n-1 generate it. Jucys proved the more precise following property :

Theorem 25 For each k : 1 < k < n-1, the elementary symmetric func-
tion A¥(&1, ..., &) of degree k in the Jucys elements is equal to the sum
ZM(I):n_k C; of all conjugacy classes of length n—k (i.e. indexed by parti-
tions of length n-k).

For example,

A = Cyy
A* = Cyi.1+Csi1
A = C391.1 +Cy1..1

AT =,

Proof. . By induction on n, one has essentially to describe the effect of
multiplication of a conjugacy class of &,,_ by a transposition 7;,. If 0 € &,,_;
has a cycle (a,...,b,i,c...), then 7, 0 will differ from it just by the cycle
(a,...,b, i,n, c...).

On the other hand,

Ak(fl +oe +€n) = Ak(& +oeeet Sn—l) + Sn Ak_l(fl +oe +€n—1) :

The first term corresponds to adding a cycle constituted by n only, the sec-
ond, to the multiplication by the sum of all transpositions involving n. QED

Given Jucys’ result , a natural question is : how to express the conjugacy
classes, which constitute the natural linear basis of the center, as symmetric
polynomials in the §;’s 7

12the terminology Jucys-Murphy, or Murphy element is also used, the last one being
predominent, but contrary to the historical order; our choice is meant to reestablish a
more balanced average of citations.
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We shall give, in the next proposition, a linear basis of products of ele-

mentary symmetric functions. For I a partition of n, and J := [j1, ja, . . ., ji]
the conjugate partition, let

A(I> c— AJ2 L AT = AJ2odn
("product” of the columns of the diagram of I minus its first column).
Proposition 26 The A(I), |I| = n, constitute a linear basis of Sym(&y, ..., &),

and the matriz of change of basis is triangular by blocks (taking the natural
order of partitions on the conjugacy classes Cj, and taking an order on the
A(I)’s, such that the weight |I| is increasing).

For example, for n = 4,5,6, ACE computes

[ C11111 C2111 €221 €311 C32 C41 C5-
i Ciiir Corl €22 €31 C4 A<0> 1 .
AO) 1 . A(1) 1
A(1> 1 . A<11> 1 2 3
A(ll) 6 2 3 A<2) . 1
A(2> 1 1 A<21> 9 4
_A<3> 1] A<3) 1 1
| A(4) 1)
[ Cii1111 C21111 C2211 C3111 €222 €321 Ca11 €33 C42  Cs1 06-
A(0) 1 .
A1) 1 . .
A<11> 15 2 3
A<2> 1 1 . . .
A(lll) 51 6 9 16
A<21> 14 3 4 6
A<3> . . 1 1 1 . .
A(22 89 28 37 11 12 20
A<31> 13 12 6 7 10
A<4> 1 1 1 .
| A() 1)

The inverse matrices are
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- _
(1 . . 1
1 10 ~1 3
6 -1 3 ~10 . 1 =2
—6 1 -2 . . 9/2 ~1/2 3
] . 1 .o=9/2 .. 12 -2 .
1
SO _
1.
15 -1 3
—15 1 =2 .
—4 . .2 =7 10
13 . . =3 10 —12
-9 . . 1 -3 3 . L
54 . -7 18 . . . 3/5 —8/5 4
—67 . 9 -19 . . . —4/5 9/5 -2
13 . -2 1 . . . 1/5 -1/5 -1 .
1

Commutation relations

It is immediate to check that the Jucys elements satisfy the following
relations

Srrrsk— sk =1 & &si=s:&, [k—i[>1, (40)
Suppose now that h € H,, is an eigenvector for &, ..., &,, with eigenvalues
Cly...,Cpn .

Then one can easily generate other eigenvectors :

Lemma 27 Let h € H, be a simultaneous eigenvector for the Jucys ele-
ments, with different eigenvalues ¢y, ...,c,. Then, for any i : 1 < i < n,

g:=h(si+ le_cl) 18 also eirgenvector, with the same eigenvalues as h, except

9& =gciv1 & g&y1=g¢ .
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Proof. Because of the commutations (40), ¢ is an eigenvector for all §;, j #
1,1+1, with same eigenvalues as f. On the other hand

1 .
h (Sl+7) fz :h(l‘li+18i+1+fi
Civ1 — G Civ1 — G
1 —C; + C; — C; + C;
=h <Ci+1(si + ) + = s ) =9Ciq1,
Civ1 — G Ci+1 — G

and the product ¢g&; .1 is determined by the fact that & + &1 commutes with
We shall need more commutation relations.

Lemma 28 Let i, j, k three integers, 1 < i < k < j; let g;, git1,. .., g; belong
to the algebra generated by the Jucys elements. Then

5i9iSi+15i+1 "+ 5595 Ek = k1 SiGiSi+1Gi+1 " "+ 559
— SiGiSi+1 " k-1 ®9k3k+1 ©rr 5545 - (42)

Proof. The element & commutes with all the factors of the right of s;; now,
si& = &1, — 1 and &1 is free to reach the extreme left. QED

PNP and Jucys elements

To find orthogonal idempotents starting from natural representations,
Young used the elements!® P(t)N(t)P(t), for tableaux with rows filled of
consecutive integers, instead of taking P(t)N(t) or N(t)P(t).

We are going to show that these elements have many remarkable proper-
ties; they are, in particular, two-sided eigenvectors with respect to the Jucys
elements.

Recall Young’s relations!

N(#)P() (1 + Zw,) —0, (43)

4.

for any choice of two rows of ¢, a varying over all the entries of a row, and b
belonging to a row of not bigger length.

Given an integer k, then the Jucys element & is the sum of all trans-
positions which exchange k£ with elements of lower rows, plus transpositions

BP#)N(t)P(t) # 0, because P(t)N(t)P(t)N(t) = n!/dim(\)P(t)N(t), when t is of
shape A.

Yno signs, because we took N (¢)P(t) instead of P(t)N(t); Young’s relations involve two
consecutive parts of a composition, or equivalently by conjugation, any pair of rows of a
tableau.
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exchanging k with elements in the same row. For each of the lower rows, one
has N(t)P(t) Y, Tak = —N(t)P(t), and each transposition preserving the
row where k lies is such that N(¢)P(t) 7o = N(t)P(t). Summing up, and
using left and right multiplication, one obtains the following proposition :

Proposition 29 Let t be a tableau with rows filled of consecutive integers
(call it a bottom tableau). Then P(t)N(t)P(t) is a two-sided eigenvector of
all the Jucys elements, with

§GPN@)P(t) = c(i, )P(N(E)P(t) = PO)N@)P(#) &, (44)

where ¢(i,t) is the content of the box of t containing i, i.e. the distance of i
to the main diagonal.
In particular, all the Jucys elements commute with P(t)N(t)P(t).

Yang-Baxter graphs and eigenvectors

Given a partition A, we shall take again the Yang-Baxter graph I"y, ver-
tices being labelled by the content vector. We shall still label each edge
v — v s; by the factor

1 1
arly_ 1
( B 1—p?
where 3 = v; — v;41 (notice the change of sign !).
Let ¢y be the bottom tableau of shape A. For any other tableau ¢ of the
same shape, define 0(t,,t) to be the product of the edges of any path ¢, — ¢,
and 6(ty,t) to be its image under the antiautomorphism of # induced by

c— o I O(tt) = (si+1) L= (sk + %) ——L . then O(t),t) =
v

a) Vica ? S

1 1 1 1
(Sk—i-;)m(sl-l-a)m
Let e+, be the idempotent proportional to P(tx)N(tx)P(ty). For any
pair t,t' of tableaux of shape A, define

€ty = g(t/\a t) eryiy O(ts, t'). (45)
Then

Theorem 30 The n! elements ey, t,t' standard tableaux of the same shape,
are (non zero) two-sided eigenvectors of Jucys elements, with eigenvalues

& Ery = C(i, t) Etv & €ty &= €t C(ia t/) . (46)
They are a linear basis of H and multiply as matrix units, i.e.
Erp €y g1 = Cyyn & €t Cy " = 0 'Lf U # t’ (47)
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Proof. For two tableaux of shape A, the e, are obtained by multiplying the
e, t, with invertible factors, and therefore are non-zero. The commutation
relations given by Lemma 27 show that

Eiery = clist) ey & erw & = ey c(i,t')

because it is true for e, . Notice that it implies that the Jucys elements
commute with all the diagonal elements e;;. Moreover, the e; are also idem-
potents.

Since the “content vectors” are all different, the e;, are linearly indepen-
dent, and therefore, constitute a linear basis of H.

Since P(t)N(t)HP(t')N(t') = {0} if t and ' are not of the same shape,
then e,y e,,, = 0 if ¢ and u have not the same shape.

Given any tableau of shape A, a product e;,, e;;, = (§(t,\t)) el (H(t,\t))f1
is different from 0. Multiplying it on the right and on the left by invertible
factors, it implies that any product ey e, is non zero. But it is a left and
right eigenvector of the Jucys elements, and therefore, proportional to ey .
Since ey is an idempotent, O(£xt) eg, 1, O(Ext)0(Ert) e, = O(trt)er, 1, 0(t21), and
emkG(tﬂf)g(tﬂf)etktA = f(tat)er,r,. One concludes that the factor of propor-
tionality is 1.

In the case of four tableaux t',¢, u,t” of shape A, one writes the product
EpriCun AS EpiepCyyCy. 1f T # u, at least one & has a different eigenvalue on
ey and ey,. But & eyey, = ey & ey, and therefore the products eye,, and
eyi€yw are null.
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Yang Polynomials

Given a partition A, let
wi=[(Ag+ 42N, Azt 120)22, (Mgt 4A,)M, L, 0]

and let £, be the bottom tableau of shape A\. The monomial z" is equal to
the Schubert polynomial Y,,, and is invariant under the Young subgroup &,.

In fact, from the theory of Schubert polynomials, one easily obtain the
following characterization of Y,,.

Lemma 31 Let f be the class of an homogenous polynomial of degree |u| in
the quotient ring $9 = Clxy,...,x,]/Gym, . If f is invariant under &) ,
then it is proportional to the Schubert polynomial Y.

Denote by Al = A1 Ay!--- the order of &,. The element P(t\)N(tx)P(t))
is a quasi-idempotent :

n! Al
~dim())
Let ey be the idempotent proportional to P(t,) N (t\)P(ts):

_dim())
DY

Lemma 32 The class of the monomial x* in $) is invariant under ey.

(P(tA)N(tA)P(t)))? P(tx)N(tr)P(y) -

P(t\)N(t))P(ty) .

Proof. Clearly PN Px* is invariant under the left multiplication by elements
of &,. Therefore ey " is proportional to z*. But the two modules H x* and
H P(t\)N(t\)P(ty) are isomorphic, and therefore the equality

P(tA)N(tx)P(tx) P(Ex)N(ta) P(tx) = ¢ P(tx)N(t2) P(t))

implies that P(t,)N(ty)P(ty) " = cz® for the same constant c. QED

Let I'y be the normalized Yang-Baxter graph for the partition A\. Any
edge v — v s; is now labelled

1 o )
(si + E) T with = |v; — v .
Given any tableau ¢ of shape A, let gt and #; be respectively a path from
t to ty, and a path from ¢y to ¢t (evaluated, as usual, as the product of the
labels of its edges).
Define, for any tableau ¢t the Yang polynomial b; to be

bt = 9t xt . (48)



Theorem 33 Let A be a partition, and Al = M\! X!+ be the order of G,.
Then for any pair of tableaux of shape A, one has

/ ]' u
P(t)\)ﬁt/ bt =0 , t # t & ﬁp(t,\)ﬁt/ bt =T . (49)

Proof. P(ty)0y b, is proportional to z*, therefore, proportional to

P(t\)N(t2)P(t2)0,0,P(t,) N (ty)P(ty)z*. The fact that the product of the
two idempotents 9} ey 0y and @eA 0, is 0 or @eA 0; whether ¢t # t', or not
implies the theorem. QED

Corollary 34 FEvery polynomial in the space H x* decomposes uniquely in

99 as

= ¥ (5mreen) . (50

teTab(\)

63



A A A R A A A A A

Young idempotents as limits of Yang-Baxter elements
wEErww e LR LY

We have already seen that Young matrices are a solution of Yang-Baxter
equation, and that Young orthogonal idempotents involve products of factors

of the type
1

c(t, k) —c(t,k+1)

in which the contents ¢(¢, k) of standard tableaux appear (we have implicitely
used the fact that that no two consecutive contents are equal).

Another way to relate Young idempotents and Yang-Baxter elements is
due to Jucys and has been developped by Cherednik.

It consists mostly in taking only one Yang-Baxter element, the element
indexed by w, and in specializing in it the vector of spectral parameters to
all the content vectors of standard tableaux. But, because contents are not
all different, the specialization is not straightforward and must be obtained
as a limit.

Thus, let us first ”polarize” the contents by using extra variables ey, ..., €,
and puting, for a letter £ in row 7 of a tableau ¢

Sk +

ct(k,t) :=c(k,t) +¢ . (51)

We can now use these modified contents as parameters in Yang-Baxter
elements, since they are all different. Jucys [19] gave an inprecise version of
the following theorem'®, but this was corrected by Cherednik [?].

Theorem 35 (Jucys-Cherednik) Let A be a partition of n, t be the bottom
tableau of shape A. Then the limit of

Y, (et (1,1),..., ¢"(n,t))

when all the €; tend towards 0, exists and is equal, up to a non zero factor,

to the Young element
P(t) N(t) P(t) w .

Nazarov has made a detailed analysis of why the above Yang-Baxter ele-
ment has no pole (and extended his analysis to cover the spin representations
of the symmetric group). Independently, [JMKO] characterized the left and

5he took different €’s for each box of a diagram, and let all €’s tend independently
towards 0. The limit does not exist in general for unrelated €’s.
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right ideals generated by the limit of Y, and thus provided another proof of
Theorem ?77.

We prefer to show that one can avoid getting involved into sophisticated
studies of limits, by just extending Yang-Baxter relations in such a way as
to cover the limit case.

We first notice that the limit of

(51 1) (52 4+ 1) <sl 4 L)

eF1

for € — 0 exists and is equal to (s; £ 1) (s251 F s2 — 1), and, by symmetry, is
also equal to (s9s1 F s1 — 1) (s9 = 1). Therefore, one has

(s1£1)(s2s1 Fsa—1)=(sas1 Fs1—1)(s2t1). (52)

Thus, factors of the type (sq + 1)(s2s1 F so — 1) can be used instead of
the troublesome (s1 4+ 1)(s2 + 1) (s1 + E%)

To be able to handle these special factors in Yang-Baxter products, we
need to replace commutations of the following type (the numbers 1,2,3 stand

for any triple of consecutive numbers, and « is a non-zero constant) :

(53 D)oo+ )51+ D)) ({53 + )2 + =) =

€E—

) (6534 =)+ D1+ ) (53)

e—1

)51+ =) (552 = 2 = (s +5)) (59

—a—1 -«

((32 +

Yang-Baxter relations will be replaced by (52), (54) whenever special
factors are involved. We still can write enough Yang-Baxter type products
to produce elements which can be characterized by some of their right and
left possible factors (in the group algebra)'S.

We are now ready to define an element depending on parameters z1, ..., x,
which can be specialized to the contents of any standard tableau with n boxes.

16Recall for example that the Yang-Baxter element Y, (z1,...,z,) is, up to a scalar, the
only element in H,, which admits any s; + 1/(z;11 — ;) as a right or left factor.
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Definition 36 Given a partition J of n, let w = (01 01)(Op—1-+-02)+* (Tp-1)
be the mazimal'” reduced decomposition of w,. Then the Young-Yang element
of index J, Yy, is obtained as follows.
Write the Yang-Baxter product corresponding to w, specialize the param-
eters to the contents of the diagram of J, but replace each double factor of
the type (s —1)(s' —1/0), with s and s' consecutive simple transpositions, by
a factor (ss' — s —1).

This definition makes sense because for the choosen reduced decomposi-
tion, a factor ss’ — 1/0 has always as a left neighbour a factor s — 1. One
can in fact characterize all the reduced decompositions of w having this prop-
erty, and consequently one is able to use all of them instead of taking only a
canonical reduced decomposition.

However, we need only have enough decompositions to be able to charac-
terize the Young-Yang element by its possible left and right factors s; + 1/«
of degree 1, and we shall not consider all possible factorizations of the Young-
Yang element.

Lemma 37 Let Y; be a Young-Yang element. Let [a+1,...,a+ k| be any
row of the bottom tableau t; of shape J. Then (sqy1+ 1), ..., (Sqsx +1) are
left factors of Y; in the group algebra. Moreover, if the row is not the top

one, then
1 1
(Sa+k = 7)(Sarh-1 = =)+ (Sar1 = 1)

s a left factor of Y.

Proof. Suppose by induction that the lemma is true for the partition I ob-
tained from J by decreasing by 1 its smallest part. Let Y;+ the image of Y;
under the embedding &,,_1 — &1 X &,,_1, n = |J|. Then

Y; = (5n71 +*)"'(51 —I—*)Yﬁ ,

where there are in the extra left factor, as many factors of the type (ss'—s—1)
as there are entries other than n in the diagonal occupied by n in t;. More
precisely, apart from the case of the top row, the subfactor involving the
indices a + 1, ..., a + k is of the type

1 1 1 1
(5a+k+ﬂ) T (Sa+b+2+_—2) (Satb+1Sa+b—Sa+p—1) (5a+b71+1) o (Sa+1+b_—1) :
We know by induction on n that (s,10+1), ..., (Serk+1) are left factors

of Yri , and s0 is (Sqr2 — 1) (Sass — 707) - - (Saths1 — 1)-

"with respect to the lexicographic order
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But the extended Yang-Baxter equations allow us to commute these fac-
tors with (sqyx +1/(b-k)) - -+ (Sas1 + 1/(b-1)), producing just a decrease by
one of the indices of the simple transpositions s. QED

For example, let .J = [5,6,10]. The tableau ¢; and its contents are

17} --121 -2 2
11}-+{15|16 —1-131|4
115 6""10| ol-14 5...|9‘

The Young-Yang element factorizes into

1 1 1
($20 + ﬁ)(Sw + ro)(SIS + m)(«m + m)
(s16 + ﬁ)(swsm — 514 — 1)(s13 + rll)(sm + ﬁ)(sn + 2%(1))
1 1 1 1
(810 + rg) e (85 + ﬁ)(8483 — S3 — 1)(82 + ﬁ)(sl + ro)

times }/4,6,10-
We can now present an alternative to the result of Jucys and Cherednik.

Theorem 38 Let J be a partition, t; be the bottom tableau of shape J. Then
the Young-Yang element Yy is equal to P(t;) N(t;) P(t;)w, up to a non-zero
scalar.

Proof. We shall check that Y satisfies the left and right vanishing properties
which characterize P(t;) N(t;) P(t;).

Let 7 be an integer such that o; € &;. Then s; 4+ 1 is a left factor of Y}
and therefore (s; — 1) Y is null for all those i.

Take now a row of ¢;: according to Lemma 37, one can factorize on the
left y == (Sa+k — 1) (Sash—1 — 777) -+ (Sap1 — 1). But the product (sq41 +
1)(Sas2+ 5 -+ (Sagr + 1) y reduces t0 (sop1 +1)(1—75) - -+ (1 = 35) (Sa1 — 1),
and thus is is null : the two modules HY; and H P(t) N(t) are isomorphic.

The same reasoning applies to the factors that one can extract from the
right of Y;, up to the reversal of the parameters ¢(1,¢;),... ¢(n,t;). These
right and left vanishing properties show that Y; is equal, up to a factor, to
P(t;) N(t;) P(t;) w. The leading term of Y; is w, and thus the coefficient of
ww =11in P(t)N(t)P(t) determines the factor of proportionality. QED

We have already seen that P(t;)N(t;)P(t;) is equal to the product of
P(t;)N(t;) by invertible factors s+1/¢, ¢ ¢ {0,£1}. Thus from Y, one can
get P(t;)N(t;). This corresponds to starting with a reduced decomposition
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of another permutation than the maximal one, or extracting factors from
the right of Y;. One could as easily produce the idempotents corresponding
to other tableaux than the bottom one ¢;. All these expressions are directly
obtained from Y; and we shall not bother the reader with unnecessary details.

For example, when J = [2, 2], the content vector is [0, 1, -1, 0], specializa-
tion of [0,1,-1,¢]. The Young-Yang element is

(s3+1) (8281 — 51 — 81) (s3 — %)(82 —1)(s3+1)

which is indeed the expression obtained from the maximal Yang-Baxter ele-
ment

(55 + 1%6) ((s2+ GL)(S1 + %)) (55— 1/2)(s2 — 1)(s3 +1) -

Using the comutations ? , it can also be written

1

(s3+1)(s1+1) (3231 — Sy — 31> (s3 — 5)(82 —1)(s3+1),

expression which shows that P(ty) can be factorized on its left (we have to
multiply it by the permutation w = [4,3,2,1] to be able to factorize P(ts2)
on the right).

On the other hand, the element PN P, for the tableau %3, is equal to

Uo14352Vorazsolloag = 44 -+ -

and therefore
4Y22 W = P(tQQ)N(tQQ)p(tQQ) .
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Gelfand-Zetlin bases, and Jucys-Murphy construction
PO bbb

The requirement to build recursively objects for successive symmetric
groups G,, compatible with the embeddings &,, — 6,4, is a very strong
condition, and determines these objects as soon as one fixes them for the
case of &,.

Let us first look at orthogonal idempotents.

Taking all standard tableaux ¢, Young associated to them quasi-idempotents
P(t)N(t). These quasi-idempotents are not mutually orthogonal; for a pair of
tableaux ¢, ¢’ of the same shape, one can have non-zero products P(¢t)N(t)P(t')N(¢').

Young described complicated branching rules for these quasi-idempotents
18 We describe this construction of Young in the appendix.

Moreover, Young gave an orthogonalisation process, but unfortunately
his description is complicated, not really fully explicited and not canonical
because he leaves the choice of different orderings of tableaux.

Thrall [38] gave a simpler construction which is clearly compatible with
the branching process.

For a standard tableau t of n letters, let ¢t\n denote the tableau obtained
by erasing the letter n.

Following Thrall, define elements f;, where ¢ runs over all standard tableaux,
recursively by :

c(t) fon(t) PR)N() fon (55)
putting e; = 1 for the tableau with 1 box, ¢(¢) being a certain specific non-

zero constant that we shall make precise later.
For any pair of tableaux ¢, ¢ of the same shape, let now

fw =ct,t) fi ¢t t) fr & fu=fi, (56)

where ((t,#') is the permutation (¢)"'#' (considering standard tableaux as
permutations), and ¢(t,t') some specific constant.

Theorem 39 (Thrall) The products f(t)f(t') are null if t # ¢'.

For tableauz of the same shape u,t,t' u', then the products ey ey, are
null if t #t'.

There exist of choice of the constants a(t), a(t,t') such that f(t)* = f(t),
and fui frwr = fuw, i.€. such that the fi are matriz units.

180f course, at the level of characters only, the rule is very simple, reducing to adding
a new box to a diagram, in all possible positions. But this does not give the relations
between the elements P(t)N(t) and P(t')N(¢') when t' is obtained by adding a letter to ¢.
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Proof. If t and ¢ have not the same shape, then we have seen that
P(t)N(t)H P(t')N(t') = 0, and therefore f;fy = 0. Supposing now ¢ and ¢’
to have the same shape, but be different, then #\n is not equal to ¢'\n, and
by induction on n one has fy, fi\, = 0. This implies in turn that f;fy = 0
and fus fyur = 0.

To check that the elements f(¢) are non zero, and that there exist con-
stants such that they are idempotents, we shall show that they are non-zero
multiples of the elements e; seen in the preceding section.

Let 0, = > ,_j<,- We have seen Young quasi-idempotents P(¢)N(t)
and N(t)P(t), for any tableau ¢, are two-sided eigenvectors for this central
element :

0. P()N(1) = P()N (1) 6, = (3 c(i 1)) P(£)N(1) - (57)

[

Notice that the sum of all contents >, ¢(i, t) does not depend on ¢, but only
on the shape A of t. Let us denote it ¢()).

We shall now exploit one of the main feature of Gelfand-Zetlin bases. In
the present case, it will be that the property satisfied by (6,, t), for ¢t with n
boxes, will be valid for any pair (6, t).

Proposition 40 The f;y are two-sided eigenvectors for the Jucys elements.
One has, for allti=1,...,n,

i fur = c(ist) for s fur & = fow (i, tl) . (58)
Proof. Supposing the theorem to be true for n — 1, then we know that f;
is a two sided eigenvector for &;,...,&,_1, with eigenvalues the contents of
1,...,n-1. But we know from (57) that f is also a two sided eigenvector

for 6,, with eigenvalue ¢(\), and it implies that it is a two-sided eigenvector
for &, with the contents of n in ¢ and ¢’ as eigenvalues on the left and on the
right respectively. QED

Corollary 41 Thrall elements fy are non zero-multiple of the units ey de-
fined in ?

Jucys-Murphy construction of idempotents

The characterization of the elements e;; as two-sided eigenvectors for all
the &;’s naturally lead to another recursive definition of them, due to Jucys,
then Murphy.
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Given a standard tableau u with n—1 boxes, let Gns(u) ;= {v : v\n = u}
be the set of all standard tableaux obtained by adding a letter n to u. Given
some t € Gns(u), we call the other v € Gms(u) the brothers of t and denote
their set Broth(1).

Define recursively elements ¢, indexed by standard tableaux by :

9t = Yi\n H . &n — clm, v) : (59)

vE%toth(t) (n7 t) - C(”’ ,U)

Theorem 42 The ¢; are two-sided eigenvectors for the Jucys-Murphy ele-
ments and coincide with Young’s orthogonal idempotents ey.

Proof. Let ¢(x1, ..., x,) be any polynomial in n variables. Then, because the
ey are eigenvectors of the Jucys elements, one has for every pair of tableaux
(u,v) with at least n boxes :

g (&, &) ew = gile(lu), ... c(n,u)) ey ,
euvgt(fla"'agn) = euvgt(c(l,v),...,c(n,v)),

i.e. the product of e, by g; is obtained by replacing each &; by the content
of i in u or v.

But, by construction g;(¢(1,u), ..., c(n,u)) vanish if the restriction of u to
n boxes does not coincide with ¢. Since {e,,}, where (u, v) runs over all pairs
of standard tableaux of the same shape with n boxes is a linear basis of H,,,
the g; coincide with the e; up to a scalar factor. However, e;; is invariant by
multiplication by any factor (& —vy)/(c(i,t)—y), for any y # c(i,t). Therefore

Euidt = Gty = €yt

and g; coincide with ey. QED
Both Jucys and Murphy kept in the expression of the g; in terms of Jucys
elements unnecessary factors, defining elements f; by the following recursion

gn_n gnf% 13 £n+n
r— 7! R 60
9= o c(n,t) —n 0 c(n,t)+n’ (60)

with the factor having 0 in denominator omitted.

Of course, because ¢, is an eigenvector, multiplying it by extra factors
(&-y)/(c(i,t)-y) does not change its value, as long as y # ¢(i, t) and therefore
9t = Gu-

Jucys and Murphy’s proof that the g; are simultaneous eigenvectors, with-
out assuming previous knowledge of the e;;, mostly reduces to checking the
following lemma :
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Lemma 43 Let Py(x):=(x —n)---x---(x +n). Then for anyi <n,

Proof. By induction on n, one has P,(§) = 0, i < n. The central element
P,(&) + -+« + P,(&,) is thus equal to P,(&,), and it is characterized by the
value of its restriction to a copy of each irreducible representation. But we
have already seen that Young’s relations give in each representation elements
which are eigenvectors of all §;’s, with which one can check the extra nullity
of P,(&,). QED

Jucys and Murphy expression of idempotents clearly encodes the fact that
they are eigenvectors, with eigenvalues the contents. It also shows that the
e, are a Gelfand-Zetlin basis. However, it has disadvantages. Developing
expressions (59) or (60) in #,, is costly, because of the number of factors,
and because each Jucys element is a sum of transposition.

On the other hand, with Yang-Baxter elements, we need only compute,
for each shape A, the element P(ty)N(t\)P(t)) (which is obtained by enu-
meration of double cosets, and not by products in H,), and then we obtain
the other idempotents by multiplication by factors of the type (s; + 1/x)
according to the Yang-Baxter graph I').
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Notes
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Spaces of Tableaux and Garnir relations

Many spaces that we obtained can be identified with linear spans of
tabloids of a given shape, the symmetric group acting by permutation of
the entries of the tabloids.

Tabloids are not linearly independent, and we want the relations that they
satisfy to be such that tableaux be a linear basis. Young gave such relations,
using different approaches depending on the type of representations he was
describing.

The simplest relations have been described by Garnir [14], but in fact, are
special cases of classical relations between minors, and also of generalizations
of the Lagrange interpolation formula.

Suppose for the moment that tabloids satisfy the following relations :

1. They are invariant under permutations preserving rows.

2. Given two consecutive rows of lengths p,q (p < ¢) of a tabloid ¢, let
A be the entries of the first row, B U C the entries of the second row,
with card(A) + card(C) = ¢+ 1. Then

Y o(t)=0. (61)

rEG(AUC)

Because tabloids are invariant under permutations in rows, instead of
summing on the group &(A U C'), one needs only enumerate complementary
subsets (written increasingly) A’,C’, replacing A by A" and C' by C' in t.
For example, for p = 2,¢q = 3, A = {a1,a2}, A = {¢1,¢2}, the sum on
the symmetric group &(ay, as, ¢1, ¢o) is equal to 2! x 2! the sum on pairs of
complementary subsets of cardinality 2.

abl ‘2 co + abl Z; ) + abl ac;l c1 + ab2 chi co + ab2 Zi c1 + Cbl Zi as — 0

Let A be a partition, Tbl(A) the set of tabloids of shape A. Then the
following proposition shows that Garnir relations are sufficient to express
any tabloid in terms of tableaux.
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Proposition 44 Let n be an integer. Let V be an &,-module, linearly
spanned by tabloids invariant under permutations in rows, and satisfying
relations (61). Then any tabloid is a linear combination of tableaux of the
same shape.

Proof. Define a violation ............. Taking an extremal violation (with respect
to the order on the plane, that is there is no other violation in its North-East
corner), then using Garnir relation ... QED

Notice that we have not forbidden tableaux to be linearly dependent.
Usually, one first checks directly their independence. The usual strategy for
the second step is to prove that there is no non-zero morphism between spaces
of tabloids of different shapes, and to use some general results on representa-
tions of finite groups on C, to conclude that the above spaces are irreducible
representations, and that every irreducible representation of the symmetric
group is isomorphic to one of such spaces. However, we prefered to explain
how Young constructed explicit representations without any knowledge of
group theory.

Let us review the different interpretations of Garnir’s relations, or of
similar relations, that we have encountered.

Let us begin with the group algebra. We take an increasing partition .J,
and I a composition (weakly) conjugate to J. Filling the diagram of .J with
consecutive numbers, from top to bottom, we isolate a pair of consecutive
rows of lengths p,q, p < g,

oo o, B B+ .y,

taking a,~ in such a way that v — a > ¢. Then, one has (?7)
Vo, HOy O, =0, (62)

wherew' =[1,...,a-1, v,...,a, y+1,...] (and therefore, (1, = 2066(a,...,7))'

Because one can factor -, (o a1 X D ce(ain,.,) Y o0 the left of O,
the preceding relation can be reduced to

Vo, MY o0, =0, (63)

where o runs over cosets representatives of S(a, ...,7)/6(a, ..., B)xS(+1,. ..

For example, writing the letters which commute freely between themselves
in boldface, one has the following relation (o« = 5,5 =7,y =12) :

3

O || N

1
U:Z 4

8|9 ]10[11]12][13]14
15[16]17[18]19]20[21]22
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Multiplying from the right the left hand side by any permutation v, one
gets a relation involving permutations of letters in consecutive rows of an
arbitrary tabloid of shape J.

We also described representations in the quotient ring Clzy, .. ., z,]/Gym .,
and needed Garnir relations in this set-up. To a partition .J we associated a
monomial 2%, with u = [--- (A1 + X\2)**, A2, 0], A = decreasing reordering
of J, and we obtained

" le =0 s (64)

taking the same definition of w’ as in (62). Again, one can reduce the summa-
tion to cosets representatives of S(a, ..., B) x&(6+1,...,Y)\S(+1,...,7),
in which case the action of (], can be interpreted as a summation on com-
plementary subsets of fixed cardinality.

There are other possible equivalent families of relations than (64). One
has for example the following lemma.

Lemma 45 Let A be a decreasing partition of n, p be the vector = [,0, Ay, A\;+

Aoy A+ Xo 4 Agy o] w= [ 52, 18t .. ], For any integer j < €()\), any
k1 <k < A1, let v be the vector obtained from u by changing the block
/L;fll into puf /L;ﬁﬁk. Then

b = v w,\f(xuﬂ-l"”’xﬂﬁ'/\j) mod Sym(xy,...,z,) . (65)

For example, for A = [5,4,3,3], and j = 2, k = 2, one has u = [0,5,9, 12],
u=10,0,0,0,0, 5,5,5,5, 9,9,9, 12,12,12],
v =10,0,0,0,0, 5,5,5,5, 5,5,9, 12,12,12]. The relation is

' =z’ \1144($6, X7, T8, ng) mod GUm(xl, R ,.’E15) .

In other words, one has increased by 4 in all possible manners the exponents
in 2V of two of the indeterminates xg, 7, 23, Tg.
Identify now a column A = [ay,...,a;] with the Vandermonde A(A) =
[1i<;(za; — 74;), and a tabloid with the product of its columns. For the two-
B
Do
columns tableau t = : : the original Garnir relations, relative to Specht
a v
i g
representations, are

> (=)o (A D) AG,.. 5+1)) =0 (66)
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As before, the summation can be reduced to cosets representatives, and one
still has nullity when taking two arbitrary columns (consecutive or not, but
ordered by length) in a tabloid. The other columns introduce a constant
factor, and by conjugation, one passes from 1,...,0 to any set of ¢ integers.

For example, taking columns 1 and 3, and summing on subsets of {2, 3,7, 8},
one has the following nullity :

=0.

+ +

+

—NwW
= otoy
N 0o
=N~
= oo
waoow©
— N 0o
= oto
wW©
— W
= ooy
N 00O
— oo
ooy
[V =)
— =300
= otoy
NW©

11 11 11 11 11 11
10 10 10 10 10 10

The above relations are implied by the following generalization of La-
grange interpolation, given by Sylvester (7). For two alphabets A, B, write

R(A,B) for the resultant R(A,B) := [],c,pep(a —b).

Lemma 46 Let n,n',n" be three integers, n =n'+n", and X be an alphabet
of cardinality n. Let Sym(n',n") be the space of polynomials symmetrical in
the first n' indeterminates, and also symmetrical in the last n” ones. Then
the following morphism' from Sym(n',n") to Sym(n)

f— waxu:x XXM RX, X (67)

sends polynomials of degree < n'n" to 0, and sends (zy -+ 2" to 1.

A more general property is the following “exchange lemma” for resultants,
that is useful in rational interpolation [?].

Lemma 47 Let A, B, C be three alphabets of respective cardinals n,n',n",
n=n'+n". Then

R(A', B) _ R(B, C)
2 RW.ORW. ] ~ RAQ (68)
y, REDRO) _ R ). (69)

A=A UA R(Al7 A”)

sum over all disjoint decompositions A = A U A" of A, with card(A') =n'.

The Vandermonde determinants in (66) are minors of the same Vander-

monde matrix {xf , and the relation they satisfy results in fact from

]j>0,1<z’<n

19This is the Gysin morphism, for the cohomology of a relative Grassmannian. It can
in fact be rewritten as a summation on the full symmetric group &,,, in which case it
becomes evident [?]
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quadratic relations on minors of order n of any n x oo matrix? M, due, once
more, to Sylvester.

Given a set of integers A of cardinality n, write [A] for the minor of
M taken on columns specified by A. Then one has the following relation,
generalizing Pliicker relations.

Lemma 48 Let M be an n x oo matriz, o, 5 be integers such that a+ 3 = n.
Then

,...,a-1,«,...,n][n+l,..., B, B+1,...,2n] Z o ﬂ)(_l)f(a)g =0,
b) b) (70)

where the permutations act on the indices of the pair of minors.

As always, one can restrict to a summation on cosets representatives, and
take sets of columns which are not 1,2, 3,.... In other words, let A, B, C be
three sets of integers, with card(B) > n + 1. Then, one has the following
quadratic relation :

> A B[B".C]=0, (71)
B'UB'"=B
sum over all direct decompositions B = B' U B", with card(B') = n —

card(A), card(B") = n—card(C), the sign being the sign of the permutation
(B',B") — B.

There is in fact a direct connection between spaces of minors and Young
decompositions of spaces of polynomials according to their types of symme-
try. It involves using Schur functors?' and representations of the linear group
instead of representations of the symmetric group. As a matter of fact, such
a connection is provided by the Schur-Weyl duality, but Young was already
using the action of his idempotents on the tensor space @, V®".

Thus, let us take a vector space V' , interpreting integers as vectors in V/,
and the columns of the matrix M as elements of the exterior power A™(V).

Now, a product of two minors is an element of A"(V) ® A" (V), but Garnir
relations show that it belongs to the component Son(V'), where Son is the
Schur functor of index the partition 2”. We shall refer to the book of Fulton
[13] for an elementary introduction to representations of the linear group.

203 matrix of order n x m can be considered as an infinite matrix by adjoining to it a

n X oo null matrix.
2T was using in my thesis Schur functions with modules as arguments, instead of sets
of variables, but Verdier made me use the term Schur functor, which remained.
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