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THEME

Formal proofs are becoming increasingly important in a number of domains in computer
science and mathematics. The topic of the colloquium is structural proof theory, broadly
construed. Some examples of relevant topics:

Structure
Sequential and parallel structure in proofs; sharing and duplication of proofs; permu-
tation of proof steps; canonical forms; focusing; polarities; graphical proof syntax; proof
complexity; cut-eliminiation strategies; CERes

Proof Checking
Generating, transmitting, translating, and checking proof objects; universal proof lan-
guages; proof certificates; proof compression; cut-introduction; certification of high-
performance systems (SMT, resolution, etc.)

Proof Search
Automated and interactive proof search in constrained logics (linear, temporal, bunched,
probabilistic, etc.); mixing deduction and computation; induction and co-induction;
cyclic proofs; computational interpretations
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Proof Composition Mechanisms and Their Geometric Interpretation

Alessio Guglielmi
University of Bath

Given two proofs A⇒ B and C⇒ D, where formulae A and C are premisses and B and D are conclusions, we consider
the following three proof-composition mechanisms, of which the first two define deep inference:

1) by a connective ∗: (A⇒ B)∗ (C⇒ D);

2) by an inference rule B/C: (A⇒ B)/(C⇒ D);

3) by substitution for an atom a: (A⇒ B){a← (C⇒ D)}.

We call atomic flows certain directed graphs obtained from proofs by tracing their atom occurrences. Atomic flows retain
all the structural information of proofs and lose all their logical information. The three compositions above correspond to
natural operations on atomic flows and they yield certain geometric invariants.

In the first part of the talk I will show some of the many uses of the geometric properties of atomic flows, in particular
when applied to the classical problem of normalising proofs. I will argue that cut admissibility is an instance of a much
more general geometric problem and that doing structural proof theory with shapes instead of formulae and sequents
might be much more effective and natural.

In the second part of the talk I will illustrate, with many examples, the current effort in defining a formalism allowing proof
composition by substitution. Again, atomic flows are the guiding principle. This way we can obtain an exponential speed-
up in the size of proofs and capture correspondingly big equivalence classes of proofs in a way that does not adversely
impact normalisation.

The talk with all the references will appear at http://cs.bath.ac.uk/ag/t/PCMTGI.pdf.
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Higher-order sequent proofs, higher-order nets

Richard McKinley

IAM, Universität Bern, Switzerland

Abstract. In this talk, we present a new syntax for Linear Logic, inspired by natural deduction. In
the sequent-calculus formulation of this syntax, the leaves of sequent trees can be labelled not only
with axioms, but also with assumptions. The usual linear-logic operations of dereliction, contraction
and weakening are replaced by a single abstraction operation, which introduces a ?-formula in the
conclusion and discharges any number of appropriate assumptions. This yields a kind of “sequent-
calculus in natural deduction style”. The usual promotion rule of linear logic is replaced by a much
simpler ! rule which allows to pass from a (parametric) proof of ` A to a (identically paramaterised)
proof of `!A.
A cost of this simplified presentation is that cut-elimination does not hold as in standard sequent
systems: instead, as with natural deduction, we define a natural notion of redex and accompanying
notion of normality ; a simple translation from the standard sequent calculus for LL yields soundness
for the full calculus with cut and completeness for the calculus of normal proofs.
Unlike the standard calculus for LL, the new rules for the exponentials define them uniquely: if we
use these rules to add two sets of exponentials to MALL, they will be logically equivalent, in contrast
to the traditional Linear Logic rules for exponentials. This is not in contradiction to the existence of
sub-exponentials; given an ordinary sequent calculus with sub-exponentials, adding exponential rules
of our calculus yields a canonical “super-exponential” above the existing subexponentials.
From the perspective of dynamics, this calculus bears the same relation to the usual calculus as ordi-
nary natural deduction bears to resource-sensitive calculi of explicit substitutions. The cut-reduction
dynamics of the exponentials in this calculus are as one would expect, given the inspiration of natural
deduction, if we treat the !-rule as creating a value: given a cut between a ?-abstraction and a !-value,
the cut is reduced by replacing each formula discharged by the ?-rule with a copy of the proof contained
in the value. This inspires the name higher-order sequent-proofs
This idea of representing exponentials using abstraction extends to a proof-net calculus for MELL. This
proof-net calculus has the aesthetic advantage that each box has only a single output, and the technical
advantage that each proof has an easily computed canonical form, while the usual proof-net calculus
for MELL has non-canonicity owing to the interactions between the auxilliary outputs of boxes and
contractions.
If time permits, we will look at some further directions/questions for this work, for example:
• Linear logic proofs as higher-order processes.
• Nested Linear Logic
• Differential linear logic
• The linear modal cube



The proof equivalence problem for multiplicative

linear logic is pspace-complete
Abstract

Willem Heijltjes and Robin Houston

October 1, 2013

mll proof equivalence is the problem of deciding whether one proof in multi-

plicative linear logic may be turned into another by a series of commuting con-

versions. It is also the word problem for ?-autonomous categories (Barr, 1991):

the problem of deciding whether two term representations denote the same mor-

phism in any ?-autonomous category. In mll−, without the two units, proof

equivalence corresponds to syntactic equality on proof nets (Girard, 1987; Danos

and Regnier, 1989), and is linear-time decidable. For full mll, thanks to many

years of work on proof nets (Trimble, 1994; Blute et al., 1996; Straßburger and

Lamarche, 2004; Hughes, 2012) we know that the proof equivalence problem

corresponds to a reasonably simple graph-rewiring problem.

On the other side of the fence, thanks to many years of work on combinatorial

games and complexity theory (Flake and Baum, 2002; Hearn and Demaine, 2005,

2009; Gopalan et al., 2006; Ito et al., 2011) we know many examples of rewiring

problems on graphs that are pspace-complete. We will give a reduction from the

configuration-to-configuration problem for Nondeterministic Constraint Logic

(Hearn and Demaine, 2005, 2009), a graphical formalism specifically designed

for easy problem reduction.

The pspace-completeness result rules out a satisfactory notion of proof net

for mll with units, and in particular for this reason it may come as a surprise.

However, pspace-completeness is not unusual for graph rewiring problems, nor

for reconfiguration problems (Ito et al., 2011) of the kind to which mll proof

equivalence belongs. A reconfiguration problem is the problem of finding a path

across related solutions to a given decision problem—in this case mll proof

search. Reconfiguration problems whose associated decision problem is np-

complete, as is mll proof search, frequently are pspace-complete; an important

example, satisfiability-reconfiguration (Gopalan et al., 2006) is the problem of

finding a path across satisfying assignments to a boolean formula by changing

the value of one atom at a time.
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Craig Interpolation
Proof-Theoretically via Nested Sequents

Roman Kuznets?

(joint work with Melvin Fitting)

Institute of Computer Science and Applied Mathematics
University of Bern

kuznets@iam.unibe.ch

Craig interpolation is a standard property that logics are tested for. A logic L
is said to enjoy the Craig interpolation property (CIP) if for every implication
such that L ` A→ B, there exists a formula C, called an interpolant of A and B,
such that L ` A → C, L ` C → B, and C only uses the “common language”
of the formulas A and B. For propositional monomodal logics, the “common
language” means propositional atoms common to A and B.

The proof-theoretic method of proving the Craig interpolation property con-
sists in constructing an interpolant by induction on the depth of a given cut-free
derivation in a suitable sequent calculus. This method is constructive in that it
yields an algorithm for constructing an interpolant rather than simply demon-
strates its existence. However, the applicability of this method is limited to the
logics that possess a cut-free sequent calculus.

Various generalizations of sequent calculi have been developed over the years:
among them, hypersequent, nested sequent, and labelled sequent calculi. These
calculi provide cut-free descriptions of a wider range of logics. For instance,
among modal logics without a known cut-free sequent calculus, S5 has a cut-
free hypersequent representation and K5 has a cut-free nested sequent repre-
sentation. Thus, to apply the proof-theoretic method to such logics, one of the
above-mentioned generalizations of sequents needs to be used as a proof sys-
tem. Unfortunately, adapting the proof-theoretic method to the more general
sequent-like systems is far from being trivial.

We present such an adaptation of the proof-theoretic method of proving CIP
to nested sequent calculi and apply our method to obtain a uniform constructive
proof of CIP for all extensions of the minimal normal modal logic K with any
combination of the modal axioms d, t, b, 4, and 5. For three of these 15 modal
logics, namely, B5, K45, and D45, the Craig interpolation property has not been
previously known, to the best of our knowledge. Besides the conjunction and dis-
junction of interpolants, also used in the constructive interpolation via ordinary
sequents, our method only requires three additional operations on interpolants,
one of which simply permutes structural boxes, for all 15 modal logics. The
presence of structural boxes in nested sequents being interpolated necessitates
additional structure for interpolants, in the general case making them more than
just formulas.

? Supported by Swiss National Science Foundation grant PZ00P2–131706.



Reductive-free cyclic induction reasoning
- abstract -

Sorin STRATULAT

Université de Lorraine
LITA, Department of Computer Science
Ile du Saulcy, Metz, F-57000, France
sorin.stratulat@univ-lorraine.fr

Noetherian induction is an effective formal proof method to finitely capture the
cyclic reasoning encountered during the traditional schemata-based induction proofs,
i.e., when the proof of a formula φ requires as induction hypotheses (IHs) ‘not-yet
proved’ instances of φ, as well as the mutual induction proofs, i.e., when the proofs of
φ and another formula from the same proof session mutually require as IHs instances of
the other. Any Noetherian induction principle is based on a well-founded (induction)
ordering that guarantees the sound usage of the IHs and the termination of the cyclic
reasoning if some ordering constraints are satisfied.

Since the seminal paper by Musser [4], two important groups of first-order Noethe-
rian induction-based proof methods are distinguished: i) the explicit induction, that
covers the traditional schemata-based methods, and ii) the implicit induction, based
on reductive procedures. From a qualitative point of view, they can be distinguished
according to the kind of elements the well-founded ordering underlying the Noetherian
induction principle is defined on: the first group helps to prove that some property,
formalized as a universally quantified first-order formula, holds for a set of (vectors
of) terms, while the second can check the validity of a set of (first-order) formulas. In
addition, they have features that complement each other.

The explicit induction methods perform locally the cyclic reasoning, at the formula
level, by the means of induction schemas that attach a set of IHs to some formula,
called induction conclusion. An example of common schemata-based induction is the
structural induction [3] for which the induction schemas are generated from recursively
defined data structures. The locality feature of explicit induction reasoning helps its
integration into sequent-based inference systems in terms of inference rules encoding
the explicit induction schemas. On the other hand, it may happen that the induction
schemas define useless IHs or that the proof of the induction conclusions lack crucial
IHs. Moreover, any induction conclusion and its attached IHs are instances of a same
formula, hence it cannot help to define mutual induction schemas.

In turn, implicit induction reasoning is lazy and by need, allowing instances of any
conjecture from a proof to play the role of IHs as long as they are smaller or equiv-
alent (w.r.t. the well-founded ordering) to, and sometimes strictly smaller than, the
induction conclusion. Hence the possibility to naturally deal with mutual induction.
On the other hand, the induction reasoning is defined by one global induction schema
that helps proving all conjectures from a proof. The induction reasoning cannot be
captured by only one inference rule, hence the method cannot be directly integrated
into sequent-based theorem provers. The induction ordering is unique, defined on for-



mulas, and it needs additional reductive constraints to be satisfied by the processed
and the newly generated conjectures when applying an inference rule.

This talk is about a recent formula-based cyclic method, firstly presented in [7]1.
It will be shown that it generalizes and keeps the best features of the term- and
formula-based induction methods. The application of any IH involved in a cyclic
reasoning can be validated by a cycle, representing a circular list of formulas from the
proof. Any cycle can validate one or several IHs using a proof strategy that allows for
simultaneous induction. The cyclic reasoning is local, at the cycle level, reductive-free,
and naturally performs mutual and lazy induction.

From a theoretical point of view, the method synthesizes the overall usage of
Noetherian induction reasoning in first-order logic. A particular attention will be
drawn on the relations between term- and formula-based induction principles, by
establishing the conditions required to ‘customize’ term- to formula-based induction
proofs, and viceversa. It will be shown that any reductive formula-based proof can
be directly transformed into a reductive-free cyclic proof. Also, any term-based cycle
can be customized to a formula-based reductive-free cycle checking only one IH.

From a practical point of view, it allows for less restrictive specifications, more
efficient implementations and proof certification processes. We conclude with some
experimental results about the cyclic proof method implemented into the implicit in-
duction theorem prover SPIKE [2, 6, 1]; comparisons between the implicit and cyclic
induction proofs of conjectures used for the validation proof of a conformance algo-
rithm for the ABR protocol [5] will be given.

References

1. G. Barthe and S. Stratulat. Validation of the JavaCard platform with implicit induction
techniques. In R. Nieuwenhuis, editor, RTA, volume 2706 of Lecture Notes in Computer
Science, pages 337–351. Springer, 2003.

2. A. Bouhoula. Automated theorem proving by test set induction. Journal of Symbolic
Computation, 23(1):47–77, 1997.

3. R. M. Burstall. Proving properties of programs by structural induction. The Computer
Journal, 12:41–48, 1969.

4. D. R. Musser. On proving inductive properties of abstract data types. In POPL, pages
154–162, 1980.

5. M. Rusinowitch, S. Stratulat, and F. Klay. Mechanical verification of an ideal incremental
ABR conformance algorithm. J. Autom. Reasoning, 30(2):53–177, 2003.

6. S. Stratulat. A general framework to build contextual cover set induction provers. J.
Symb. Comput., 32(4):403–445, 2001.

7. S. Stratulat. A unified view of induction reasoning for first-order logic. In A. Voronkov,
editor, Turing-100 (The Alan Turing Centenary Conference), volume 10 of EPiC Series,
pages 326–352. EasyChair, 2012.

1 The paper received one of the best paper awards at ‘The Turing Centenary Conference’
in Manchester, June 2012.

2



First-order linear logic as a general framework for

logic-based computational linguistics

Richard Moot

October 1, 2013

The Lambek calculus (Lambek 1958) is one of the simplest possible log-
ics which can be used to give an account of natural language syntax — as
well as providing a very elegant syntax-semantics interface by means of the
Curry-Howard isomorphishm, which guarantees that each proof corresponds to
a reading of the sentence. With the arrival of linear logic and its proof theoretic
innovations, proof nets have become one of the standard ways of performing
proof search (or parsing) for Lambek calculus grammar, overcoming the limita-
tions of sequent-based proof search methods developed in the eighties.

However, the Lambek calculus also has some well-known limitations: Lam-
bek grammars generate only context-free languages, widely considered insuffi-
cient for natural language, and, given the non-commutativity of the logic, the
syntax-semantics interface is too rigid in some cases (for example, in not produc-
ing enough derivations/scope possibilities for generalized quantifiers, (Moortgat
1997, Moot & Retoré 2012)). Several extensions of the Lambek calculus have
been proposed, with the goal of solving these two problems. These extensions
can roughly be grouped into to general categories: the structural extensions
license structural rules like commutativity based on formula decorations, much
like the exponentials of linear logic license contraction and weakening; the tuple-
based extensions generalize the Lambek calculus, which is the logic of strings, by
proposing logics of tuples of strings. We will mostly be concerned with examples
of the second category, which include the Displacement calculus (Morrill, Va-
lent́ın & Fadda 2011), Abstract Categorial Grammars (de Groote 2001), Linear
Grammars (Pollard & Smith 2012) and Hybrid Type-Logical Grammars (Levine
& Kubota 2012) (though I will show how to emulate and improve upon some
key aspects of the first category as well).

The main result of this talk will be to extend the result of (Moot 2013) and
show that each of these logics corresponds to a fragment of MILL1 (first-order
multiplicative intuitionistic linear logic) by providing a translation of grammars
in these different systems into MILL1 grammars. This makes MILL1 a general
framework for studying and comparing these systems. Doing so will bring to
light some of the limitations of existing systems. I will also show that several
additional linguistic phenomena receive a simple treatment in MILL1. As a
simple corollary, this means we can use linear logic’s proof nets for each of these

1



systems as well — by translation into first-order linear logic and using the proof
nets of (Girard 1991) — providing a new and uniform proof search strategy and
greatly simplifying existing proof systems for the different calculi.
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Towards syntactic cut-elimination for temporal

logics

Thomas Studer∗

The proof theory of temporal logics, and of modal fixed point logics
in general, is notoriously difficult. It is not even clear how to design a
finitary deductive system for linear time temporal logic LTL with nice proof-
theoretic properties.

Brünnler and Lange [1] proposed an elegant formalism for LTL using
focus games from Lange and Stirling [2] as an inspiration. The main tech-
nical feature of their system are annotated sequents, which are employed to
derive greatest fixed points. However, some very basic proof-theoretic prob-
lems turn out to be surprisingly hard in this setting. For instance, despite
the admissibility of several structural rules, including cut, being proved se-
mantically in [1], it remains to prove the same facts by proper proof-theoretic
methods. Even the admissibility of weakening, which is quite trivial for most
types of sequent calculi, is far from being simple for annotated sequents due
to the presence of sequent contexts in the annotations. More precisely, a
permutation of a weakening rule upward in an annotated sequent deriva-
tion may break the match between the current sequent context and the one
recorded in an annotation, the match necessary to complete the derivation.

In this talk, we present our recent results and ideas about syntactic cut-
elimination procedures for annotated sequent calculi for temporal logics.
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Cyclic Abduction of Inductive Safety & Termination Preconditions

James Brotherston
Dept. of Computer Science,
University College London

Whether a given pointer program ever encounters a memory fault, or ever terminates, are natural (and undecidable)
problems in program analysis. Usually, we are interested in establishing such safety and termination properties under a
given precondition in logic that expresses some known initial conditions about the program.

In this talk, we consider the even more difficult problem of inferring a reasonable precondition, in separation logic with
inductive definitions, for such heap-aware programs. Indeed, we will show that this problem can be seen as a matter of
heuristically guided search in a formal proof system.

We demonstrate a new method, called cyclic abduction, for automatically inferring the inductive definitions of safety and
termination preconditions for heap-manipulating programs. Cyclic abduction essentially works by searching for a cyclic
proof of safety or termination as desired, abducing definitional clauses of the precondition as necessary to advance the
proof search process. In particular, the formation of a cycle in the proof typically forces the instantiation of recursion in
the corresponding precondition.

Our cyclic abduction method has been implemented in the Cyclist theorem prover, and tested on a suite of small programs.
In particular, we are often able to automatically infer the preconditions that, in other tools, previously had to be supplied
by hand.

This is joint work with Nikos Gorogiannis (also at UCL).
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Construction of Bipolar Focussing Proof Structures∗

Roberto Maieli
Dipartimento di Matematica e Fisica, Università ”Roma Tre”

Largo San Leonardo Murialdo, 1 – 00146 Roma, Italia
roberto.maieli@uniroma3.it

October 17, 2013

Keywords: linear logic, sequent calculus, focussing proofs, proof nets, rewriting graphs, proof construction.

1 Introduction

This work takes a further step towards the development of a research programme, launched by Andreoli in 2001
(see [1], [2] and [3]), which aims at a theoretical foundation of a computational programming paradigm based on
the construction of proofs of linear logic (LL, [9]). Naively, this paradigm relies on the following isomorphism:
proof = state and construction step (or inference) = state transition.
Traditionally, this paradigm is formulated as an incremental (bottom-up) construction of possibly incomplete (i.e.,
open or without logical axioms) proofs of the bipolar focussing sequent calculus . This calculus satisfies the property
that the complete (closed or with logical axioms) bipolar focussing proofs are fully representative of all the closed
proofs of linear logic (this correspondence is, in general, not satisfied by the polarized fragments of linear logic).
Bipolarity and focussing properties ensure more compact proofs since they get rid of some irrelevant intermediate
steps during the proof search (or proof construction).
Now, while the view of proof construction is well adapted to theorem proving, it is inadequate when we want
to model some proof-theoretic intuitions behind, e.g., concurrent logic programming which requires very flexible
and modular approaches. Due to their artificial sequential nature, sequent proofs are difficult to cut into modular
(reusable) concurrent components. A much more appealing solution consists of using the technology offered by
proof nets of linear logic or, more precisely, some forms of de-sequentialized (geometrical, indeed) proof structures
in which the composition operation is simply given by (possibly, constrained) juxtaposition, obeying to some
correctness criteria.
Actually, the proof net construction, as well the proof net cut reduction, can be performed in parallel (concurrently),
but despite the cut reduction, there may not exist executable (i.e., sequentializable) construction steps: in other
words, construction steps must satisfy a, possibly efficient, correctness criterion.
Here, a proof net net is a particular ”open” proof structure, called transitory net, that is incrementally built
bottom-up by juxtaposing, via construction steps, simple proof structures or modules, called bipoles. Roughly,
bipoles correspond to Prolog-like methods of Logic Programming Languages: the head is represented by a multiple
trigger (i.e., a multiset of positive atoms) and the body is represented by a layer of negative connectives with
negative atoms.
We say that a construction step is correct (that is, a transaction) when it preserves, after the juxtaposition, the
property of being a transitory net: that is the case when the abstract transitory structures retracts (by means of
a finite sequence of rewriting steps) to elementary collapsed graphs, called normal forms. Each retraction step
consists of a simple (local) graph deformation or graph rewriting. The rewriting system here proposed is shown
to be convergent (i.e., terminating and confluent), moreover, it preserves, step by step, the property of being a
transitory structure. Transitory nets (i.e., retractible structures) correspond to derivations of the focussing bipolar
sequent calculus.
The first retraction algorithm for checking correctness of the proof structures of the pure (units-free) multiplicative
fragment of linear logic (MLL), was given by Danos in his thesis ([6]); the complexity of this algorithm was later
shown to be linear, in the size of the given proof structure, by Guerrini in [11]. Subsequently, the retractility
criterion was extended, respectively, by the author, in [16], to the pure multiplicative and additive (MALL) proof
nets with boolean weights and then by Fouqueré and Mogbil, in [8], to polarized multiplicative and exponential
proof structures. Here, we further extend retractility to more liberal proof structures that are: focussing, bipolar,
open, with generalized (n-ary) links and weights-free.

∗Paper available at: http://logica.uniroma3.it/∼maieli/CoTPS.pdf.
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Technically, one of the main contributions of this work is to provide a very simple syntax for open proof structures
that allows to extend the paradigm of proof construction to the MALL fragment of LL. We set, indeed, a precise
correspondence (called, sequentialization between focussing bipolar (open) sequent proofs and correct transitory
structures.
Although there already exist several satisfactory syntaxes for MALL proof structures (see, e.g., those ones given,
respectively, by Hughes–van Glabbeek in [13], Laurent–Maieli in [15], Di Giamberardino in [7] and Heijltjes in [12]),
our choice is motivated by the fact that the proposed simple retractile correctness criterion allows to approach
”efficiently” the problem of the incremental construction of transitory proof structures. Actually, in the construction
process, a construction step is correct (i.e. a transition) when it preserves the property of being a transitory net.
Now, checking correctness (the retractility of the given structure) is a task which may involve visiting (retracting)
a large portion of the expanded net. So, since this construction is performed collaboratively and concurrently by
a cluster of bipoles, we need at least to restrict the traveling area (the retraction area) in such a way to possibly
reduce conflicts among bipoles. Limited to the MLL case, some good bounds for these tasks can be found in [2, 3].
We now show that checking correctness (contractility) of a MALL transitory net, after a construction attempt, is
a task that can be performed by restricting to some ”minimal” (partially retracted) transitory nets. The reason of
that is that some subgraphs of the given transitory net will not play an active role in the construction process, since
they are already correct and encapsulated (i.e., interface-free): so, their retraction can be performed regardless of
the construction process.
Finally, comparing with the related literature, we only mention other analogous attempts to proof-theoretically
model ”concurrent logic programming”, notably:
– some works of Pfenning and co-authors, from 2002 and later (see, e.g., [4]), which rely neither on focussing (or
polarities) nor on proof nets but on ”softer” notions of sequent calculus proofs;
– some works of Miller and co-authors which generalize focused sequent proofs to admit multiple ”foci”: see,
e.g., [17] and [5]; the latter also provides a bijection to the unit-free proof nets of the MLL fragment, but it only
discusses the possibility of a similar correspondence for larger fragments.

References

[1] J.-M. Andreoli. Focussing and Proof Construction. APAL, 2001.

[2] J.-M. Andreoli. Focussing proof-nets construction as a middleware paradigm. LNCS, 2002.
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Extending the scope of labelled sequent calculi:
the case of classical counterfactuals

Sara Negri
University of Helsinki

Labelled sequent calculi provide a versatile formalism for the proof-theoretical investigation of large families of non-
classical logics, through the internalization of Kripke semantics. In recent work (Negri 2013) we have shown that the
method covers frame conditions beyond geometric implication and the whole of Sahlqvist fragment of modal logics. The
semantics of important intensional connectives such as counterfactual conditionals, however, is based on a more general,
neighbourhood-style, semantics. A conditional implication A > B is said to be true at a world x if either A is never
possible, or if there is a neighbourhood of x of worlds similar to x where the antecedent is satisfied and the (classical)
implication always holds. The strong assumption of existence of a minimal satisfying neighbourhood that witnesses
the ceteris paribus similarity condition, criticized both on philosophical and mathematical grounds since the work of
Lewis, permits to eliminate the quantifier alternation in the semantic explanation of counterfactuals and to obtain a truth
condition structurally similar to that of the standard modal operator. Both labelled tableaux and sequent systems have
been formulated on the basis of this assumption (Olivetti et al., 2007, Priest 2008).

It will be shown how complete sequent calculi for classical counterfactuals can be obtained without this simplifying
assumption. In particular, the systems obtained enjoy invertibility of the rules, height-preserving admissibility of contrac-
tion, and syntactic cut elimination (Negri and Sbardolini 2013).
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This gives details of an essential but tedious part of some work reported elsewhere [3].
First, the background. It is well-known that, in intuitionistic logic, sequent calculus derivations
(with or without Cut) are recipes for constructing natural deductions, and that, by the Curry-
Howard correspondence, one can represent both the former and the latter using terms of a
typed lambda calculus. Natural deduction terms may, by various standard reductions, be
normalised; there are however many sequent calculi S, reduction systems R for S and reduction
strategies for R, including but not limited to those given by Gentzen. We presented in [3] a
complete single-succedent sequent calculus (essentially the Ketonen-Kleene system G3ip from
[8], including all the usual zero-order connectives, including disjunction and absurdity) and a
cut-reduction system, with the virtues that (a) it is strongly normalising (b) it is confluent
and (c) it allows a surjective homomorphism from cut-elimination to normalisation: in other
words, a homomorphism from G3ip derivations to NJ natural deductions with the property
that each cut reduction step translates into a sequence of zero or more reductions in the natural
deduction setting. See [7, 9, 10] for earlier work in this area.

The cut-reduction system has 32 rules: proving strong normalisation is tedious. The LPO
method [6, 1] can be used, but confidence in its correct use may be low unless one is systematic.
Here is one of the reduction rules, using a straightforward term notation for sequent derivations
(C is for Cut; W is for the rule L∨):

C(W (w,w1.L1, w2.L2), x.W (x, x′.L′, x′′.L′′))  W (w,w1.C(L1, x.W (x, x′.C(W (w,w1.L1, w2.L2), x.L′),

x′′.C(W (w,w1.L1, w2.L2), x.L′′))),

w2.C(L2, x.W (x, x′.C(W (w,w1.L1, w2.L2), x.L′),

x′′.C(W (w,w1.L1, w2.L2), x.L′′))))

For the LPO method to be used, one must first (along lines to be found in [2]) remove the
binders, obtaining

C(W (w,L1, L2),W (x, L′, L′′))  W (w,C(L1,W (x, x′.C(W (w,L1, L2), L′),

C(W (w,L1, L2), L′′))),

C(L2,W (x,C(W (w,L1, L2), L′),

C(W (w,L1, L2), L′′))))

and identify a suitable ordering > on the constructors (here they are C and W ) of what is now
a first-order signature. The tedious part is then to show, using the recursive definition of the
lexicographic path order >lpo, that (for each of the 32 rules) the LHS >lpo RHS. The rules (for
LPO ordering > of terms s, t, . . .) are as follows (where . indicates the relation between a term



and each of its immediate subterms, / is the converse, and >lex is the lexicographic extension
of > to tuples, with associated rule >lex):

∃u / s. u ≥ t
s > t

>i
s� t ∀u / t. s > u

s > t
>ii

f > g

f(s1, . . . , sm)� g(t1, . . . , tn)
�i

(s1, . . . , sn) >lex (t1, . . . , tn)

f(s1, . . . , sn)� f(t1, . . . , tn)
�ii

.

Rather than do this by hand, we wrote a small Prolog program to do it automatically.
It can easily be adapted for other problems of the same kind; it will even generate LATEX
representations of the proofs, such as (with some bits removed for layout reasons):

C > p

C(L, p(L′, L′′))� p(C(L,L′), C(L,L′′))
�i

L′ ≥ L′

p(L′, L′′) > L′ >i

(L, p(L′, L′′)) >lex (L,L′)
>lex

C(L, p(L′, L′′))� C(L,L′)
�ii

. . . . . .

C(L, p(L′, L′′)) > C(L,L′)
>ii

. . .

C(L, p(L′, L′′)) > p(C(L,L′), C(L,L′′))
>ii

in which p is the constructor for pairs.. The bits indicated here by . . . are similar, conclud-
ing that C(L, p(L′, L′′)) > L, that C(L, p(L′, L′′)) > L′ and that C(L, p(L′, L′′)) > C(L,L′′)
respectively.)

Rather than writing a Prolog program, it is possible that we could have used a termination
checker, such as TTT [5], or a strongly typed system such as Abella [4]. The Prolog route
seemed to be easiest.
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[6] Samuel Kamin and Jean-Jacques Lévy. Two generalisations of the recursive path ordering, Univer-
sity of Illinois at Urbana-Champaign. Unpublished ms, 1980.

[7] Garrel Pottinger. Normalisation as a homomorphic image of cut-elimination, Annals of Mathemat-
ical Logic 12, pp 323–357, 1977.

[8] Anne Troelstra and Helmut Schwichtenberg. Basic Proof Theory, 2nd ed, Cambridge, 2000.

[9] Christian Urban. Revisiting Zucker’s work on the correspondence between cut-elimination and nor-
malisation, in L.C. Pereira, E.H. Haeusler and V. de Paiva (eds.), Advances in Natural Deduction.
A Celebration of Dag Prawitz’s Work, Springer, Dordrecht, 21 pp, 2014.

[10] Jeff Zucker. The correspondence between cut-elimination and normalisation, Annals of Mathematical
Logic 7, pp 1–112, 1974.

2



Some ideas on bounded arithmetics for
systems of monotone proofs

Anupam Das

October , 

One of the outstanding problems in proof complexity is to find nontrivial lower bounds on
the size of proofs in Hilbert-Frege systems [], or equivalently sequent calculi with cut. To this
end researchers have proposed imposing various restrictions on proofs to simplify the problem
and bridge the gap between these and weaker systems for which exponential lower bounds are
known, such as the cut-free sequent calculus. For example, a well-studied direction has been to
restrict the depth of cut-formulae in proofs, yielding bounded-depth and resolution systems, whose
complexities are now well understood.¹

Another direction is to considermonotone proofs, ones whose cut-formulae are free of negation.
is is equivalent to formula-rewriting in the following system,

⊥
w↓ −−

A
,

A
w↑ −−

>
,

A ∨A
c↓ −−−−−−

A
,

A
c↑ −−−−−−
A ∧A

,
A ∧ [B ∨ C]

s −−−−−−−−−−−−−
(A ∧B) ∨ C

modulo associativity, commutativity and some basic unit equations. Atserias et al. have shown
that the system of monotone proofs quasipolynomially simulate Hilbert-Frege systems [], and
further that superpolynomial lower bounds for monotone proofs imply superpolynomial lower
bounds for Hilbert-Frege systems. To continue in this direction it is therefore pertinent to pursue
further restrictions on monotone proofs, or to find normal forms of these proofs that might admit
nontrivial lower bounds.

A natural notion of normal form onemight consider is the class of monotone proofs where all ↑-
rules occur before all ↓-rules, called streamlined proofs []; such proofs are equivalent to monotone
sequent proofs where there are no cuts between descendants of structural steps []. Due to the
development of local normalisation procedures for related deep inference systems, we gain a fine-
grained analysis of the complexity of ‘streamlining’, and this has recently been used to obtainmany
positive complexity results for the system of streamlined proofs, for example a construction of
quasipolynomial-size proofs of the propositional pigeonhole principle and a polynomial simulation
of resolution systems [] [].

eories of bounded arithmetic have proved useful in proof complexity, with arithmetic proofs
serving as templates for uniform classes of small proofs in some associated propositional proof
system, via appropriate translations. For example the theory I∆0, Robinson’s arithmetic aug-
mented with induction on ∆0-formulae, corresponds in this way to polynomial-size bounded-
depth Hilbert-Frege proofs, by the Paris-Wilkie translation []. As an example of application,
Pudlák has proved a version of Ramsey’s theorem in this theory,² yielding quasipolynomial-size

¹In particular, exponential lower bounds on proofs of the pigeonhole principle are known for these systems [].
²In fact this proof operates in a slightly larger theory that assumes the totality of quasipolynomials, hence the slightly

above polynomial bound.





bounded-depth proofs of certain propositional encodings of this theorem [].
In this talk we present some ideas towards designing theories of bounded arithmetic corre-

sponding to monotone and streamlined proofs. We incorporate a form of inductive definitions to
simulate classes of propositional formulae of unbounded depth, and restrict mathematical induc-
tion to formulae where non-logical symbols occur in positive context to simulate monotonicity.
One of the nice features of this approach is that the set of streamlined proofs can be recovered,
under the given propositional translation, by simply insisting that all inductions are divide-and-
conquer inductions. Proving this relies crucially on the aforementioned normalisation procedures
from deep inference and recent results on their complexity.

As an application we use this theory to prove the correctness of merge-sort (as a sorting algo-
rithm) and obtain as corollaries many basic counting arguments such as the generalised pigeon-
hole principle and the parity principle, yielding quasipolynomial-size streamlined proofs of their
propositional encodings. We hope that such a theory might provide a framework to deliver further
positive complexity results, in particular simulations, and provide intuitions towards finding lower
bounds for streamlined proofs and their related deep inference systems.
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Proof Theory for Lattice-Ordered Groups∗
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Proof theory provides useful tools for tackling problems in algebra. In particular, Gentzen
systems admitting cut-elimination have been used to establish decidability, amalgamation, and
generation results for varieties of residuated lattices corresponding to substructural logics (see,
e.g., [1, 2, 3]). However, for classes of algebras bearing some family resemblance to groups –
e.g., lattice-ordered groups, MV-algebras, BL-algebras, and cancellative residuated lattices –
the proof-theoretic approach has met so far only with limited success (see [4, 3]).

The aim of this talk is to introduce and exploit proof-theoretic methods for the class of
lattice-ordered groups (or `-groups for short): algebraic structures (L,∧,∨, ·,−1, 1) such that
(L,∧,∨) is a lattice, (L,−1, 1) is a group, and the group multiplication · preserves the order
in both arguments; i.e., a ≤ b implies ac ≤ bc and ca ≤ cb for all a, b, c ∈ L. Commutative
examples include the sets of reals, rationals, or integers with the usual total order and addition.
Non-commutative examples are obtained by equipping the set Aut(Ω) of all order-preserving
bijections on a linearly ordered set Ω with coordinatewise lattice operations, functional com-
position, and function inverse. In fact every `-group embeds into such an `-group [6], and this
result has been used to show that the variety of `-groups is generated by the automorphism
`-group of the real numbers [5] and that the equational theory of this variety is decidable [7].

This talk presents new syntactic proofs of these generation and decidability results, refining
the latter to obtain a new co-NP completeness result. Gentzen systems for `-groups with and
without the cut rule are defined in a one-sided hypersequent framework where hypersequents
correspond to disjunctions of group terms. A crucial role in the completeness proofs for these
systems is played by the elimination of applications of a certain “resolution-like” rule.
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First-order proofs without syntax

Dominic J. D. Hughes
Chief Scientist, concept.io

I shall present a reformulation of first-order logic in which proofs are combinatorial, rather than syntactic. A combina-
torial proof satisfies graph-theoretic conditions which can be verified in polynomial time, and there is a polynomial-time
translation from Gentzen sequent calculus proofs to combinatorial proofs, identifying many proofs. This work extends
the propositional combinatorial proofs presented in ‘Proofs without syntax’ [Annals of Math., 2006].

Link: http://boole.stanford.edu/˜dominic/papers/pws/
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Expansion Trees with Cut
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Herbrand’s theorem [Her30, Bus95], one of the most fundamental insights of
logic, characterizes the validity of a formula in classical first-order logic by the
existence of a propositional tautology composed of instances of that formula.

From the syntactic point of view this theorem induces a way of describing
proofs: by recording which instances have been picked for which quantifiers we
obtain a description of a proof up to its propositional part, a part we often want
to abstract from. An example for a formalism that carries out this abstraction
are Herbrand proofs [Bus95]. This generalizes nicely to most classical systems
with quantifiers, for example to simple type theory as in the expansion tree
proofs of [Mil87]. Such formalisms are compact and useful proof certificates
in many situations; they are for example produced naturally by methods of
automated deduction such as instantiation-based reasoning [Kor09].

These formalisms consider only instances of the formula that has been proved
and hence are analytic proof formalisms (corresponding to cut-free proofs in the
sequent calculus). Considering an expansion tree to be a compact representation
of a proof, it is thus natural to ask about the possibility of extending this kind
of representation to non-analytic proofs (corresponding to proofs with cut in
the sequent calculus).

Two instance-based proof formalisms incorporating a notion of cut have
recently been proposed: proof forests [Hei10] and Herbrand nets [McK13].
While proof forests are motivated by the game semantics for classical arith-
metic of [Coq95], Herbrand nets are based on methods for proof nets [Gir87].
These two formalisms share a number of properties: both of them work in a
graphical notation for proofs, both work on prenex formulas only, for both weak
but no strong normalization results are known.

In this talk we present a new approach which works directly in the formalism
of expansion tree proofs and hence naturally extends the existing literature in
this tradition. As in [Hei10, McK13] we define a cut-elimination procedure and
prove it weakly normalizing but in contrast to [Hei10, McK13] we also treat
non-prenex formulas, therefore avoiding the distortion of the intuitive meaning
of a formula by prenexification.

We describe expansion trees with cuts for non-prenex end-sequents and cuts,
including their correctness criterion and how to translate from and to sequent
calculus. We describe natural cut-reduction steps and show that they are weakly
normalizing. A technical key for proving weak normalization is to use methods
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of Hilbert’s epsilon-calculus which is a formalism for representing non-analytic
first-order proofs modulo propositional logic. Finally, we consider the question
whether our cut-reduction rules are strongly normalizing: we don’t know (yet),
but a counterexample from the setting of proof forests is no counterexample in
our setting.

References

[Bus95] Samuel R. Buss. On Herbrand’s Theorem. In Logic and Computational
Complexity, volume 960 of Lecture Notes in Computer Science, pages
195–209. Springer, 1995.

[Coq95] Thierry Coquand. A semantics of evidence for classical arithmetic.
Journal of Symbolic Logic, 60(1):325–337, 1995.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1–101, 1987.

[Hei10] Willem Heijltjes. Classical proof forestry. Annals of Pure and Applied
Logic, 161(11):1346–1366, 2010.

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD
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Interpolation in finitely-valued first-order logics

Matthias Baaz
Vienna University of Technology

We show, that under minimal assumptions interpolation in propositional finitely-valued logics is decidable and that first-
order interpolation coincides with propositional interpolation. This provides an uniform proof of first-order interpolation
for finite Kripke frames with constant domains, which are known to admit propositional interpolation. We discuss the
non-constant domain case.
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Induction is the most prominent rule to prove non-trivial universal statements in theories about numbers. Nevertheless,
the task of finding induction formulas useful in a proof of such a statement is difficult. For simple sentences like (∀x)

(
(x+

x)+ x = x+(x+ x)
)

automatic theorem provers typically are only able to cut-free prove any instance of the universal
property in a simple universal base theory without induction. This gives rise to a Herbrand disjunction H(n) for each
natural number n. Nevertheless, using e.g. the induction formula (x+x)+y = y+(x+x) the universal property is proved
by an easy induction.

In our talk, we present a strategy to guess Π1 induction formulas F from a finite set of Herbrand disjunctions H(n) for
instances of a universal statement. A guess yielding F is correct if a derivation of a fixed form containing induction over
F is a proof of the universal statement. We cannot give a guarantee that a correct induction formula is produced by our
strategy since in the base theory extended by Π1 induction the universal statement might still not be derivable. In addition,
because of efficiency reasons, some sensible guesses have to be ignored.

Nevertheless, the strategy delivers correct induction formulas in natural test cases, and should be efficiently imple-
mentable.

In our talk, we explain several steps of the strategy in detail. The interpretation of Herbrand disjunctions as languages
of terms and the analysis of their decomposition grammars is crucial. Here, we rely on earlier results in the second author’s
[1].

We hope that further refinements of the presented strategy help to overcome the weakness of automatic theorem
provers in using induction.
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1 Abstract

Non-classical logics are often defined by adding suitable properties to basic systems. We present a method to extract
structural rules in various Gentzen-style formalisms out of such properties. The method, that works for large classes
of Hilbert axioms and Frame conditions, allows for the introduction of analytic calculi for a wide range of non-classical
logics. It applies to various formalisms, including hypersequent calculus, labelled deductive systems and display calculus,
and sheds some light on the expressive power of their structural rules.
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While the logical approach to sequential computation is founded on the relation
between λ-terms and proofs in intuitionistic natural deduction, such Curry-Howard
correspondence has long been elusive in the case of concurrent computation. In this
setting, a natural candidate as computational model is the π-calculus, which offers
a high expressivity wrapped in a simple syntax. The nature of the typing needed to
describe which subset of π-terms is well-behaved was less obvious, until the notion
of session types [Hon93] was introduced, partially inspired by linear logic. Based on
this choice of ingredients, the correspondence could defined between session-typed
π-terms and proofs in sequent calculi for linear logic. This was described by Caires
and Pfenning [CP10] in the case of intuitionistic linear logic, and Wadler [Wad12]
in the case of classical linear logic.

This correspondence allows to ensure that well-typed π-terms are well-behaved
and respect the protocol described by their session type, but it suffers from technical
problems, due to the flexibility of the syntax in π-calculi and to a certain mismatch
between terms and proofs. We argue here that although session types provide the
right abstraction to be matched with linear formulas, the choice of the π-calculus
as computational model disallows a perfect matching of proofs and terms. In order
to improve this matching, we introduce a variant of the solos fragment of the fusion
calculus [LV03], where the use of names allows for a linear discipline. The decisive
feature of solos is that they disallow explicit sequentialisation, by avoiding the
prefix operator of the π-calculus. This corresponds to the possibility of permuting
rule instances in the sequent calculus, where sequentiality is always the result of a
causality observed when a rule depends on another.

The potential linearity of names is coupled to a mechanism for sequentialisation:
a solo with subject x can provide the information that a name y is the continuation
of the session it embodies. Therefore, this linearity is not a limitation, but rather
a useful bookkeeping discipline, as it allows to enforce that a given interaction will
happen before another. The syntax we use departs on several points from the one
used in the standard solos calculus.

P,Q ::= 0 | P ||Q | x | xy . z | [x ↔ y] | xl. y | !xy.P
| (x) P | x | xy . z | x .y[P,Q] | xr. y | !xy

This syntax allows to handle monadic input or output, as well as binary guarded
choice and selection, and persistent servers with connection requests. A syntactic
congruence on terms is then defined, that extends the one usually considered. The
reduction rules defining the dynamic behaviour of the calculus are then similar to
the reductions used by Caires and Pfenning, adapted to the setting of solos. Unlike



most process calculi, our calculus allows in general reduction under any context,
reflecting the fact that cut elimination can be performed in any order. For example,
some of the reduction rules are:

(y) ([x ↔ y] || P) −→ P{x/y} (x 6= y)
(uv) ((xy . z || P) || (xu. v ||Q)) −→ (P ||Q){y/u}{z/v} (u, v 6= y ∧ u, v 6= z)

!xy.P || (!xz ||Q) −→ !xy.P || (P{z/y} ||Q)
The type system that we define for this calculus is based on the sequent calculus

for intuitionistic linear logic It is a variant of the system of Caires and Pfenning,
although the treatment of scope is modified to allow more flexibility. Some basic
typing rules are:

S, x 〉 Γ ` P :: w :A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S 〉 Γ ` (x) P :: w :A

S 〉 !Ψ, Γ ` P :: y :A R 〉 !Ψ,∆, z : B `Q :: w : C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S,R, y, z 〉 !Ψ, Γ ,∆, x :A−◦ B ` xy . z || (P ||Q) :: w : C

The correspondence thus obtained between terms and proofs is more faithful to
the structure of the sequent calculus than the previous proposals. Moreover, this
leads us to consider some solos as linear forwards [GLW03] in an extended syntax,
allowing for an interpretation of the ⊗ connective:

S 〉 Γ , y :A, z : B ` P :: w : C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S, y, z 〉 Γ , x :A⊗ B ` [x −◦ yz] || P :: w : C

that is much more intuitive than the asymmetric interpretation given by Caires and
Pfenning, or Wadler in the classical setting. This sheds some light on the concurrent
interpretation of cut elimination in linear logic, and invites to recast other parts of
the syntax into forwarders, which may provide a convenient syntax for proofs in
both classical and intuitionistic variants of linear logic.
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The Concurrent Logical Framework CLF [1, 5] is an extension of the Edinburgh Logical Framework
(LF) [3] designed for specifying concurrent and distributed systems. CLF extends LF with synchronous
and asynchronous linear types, and the lax modality from lax logic to encapsulate concurrent effects.1

The lax modality can be used to naturally encode concurrent traces, i.e. sequence of computations where
independent steps can be permuted. Kinds and types in CLF are defined by the following grammar:

K ::= type | Π!x:T.K (Kinds)

T ::= Π!x:T.T | T ( T | A | {∆} (Types)

∆ ::= · | ∆, !x:T | ∆, x:T (Contexts)

where A denotes an atomic type family and {·} is the lax modality. Contexts are sequences of declarations
of persistent and linear variables.

Concurrent traces are the introduction form for the lax modality. They are defined by the following
grammar:

ε ::= � | {∆}�P | ε1; ε2

where � is the empty trace, {∆}�P is an atomic computation step, and ε1; ε2 defines trace composition.
The typing rules for traces have the form ∆ ` ε : ∆′, which can be read as a context transformation
(or rewriting) from ∆ to ∆′. Furthermore, traces are endowed with a notion of equality that allows
permutation of independent steps. Two steps are independent if they produce and consume different sets
of variables. This notion of trace equality can be used to encode concurrency and distribution.

CLF has been successfully used for specifying a wide variety of systems such as semantics of concurrent
programming languages, the π-calculus, and voting protocols, among others. However, CLF lacks the
expressive power necessary for specifying and proving meta-theoretical properties about such systems
(e.g. type preservation, or correctness of program transformations). The main reason is that traces are
not first-class values, and therefore they cannot be analyzed or manipulated.

In recent work [2], we proposed an extension of LF, called Meta-CLF, designed to reason about a
CLF specification. Meta-CLF extends LF with quantification over contexts and trace types to represent
CLF traces. For example, in Meta-CLF we can defines types of the form

Π∆0.Π∆1. {∆0}Σ {∆1} → {∆0}Σ′ {∆1} → type

where {∆0}Σ {∆1} is the type of CLF traces from context ∆0 to ∆1 that use steps defined in the (CLF)
signature Σ. Types of this form can be used, for example, to encode a relation between two program
executions.

In [2] we showed that Meta-CLF can be used to encode safety properties (i.e. type preservation
and progress) for a substructural operational semantics (SSOS) [4] of a simple programming language.
However, many issues remain to be solved. We have not yet addressed the meta-theory of Meta-CLF itself.
In particular, we have not studied coverage and termination checking, which are essential properties for
any logical framework. Coverage for trace types is a difficult problem due to the nature of trace equality
that allows reordering of independent steps.

In this proposed talk, we will look at the design choices we made in Meta-CLF and how it can be
used to encode safety proofs for SSOS specifications of programming languages written in CLF. We will
also discuss the remaining challenges and possible solutions.

1CLF also features affine types, which we omit here for space reasons.
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In the beginning Gentzen created natural deduction, but then he switched to the sequent calculus in order
to sort out the meta-theory [3]. Something similar happened to logical frameworks supporting higher-order
abstract syntax (HOAS): first Edinburgh LF adopted Martin-Löf’s parametric-hypothetical judgments to
encode object logics in such a way that contexts were left implicit [5]. Later on, Twelf [9] had to provide
some characterization of contexts (regular worlds) to verify the meta-theory of those very object logics. The
same applies to λProlog [6] vs. Abella [2] and Hybrid [1] and, in a more principled way, to Beluga [7].

It is fair to say that, prior to Girard, proof-theory had been quite oblivious to what contexts look like.
Even sub-structural logics view a context of assumptions as a flat collection of formulas A1, A2, . . . , An listing
its elements separated by commas [4]. However, this is inadequate, especially if we aim to mechanize this
matter, as it ignores that assumptions come in blocks. Consider as an object logic the type checking rules for
the polymorphic lambda-calculus:

x term
tmx x : A

ofv

...
M : B

(lamx.M) : (arrAB)
of tmx,ofv

l

α tp
tpv

...
M : A

(tlamα.M) : (allα.A)
of tpv

tl

M1 : (arrAB) M2 : A

(appM1 M2) : B
ofa

M : (allα.A) B tp

(tappM A) : [B/α]A
ofta

We propose to view contexts as structured sequences of declarations D where a declaration is a block of
individual atomic assumptions separated by ’;’.

Atom A
Block of declarations D ::= A | D;A

Context Γ ::= · | Γ,D
Schema S ::= Ds | Ds + S

A schema classifies contexts and consists of declarations Ds that may be more general than those occurring
in a concrete context having schema S. This yields for the above example:

Γ ::= · | Γ, (x term;x:A) | Γ, α tp
S ::= α tp + (x term;x:A)

where, e.g., the context α1 tp, (x1 term;x1:nat), (x2 term;x2:α1) has schema S.
Since contexts are structured sequences, they admit structural properties on the level of sequences (for

example by adding a new declaration) as well as inside a block of declarations (for example by adding
an element to an existing declaration). We distinguish also between structural properties of a concrete
context and structural properties of all contexts of a given schema. We give a unified treatment of all
such weakening/strengthening/exchange re-arrangements, by introducing total operations rm and perm that
remove an element of a declaration, and permute elements within a declaration. For example, declaration
weakening can be seen as:

Γ, rmA(D), Γ ′ ` J
Γ,D, Γ ′ ` J d-wk



Suppose now that we want to prove in a logical framework some meta-theorem involving different contexts,
say “if Γ1 ` J1 then Γ2 ` J2”, for Γi of schema Si. HOAS-based logical frameworks have so far pursued two
apparently different options:

(G) We reinterpret the statement in a generalized context containing all the relevant assumptions—we call this
the generalized context approach, as taken in Twelf, Delphin [8] and Beluga—and prove “if Γ1 ∪ Γ2 ` J1
then Γ1 ∪ Γ2 ` J2”, where “∪” denotes the join of the two contexts.

(R) We state how two (or more) contexts are related—we call this the context relations approach. The
statement becomes therefore “if Γ1 ∼ Γ2 and Γ1 ` J1 then Γ2 ` J2”, with an explicit and typically
inductive definition of this relation. This approach is taken in Abella and Hybrid.

If we had a common grounding of both approaches, this would pave the way toward moving proofs from
one system to another, in particular breaking the type/proof theory barrier [10]. It turns out, roughly, that a
context relation can be seen as the graph of one or more appropriate rm operation on a generalized context.
Further, if we take the above join metaphor seriously, we can organize declarations and contexts in a semi-
lattice, where x � y holds iff x can be reached from y by some rm operation. A generalized context will
indeed be the join of two contexts and context relations can be identified by navigating the lattice starting
from the join of the to-be-related contexts. Finally, we aim to use the lattice structure to give a declarative
account of theorem promotion/demotion (known in the Twelf lingo as “subsumption”), where a statement
proven in a certain context can be used in a “related” one. We may formulate subsumption rules akin to
upward and downward casting over the lattice order, i.e. promotion would look like:

Γ ′ ` J Γ � Γ ′

Γ ` J
prom

This work also has a practical outcome in our ongoing work designing ORBI (Open challenge problem
Repository for systems supporting reasoning with BInders), a repository for sharing benchmark problems
and their solutions for HOAS-based systems, in the spirit of libraries such as TPTP [11].
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Theorem provers are generally complex systems that search for proofs using
some combination of automatic and interactive tools. Given their nature, it is
important for them to be formally correct. Given their complexity, they are
extremely hard to certify as such. One can arrange, however, for provers to be
“certifying” in the sense that they can be built to output evidence of the proofs
they achieved and then employ an independent proof checker to check them.
Some proof systems, such as Coq, use this certifying approach by employing a
trusted kernel to check proofs built outside the kernel [2].

In the ProofCert project, we are exploring to what extent we might be able
to accommodate a wide range of proof evidence from various provers and then
to have independent checkers certify such proof evidence. We have identified
three different stages to achieving such a proof checking scheme [4].

1. The implementers of theorem provers must describe their proof evidence
in some textual form. Presumably, such documents are roughly the result
of “pretty printing” the evidence that they have collected. For example,
the implementer of a resolution prover might output a numbered list of
clauses as well as a list of triples (indicating which two clauses resolve to
form a third clause). Such documents will be called proof certificates. One
expects that there will be a great many kinds of proof certificate formats
that are ultimately created and used.

2. A general framework for defining the semantics of proof evidence must
be designed. In such a framework, the format and structure of proof
certificates would be given a clear and precise semantics. Such a semantic
framework will need to be sufficiently low-level so as to capture the essence
of a proof and general enough to accommodate a wide range of proof
systems. In the resolution prover example, the relationship of “resolvent”
must be defined in terms of more basic inference rules of proof.

3. Trusted proof checkers must be implemented to execute the semantic de-
scriptions of proof certificates. We need to be able to trust that a success-
ful execution of the proof checker on a given certificate implies that the
certificate does, in fact, elaborate into a recognized formal proof.

1



We shall show in this talk how focused sequent calculus proof systems, which
are now available for linear, intuitionistic, and classical logics [1, 5, 6], can be
used to address the second of these stages: i.e., they provide a flexible framework
for defining the “semantics of proof evidence”.

A simple analogy in the area of programming languages is worth pointing
out for this three stage organization. (1) There are many kinds of programming
languages and researchers are routinely designing new ones. (2) In order to de-
fine such programming languages precisely (for, say, mathematical treatment or
for implementations), the semantics of such programming languages need to be
given: a popular form of such semantic specifications is Structural Operational
Semantics (SOS) [8]. (3) Finally, compliant interpreters and compilers for a
given programming language can be built based on such semantic descriptions.

This analogy can be pushed an additional step. Since an SOS specification
is given as a set of simple inference rules, a general purpose interpreters for SOS
specifications can be given using logic programming languages [3, 7]. Similarly,
since our evidence of proof is based on the generation of sequent calculus proofs,
logic programming (particularly the more expressive and abstract form available
in λProlog [7]) can be used to provide a reference interpreter for checking proof
certificates.
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Pure Type Systems revisited
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Pure Type Systems (PTS) aim at forming a generic basis for various type theories. It captures a variety of systems (simple
types, polymorphic types, dependent types, higher order types) but does not include e.g. inductive types, type inclusion
and identity types.

Since PTSs have been introduced, various properties of them have been proved and variations on them have been studied.
At the same time, various questions have remained unanswered. In the talk, we will overview some known ”classic”
results, some recent developments and some open problems. Topics we will treat are:

• type checking algorithms and syntax directed systems

• context free presentation

• explicit substitution

• the problem with adding eta

• the power of the conversion rule and making conversion explicit

• weak normalization and strong normalization

• inconsistent Pure Type Systems and the looping combinator
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Abstract

Disjoint unions are a basic artifact of programming and reasoning. In the con-
text of typed lambda calculus, they are called (strong) sum types, and their
Curry-Howard counterpart on the side of Logic is disjunction. Indeed, logical
disjunction (more generally, existential quantification) is the feature that dis-
tinguishes intuitionistic from classical logic: while in classical logic, disjunction
is definable from negative connectives, its true meaning is not preserved, since
classical logic does not have the property that from a closed proof of (A or B)
one can either prove A or prove B.

It is then a strange fact that in spite of omnipresence and importance of
sums, there are still open question with respect to their full beta-eta-equality, or
equivalently, with respect to characterizing type isomorphisms in their presence.
For example, while we do know that the beta-eta-equality relation is not finitely
axiomatizable, we do not know whether it is axiomatizable, and, if so, how.
We do not know whether there is an efficient (sub-exponential) algorithm to
decide type isomorphisms, and, as a matter of fact, I am not aware of any
implementation of a complete algorithm deciding them.

These problems have practical implications, as well. For example, modern
proof assistants based on constructive type theories, like Agda and Coq, allow
the user to develop proofs modulo eta-equality for pi-types, but stop short of
supporting eta-equality for inductive types (disjoint sums, in particular).

In this talk, we will revise the problems around isomorphisms in presence of
sums, as well as the well known connection to the work around Tarski’s High
School Algebra Problem in Logic. We will show that there are still things to
be learned from this connection on the typed lambda calculus side. We will
also show that one can obtain a non-trivial well-founded (decidable) subtyping
relation on types (in presence on sums) by using constructive proofs of Kruskal’s
Theorem.
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Proofs in monoidal closed bifibrations

Noam Zeilberger

The concept of refinement in type theory is a way of reconciling the “intrinsic” and the “extrinsic”
meanings of types (also known as “types à la Church” and “types à la Curry”). In a recent paper with
Paul-André Melliès [1], we looked at this idea more carefully and settled on the simple conclusion that
the type-theoretic notion of “type refinement system” may be identified with the category-theoretic
notion of “functor”. We recall here the basic correspondence (illustrated graphically in Figure 1):

Let a functor p : E→ I be fixed.

Definition 0.1. We say that an object S ∈ E refines an object A ∈ I, written S @ A, if p(S) = A.

Definition 0.2. Suppose given an I-map f : A → B and two E-objects S @ A and T @ B. Such a triple of
information is called a typing judgment, which we notate by writing f below an arrow from S to T:

S −→
f

T

In the special case where A = B and f = −A, we use the abbreviated notation

S −→ T
def
= S −→−A

T

which we call a subtyping judgment.

Definition 0.3. A typing derivation for a (sub)typing judgment S −→
f

T is an E-map α : S → T such

that p(α) = f . We notate this concisely by placing α over the judgment:

α
S −→

f
T

A (sub)typing judgment is said to be derivable if there exists a typing derivation for that judgment. We
notate this with a turnstile to the left of the judgment:

` S −→
f

T

In the talk, I would like to discuss some ideas in and around the paper and these definitions, in particular:

1. How this generalization of the traditional analogy (type system ∼ category) gives a rigorous
mathematical status to many workaday concepts from proof theory, side-stepping the usual very
formal approach which relies heavily on inductive definitions.

2. The rich logic that emerges by combining the basic connectives of monoidal closed categories
(i.e., product and implication) with the basic connectives of a bifibration (inverse image and direct
image), and how this can be used to represent logical systems “internally” to monoidal closed
bifibrations.
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S T
U

A B C

S,T @ A U @ C

(a) Refinement

S
T U

A B C

V

f

S −→
f

T U −→ V

(b) Typing and subtyping judgments

S
T U

A B C

V

f

α β

α
S −→

f
T

β
U −→ V

(c) Typing derivations

Figure 1: An illustration of various type-theoretic concepts associated to a functor p : E→ I
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This research continues the line of thought of our previous paper [ENMP14] which already aimed at a
better understanding of reduction-preserving translations of call-by-name (cbn) and call-by-value (cbv) λµµ̃
[CH00] into simply-typed lambda-calculi.

We introduce a refinement of our monadic λµ-calculus [ENMP14] to a new calculus VCµM of values and
computations, which is based on a sub-language of the former.

Crucially, and inspired by the presentation of the monadic meta-language in [HD94], we restrict function
space / implication (which we write ⊃) to the form A ⊃ MA′, where M is the formal monad, see [Mog91].
We exclude types of the form M(MA) altogether: types are given by A ::= B |C, with B ::= X |A ⊃ C
(with type variables X) and C ::= MB. Following op. cit., we call types B (resp. C) “value types”
(resp. “computation types”). Also the expressions of the calculus are divided into values V and computations
P , and this is obtained by separating two sets of term variables, value variables v and computation variables
y, with the intention of having a well-moded typing system, that is, one that assigns to the variables types
with the right “mode” (value or computation).

At a glance, the syntax is given in Figure 1 (using forms of explicit substitution in the commands), and
the typing rules in Figure 2. The next step are more refined reduction rules for the expressions, but this
would lead technically too far here. The talk will motivate the design decisions for VCµM and give the system
in full details.

We recall the overview of results from our previous paper in Figure 3, which in fact contains two pictures,
one for cbn and another for cbv. In essence, our results on VCµM improve [ENMP14] in the following way:

1. we study a new system - hybrid λµµ̃ - that amalgamates cbn and cbv λµµ̃ without losing confluence,
and can serve as the source of a new monadic translation.

2. we give a new monadic translation, with target on VCµM (instead of λµµ̃), which, for this reason, works
for both cbn and cbv.

3. instantiation with the continuations monad works for both cbn and cbv without dedicated optimiza-
tions.

4. the forgetful map from hybrid λµµ̃ blurs the distinction cbn/cbv with loss of confluence; the forgetful
map from VCµM blurs the distiction value/computation without loss of confluence.

Figure 1: Expressions of VCµM

(values) V,W ::= v |λx.P
(computations) P,Q ::= y | ηV |V u |µa.c

(terms) t, u ::= V |P
(commands) c ::= aP | bind(P, v.c) | {P/y}c



Figure 2: Typing rules of VCµM

Γ, v : B ` v : B|∆ Axv
Γ, y : C ` y : C|∆ Axc

Γ, x : A ` P : C|∆
Γ ` λx.P : A ⊃ C|∆ Intro

Γ ` V : A ⊃ C|∆ Γ ` u : A|∆
Γ ` V u : C|∆ Elim

Γ ` P : C|a : C,∆

aP : (Γ ` a : C,∆)
Pass

c : (Γ ` a : C,∆)

Γ ` µa.c : C|∆ Act

Γ ` V : B|∆
Γ ` ηV : MB|∆

Γ ` P : MB|∆ c : (Γ, v : B ` ∆)

bind(P, v.c) : (Γ ` ∆)

Γ ` P : C|∆ c : (Γ, y : C ` ∆)

{P/y}c : (Γ ` ∆)

Figure 3: The cbx picture from [ENMP14]

λµµ̃ λ[βη]

cbx λµµ̃

OO
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cbx cbn or cbv
λµM monadic λµ-calculus

(.)x cbx monadic translation
(.)
•

instantiation to continuations monad

(̂.)x cbx CPS translation
opt. (.)

•
x optimized cbx inst. to conts. monad

opt. (̂.)x optimized cbx CPS translation

This will be illustrated with a new picture that captures both the cbn and cbv paradigm and is thus a single
picture.
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Distributed Mathematics

Chad Brown

As theorem proving systems have advanced, it has become possible to realistically formalize large mathematical theories.
In addition, different parts of the theories can be formalized by different people anywhere in the world. The primary
concerns are that the proofs are correct and that the formalization efforts are not redundant. An example of such an effort
is the project to classify the finite simple groups in SSReflect. Another example is the Flyspeck project, an attempt to
formalize Thomas Hales’ proof of the Kepler Conjecture in HOL-light.

Before beginning a formalization project, the participants must fix the notions of propositions and proofs. In other words,
there must be a common foundation. There are many theorem proving systems with many different foundations. The
Flyspeck project uses the HOL-light system, based on a form of classical higher-order logic. Coq (and hence SSReflect)
is based on a rich intuitionistic higher-order type theory. Another system in which a great deal of mathematics has been
formalized is Mizar, which is based on first order Tarski-Grothendieck set theory. Tarski-Grothendieck set theory is an
extension of Zermelo-Fraenkel set theory with universes. The addition of universes makes the set theory strong enough
to interpret not only the higher-order logic of HOL-light but also the higher-order type theory of Coq (using a proof
irrelevant model). In principle, one could translate formalizations from HOL-light and Coq into formalizations in Mizar.
(In practice, this would fail in some cases since one-step conversion proofs in HOL-light and Coq would need to translate
to many-step equational proofs in Mizar.)

In my talk, I will describe a simply typed version of Tarski-Grothendieck set theory as a foundation for formal mathe-
matics. This foundation is strong enough to interpret Mizar (in principle) and by extension the other systems above (in
principle).

Once we fix the foundation as being simply typed Tarski-Grothendieck, we need a representation of proofs. The easy,
well-known way of representing proofs is using the Curry-Howard-de Bruijn correspondence. That is, proofs are natural
deduction proofs. Each such proof may be represented as a proof term: a lambda term with constants for the axioms of
the theory. This is arguably the oldest representation of formal proofs on a computer, as they were used in de Bruijn’s
AUTOMATH project. Serialization and communication of proof terms is no more difficult than serialization and commu-
nication of propositions.

Since the underlying logic of our foundation is simple type theory, we also have the possibility of using generic automated
higher-order theorem provers to find proofs. In the past few years, I have developed such a higher-order theorem prover,
Satallax. Satallax has placed first or second in the higher-order division of the CASC system competition the past four
years, and has won two of those years. I will spend some time talking about how Satallax can be used to search for proofs
and generate proof terms.

In addition to proofs, a formal mathematical development will also contain definitions and lemmas. Inevitably, different
people will make the same definitions and prove the same lemmas, but give them different names. This can be detected
through the use of collision-resistant cryptographic hashing functions. Furthermore, cryptographic digital signatures can
be used by a contributor to claim to have a proof of a conjecture before the contributor is prepared to publish the proof.
The hope is that these ideas could be used to prevent duplication of effort.

I am currently working on an implementation of these ideas, and will describe the current state of the implementation.
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