The combinatorics of free bifibrations

Bryce Clarke \& Gabriel Scherer \& Noam Zeilberger

3rd annual LambdaComb meeting
Jussieu, Paris, 22-24 January 2024

What is a bifibration?

One category living over another category, such that objects of the category above may be pushed and pulled along arrows of the category below.

Formally:

What is a bifibration?

One category living over another category, such that objects of the category above may be pushed and pulled along arrows of the category below.

Formally:

What is a bifibration?

One category living over another category, such that objects of the category above may be pushed and pulled along arrows of the category below.

Formally:

What is a bifibration?

One category living over another category, such that objects of the category above may be pushed and pulled along arrows of the category below.

Formally:

What is a bifibration?

One category living over another category, such that objects of the category above may be pushed and pulled along arrows of the category below.

Formally:

What is a bifibration?

One category living over another category, such that objects of the category above may be pushed and pulled along arrows of the category below.

Formally:

...and these liftings should be "universal" in an appropriate sense.

What is a bifibration? (cont.)

Pushing and pulling along an arrow $f: A \rightarrow B$ of \mathcal{C} induces an adjunction

between the fibers of A and B.

This leads to an equivalent way of seeing bifibrations $\mathcal{D} \rightarrow \mathcal{C}$, as pseudofunctors $\mathcal{C} \rightarrow \mathcal{A} d j$ into the category of small categories and adjunctions.

A simple example

Let Set be the category of sets and functions.
Let Subset be the category whose objects are subsets, and whose arrows $(S \subseteq A) \longrightarrow(T \subseteq B)$ are functions $f: A \rightarrow B$ such that $a \in S$ implies $f(a) \in T$.

The evident forgetful functor Subset \rightarrow Set is a bifibration:

(Adjunction property: $f(S) \subseteq R \Longleftrightarrow S \subseteq f^{-1}(R)$.).

Other motivating examples, from logic

Pushforward and pullback may be used to express:

- strongest postconditions and weakest preconditions in program logic
- existential and universal quantification in predicate logic
- diamond and box in modal logic
- \otimes and 8 in linear logic

Our problem

Most functors are not bifibrations.
Given a functor $p: \mathcal{D} \rightarrow \mathcal{C}$, how do we construct the free bifibration over p ?

A relatively little-studied problem:

- Robert Dawson, Robert Paré, and Dorette Pronk. Adjoining adjoints. Advances in Mathematics, 178(1):99-140, 2003.
- François Lamarche. Path functors in Cat. Unpublished, 2010. https://hal.inria.fr/hal-00831430.

Overview of our work

Developed alternative constructions of the free bifibration over a functor $p: \mathcal{D} \rightarrow \mathcal{C}$

- a proof-theoretic construction, using sequent calculus
- an algebraic construction, using double categories
- a topological construction, using string diagrams
(These provide three different perspectives, but all closely related.)
We also discovered examples of specific functors $p: \mathcal{D} \rightarrow \mathcal{C}$, such that the free bifibration over p has some surprisingly nice combinatorics.

A sequent calculus for the free bifibration over $p: \mathcal{D} \rightarrow \mathcal{C}$

Formulas $(S \sqsubset A)$:

$$
\frac{X \in \mathcal{D} \quad p(X)=A}{X \sqsubset A} \quad \frac{S \sqsubset A \quad f: A \rightarrow B}{f_{*} S \sqsubset B} \quad \frac{f: A \rightarrow B \quad T \sqsubset B}{f^{*} T \sqsubset A}
$$

Proofs $(S \underset{h}{\Longrightarrow} T)$:

$$
\underset{{ }_{g} \underset{{ }_{g f}}{\Longrightarrow} T}{ } f^{*} T
$$

$$
\begin{aligned}
& S \underset{f g}{\Longrightarrow} T \\
& S \underset{g}{\Longrightarrow} T \\
& \underset{f^{*} S \underset{\mathrm{gg}}{\Longrightarrow} T}{\underset{\Longrightarrow}{\Longrightarrow}} L_{\bar{f}} \\
& \frac{\alpha: X \longrightarrow Y \in \mathcal{D} \quad p(\alpha)=g}{X \Longrightarrow} \alpha
\end{aligned}
$$

Equational theory on derivations

Need to impose four permutation equivalences on derivations, including
plus their symmetric versions with pushforward and pullback swapped.
Arrows of $\operatorname{BFib}(p)$ are equivalence classes of proofs. Composition is by cut-elimination.

Example derivations

Construction via the double category of zigzags, and via string diagrams

Canonical forms in general

A challenge in understanding free bifibrations is getting a handle on the equivalence classes (of proofs/double cells/string diagrams) induced by the permutation relations.
Note that equivalence is in general undecidable! ${ }^{1}$
Nevertheless, we (believe we) have a normal form based on maximal multifocusing...

$$
\begin{aligned}
& \frac{N \underset{\pi_{*}}{N \underset{f}{\Longrightarrow}} P}{} L_{\pi} \quad \frac{N \underset{\pi f \rho}{\Longrightarrow} P}{\pi_{*} N \underset{f}{\Longrightarrow} \rho^{*} P} L_{\pi} R_{\bar{\rho}} \quad \xrightarrow{N \underset{f \rho}{\Longrightarrow} \rho^{*} P} P R_{\bar{\rho}} \\
& \frac{P \underset{\pi^{*}}{\Longrightarrow \Longrightarrow} Q}{\underset{\pi f}{\Longrightarrow} Q} L_{\bar{\pi}} \quad \frac{P \underset{\pi^{*}}{\Longrightarrow} N}{\underset{\pi f \rho}{\Longrightarrow} \rho_{*} N} L_{\bar{\pi}} R_{\rho} \quad \xrightarrow{M \underset{f \rho}{\Longrightarrow} \rho_{*} N} N R_{\rho}
\end{aligned}
$$

[^0]Now for some examples!

Example \#1

Build the free bifibration $\operatorname{BFib}\left(p_{0}\right) \rightarrow 2$, and look at the fiber of 0 .
Objects are isomorphic to even-length alternating push/pull sequences $f^{*} f_{*} \cdots f_{*}^{*} f_{*}$
Let $d_{m, n}$ be the number of arrows $\left(f^{*} f_{*}\right)^{m} 0 \longrightarrow\left(f^{*} f_{*}\right)^{n} 0$?
Puzzle: what is $d_{m, n}$?
$d_{2,1}=1$

$$
d_{1,2}=2
$$

$$
d_{2,2}=3
$$

Example \#1 continued

Arrows $\left(f^{*} f_{*}\right)^{m} 0 \longrightarrow\left(f^{*} f_{*}\right)^{n} 0$ correspond to monotone maps $\mathrm{m} \rightarrow \mathrm{n}$! Indeed, the free bifibration over $p_{0}: 1 \rightarrow 2$ captures the adjunction

between the category Δ of finite ordinals and order-preserving maps, and the category Δ_{\perp} of non-empty finite ordinals and order-and-least-element-preserving maps.
... So what's the answer to the puzzle?

Example \#1 continued

Arrows $\left(f^{*} f_{*}\right)^{m} 0 \longrightarrow\left(f^{*} f_{*}\right)^{n} 0$ correspond to monotone maps $\mathrm{m} \rightarrow \mathrm{n}$! Indeed, the free bifibration over $p_{0}: 1 \rightarrow 2$ captures the adjunction

between the category Δ of finite ordinals and order-preserving maps, and the category Δ_{\perp} of non-empty finite ordinals and order-and-least-element-preserving maps.
... So what's the answer to the puzzle? $d_{m, n}=\binom{n+m-1}{m}$

Example \#2

Now consider the following functor:

Build the free bifibration $\operatorname{BFib}\left(p_{0}\right) \rightarrow \mathbb{N}$, and look at the fiber of 0 .
Puzzle: what are its objects?

A category with Dyck walks as objects!

$$
f^{*} f^{*} f_{*} f_{*} f^{*} f_{*} f^{*} f^{*} f^{*} f_{*} f_{*} f^{*} f_{*} f_{*} 0=
$$

But what is a morphism of Dyck walks??
The $\mathcal{B F i b}(-)$ construction gives an answer. Is it something natural/known?

Reconstructing the Batanin-Joyal category of trees

Dyck paths have a well-known, canonical bijection with (finite rooted plane) trees.

Trees may also be encoded as functors $T: \mathbb{N}^{\mathrm{op}} \rightarrow \Delta$.

Reconstructing the Batanin-Joyal category of trees

In other words, map nodes to nodes of the same height, respecting parents.

Reconstructing the Batanin-Joyal category of trees

Theorem: $\operatorname{BFib}\left(p_{0}: 1 \rightarrow \mathbb{N}\right)_{0} \cong$ PTree.

(More generally, $\operatorname{BFib}\left(p_{0}\right)_{k} \cong$ PTree $_{k}=$ category of finite rooted plane trees whose rightmost branch is pointed by a node of height k.)

Example \#2 continued

Fix a walk W, and consider the following pair of sequences:

$$
i n[W]_{n}=\#\{\theta: S \Rightarrow W| | S \mid=n\} \quad \text { out }[W]_{n}=\#\{\theta: W \Rightarrow T| | T \mid=n\}
$$

These seem to be always nice!

W	out $[W]$	in $[W]$
ϵ	A 000108	A 000007
$U D$	A 000245	A 000012
$U U D D$	A 000344	A 011782
$U D U D$	A 099376	A 000027

W	out $[W]$	in $[W]$
$U U U D D D$	A 000588	A 001519
$U U D U D D$	A 003517	A 001792
$U U D D U D$	A 003517	A 000079
$U D U U D D$	A 003517	A 000079
$U D U D U D$	A 000344	A 000217
$U U D U U D D D$	A 003518	A 061667

Conclusion

We have a clean and simple construction of the free bifibration over a functor.
An application of proof theory, w/complementary algebraic \& topological perspectives.
Some surprisingly rich combinatorics emerges as if out of thin air.

[^0]: ${ }^{1}$ By adapting a construction in: Robert Dawson, Robert Paré, and Dorette Pronk. Undecidability of the free adjoint construction. Applied Categorical Structures, 11:403-419, 2003.

