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A few theorems on Complete Lattices

Theorem (Egger, Kruml, Paseka ∼ 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:
• L is a completely distributive lattice.
• The quantale L ( L of join-preserving endomaps of L is a Frobenius

quantale.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects in SLattare exactly the completely distributive lattice.
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Constructing counter-examples in ∗-autonomous categories

Conjecture Let A be an object of a symmetric monoidal closed category. The
following are equivalent:

1. A is nuclear.

2. The object A ( A of endomorphisms of A is a Frobenius monoid.

Theorem (De Lacroix & S., CSL 2023)
If A is an object of ∗-autonomous category, then (1) implies (2). The converse
implication holds if A is pseudoaffine, that is, the tensor unit I is a retract of A.

Counter-example (De Lacroix & S.): There exists a ∗-autonomous category and
an object A (of this category) such that A ( A is Frobenius monoid, which is not
nuclear.
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Schalk-de Paiva category Q-Set

Let Q be commutative quantale (= posetal complete SMMC).
• An object of Q-Set:

a pair (X , α) with X a set and α : X −−−−→ Q a function.
• An arrow of Q-Set from (X , α) to (Y , β):

a relation R ⊆ X × Y such that

xRy =⇒ α(x) ≤ β(y) , ∀x ∈ X , y ∈ Y .

Proposition Q-Set is SMMC. If Q is a Girard quantale, then Q-Set is
∗-autonomous.

For Q well chosen, Q-Set is the underlying category providing the previous
counter-example.
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∗-autonomous categories from Girard quantales?

• A Girard quantale is a posetal complete ∗-autonomous category.
• How do we lift properties from Q to Q-Set?

More general (and philosophical?) questions:
• How do Girard quantales relate to ∗-autonomous categories?
• Cf. Heyting algebras, CCCs, topoi.
• Is there a linear version of the notion of topos?

: 6/29
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The total (or Grothendieck) category
∫

Q of a functor Q

For a functor
Q : B −−−−→ Pos

its total category
∫

Q is defined as follows:

• an object of
∫

Q:
(X , α) with X ∈ Obj(B) and α ∈ Q(X),

• an arrow (X , α) −−−−→ (Y , β):
f : X −−−−→ Y such that Q(f)(α) ≤ β.

The first projection:

π :

∫
Q −−−−→ B

is the standard example of an (op-)fibration (with posetal fibers).

Lemma [Folklore ?] If B and Q are monoidal:

1 −−−−→ Q(I) , µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y)

then
∫

Q is monoidal and π strictly preserves the tensor structure.

: 7/29
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Q-Set as a total category

For R ⊆ X × Y and α ∈ QX , define

QR(α)(y) :=
∨
xRy

α(x) .

QX is a functor Rel −−−−→ Pos.

Proposition Q-Set =
∫

QX. Moreover, the functor QX is monoidal and,
consequently, Q-Set is a monoidal category, and the first projection

Q-Set −−−−→ Rel

strictly preserves the monoidal structure.
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What more ?

Moral:
• Understanding why Q-Set =

∫
Q is monoidal is well-covered by the theory of

monoidal (op-)fibrations.

Is it possible to have a theory explaining:
• when

∫
Q is closed?

• when
∫

Q is ∗-autonomous?
• which does not depend on specific properties of Rel

(which is a Cartesian bicategory whence dagger compact closed)?
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Lifting functors from the base B

Let

Q : B −−−−→ Pos , so π :

∫
Q −−−−→ B

Definition Let F : B −−−−→ B be an endofuctor of B. A lifting of F to
∫

Q is a
functor F :

∫
Q −−−−→

∫
Q such that the following diagram commutes:∫

Q
∫

Q

B B

π

F

π

F

That is, we want
F(X , α) = (F(X), β)

for some β ∈ Q(F(X)) which depends on α ∈ Q(X).
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Lifting functors from the base B

Let

Q : B −−−−→ Pos , so π :

∫
Q −−−−→ B

Definition Let
F : (Bop)n × Bm −−−−→ B

be functor. A lifting of F to
∫

Q is a functor

F : (

∫
Q

op

)n ×

∫
Q

m

−−−−→

∫
Q

such that the following diagram commutes:

(
∫

Q
op
)n ×
∫

Q
m ∫

Q

(Bop)n × Bn B

(πop)n×πm

F

π

F
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Proposition Liftings of a functor F : (Bop)n × Bm −−−−→ B to
∫

Q bijectively
correspond to collections of order-preserving maps

ψX ,Y :
∏

i

Q(Xi)
op ×
∏

j

Q(Yj) −−−−→ Q(F(X ,Y))

such that, for each pair of maps f : X −−−−→ X ′ in Bn and g : Y −−−−→ Y ′ in Bm,
the following diagram half-commutes:

∏
i Q(Xi)

op ×
∏

j Q(Yj)

∏
i Q(X ′i )

op ×
∏

j Q(Yj)
∏

i Q(Xi)
op ×
∏

j Q(Y ′j )

Q(F(X ′,Y)) Q(F(X ,Y ′))

id×
∏

i Q(gj )
∏

i Q(fi )op×id

ψX′ ,Y ψX ,Y′

Q(F(f ,g))
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Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and
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: 13/29



Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

α : ((X ⊗ Y) ⊗ Z , µX⊗Y ,Z (µX ,Y (x, y), z)) −−−−−→ (X ⊗ (Y ⊗ Z), µX ,Y⊗Z (x, µY ,Z (y, z)))

: 13/29



Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

Q(α)(µX⊗Y ,Z (µX ,Y (x, y), z)) ≤ µX ,Y⊗Z (x, µY ,Z (y, z))

: 13/29



Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

Q(α)(µX⊗Y ,Z (µX ,Y (x, y), z)) = µX ,Y⊗Z (x, µY ,Z (y, z))

: 13/29



Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

Q(α)(µX⊗Y ,Z (µX ,Y (x, y), z)) = µX ,Y⊗Z (x, µY ,Z (y, z)) ,

Q(λ)(µI,Y (u, y)) = y ,

Q(ρ)(µX ,I(x, u)) = u ,

Q(σ)(µX ,Y (x, y)) = µY ,X (y, x) .

: 13/29



Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

(Q(X) × Q(Y)) × Q(Z) Q(X) × (Q(Y) × Q(Z))

Q(X ⊗ Y) × Q(Z) Q(X) × Q(Y ⊗ Z)

Q((X ⊗ Y) ⊗ Z) Q(X ⊗ (Y ⊗ Z))

αQ

µ×id id×µ

id×µ µ⊗id

Q(α)

1 × Q(X) Q(I) × Q(X)

Q(X) Q(I ⊗ X)

λQ

u×id

µ

Q(λ)

Q(X) × 1 Q(X) × Q(I)

Q(X) Q(X ⊗ I)

ρQ

id×u

µ

Q(ρ)

Q(X) × Q(Y) Q(Y) × Q(X)

Q(X ⊗ Y) Q(X ⊗ Y)

σQ

µX ,Y µY ,X

Q(σ)
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Lifting the closed structure

Let B be SMC, with

evX ,Y :X ⊗ (X ( Y) −−−−−→ Y , ηX ,Y :Y −−−−−→ X ( (X ⊗ Y) .

Suppose µ is used to lift ⊗ to
∫

Q.

Proposition
∫

Q is closed if and only if we have are given a collection of order-preserving
maps

{ ιX ,Y : Q(X)op × Q(Y) −−−−−→ Q(X ( Y) }X ,Y∈Obj(B) ,

such that

1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X)op × Q(Y) Q(X)op × Q(Y ′)

Q(X ′)op × Q(Y)

Q(X ′ ( Y) Q(X ( Y ′)

id×Q(g)

Q(f)op×id

ιX ,Y′

ιX′ ,Y

Q(f(g)

2. and

Q(ηX ,Y )(y) ≤ ιX ,X⊗Y (x, µX ,Y (x, y)) ,

Q(evX ,Y )( µX ,X(Y (x, ιX ,Y (x, y)) ) ≤ y .
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. . . a more readable characterisation

Proposition
∫

Q is closed if and only if for each pair of objects X ,Y , the following
diagram

Q(X) × Q(Y) Q(X ⊗ Y)

Q(X) × Q(X ( (X ⊗ Y)) Q(X ⊗ X ( (X ⊗ Y))

Q(X)⊗Q(ηX ,Y )

µX ,Y

µX ,X((X⊗Y)

Q(evX ,X⊗Y )

commutes, and, for each α ∈ Q(X), the map

1 × Q(X ( Y)
α×id
−−−→ Q(X) × Q(X ( Y)

µX ,X(Y
−−−−−→ Q(X ⊗ X ( Y)

Q(evX ,Y )
−−−−−−→ Q(Y)

has a right adjoint.
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The beauty of SLatt

Corollary If Q factors (monoidally) as

SLatt

B Pos ,

UQ′

Q

then
∫

Q is monoidal and closed.

Corollary Q-Set =
∫

QX is closed.
For F : Rel −−−−→ Rel comonoidal (and . . . ), QF -Set =

∫
QFX is closed.

nuTS =
∫

UP is monoidal closed.

Here UP : Rel −−−−→ SLatt is the ”free completely distributive lattice” functor.

: 17/29
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Lifting dualizing objects

Let X∗ := X ( 0. An object 0 is dualizing if, for each object X , the canonical map

jX : X −−−−−→ X∗∗

is an iso.

For ω ∈ Q(0), let
ωX := ιX ,0(·, ω) : Q(X)op −−−−−→ Q(X∗) .

Proposition For an object (0, ω) of
∫

Q, TFAE:
• (0, ω) is dualizing,
• 0 is a dualizing object of B and the following diagrams commute:

Q(X) Q(X∗)

Q(X∗∗)
Q(jX )

ωX

ωX∗

• (provided µ is natural) 0 is a dualizing object of B and, for each object X of B,

ωX : Q(X)op −−−−−→ Q(X∗) is invertible.

: 19/29
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From ∗-autonomous to Girard

Let B be ∗-autonomous, with 0 dualizing. Let

Q : B −−−−→ SLatt

be monoidal (that is, let µ be natural), so
∫

Q is closed.

Remarks
• Q(I) is a monoid in SLatt, that is, a quantale.
• If 0 = I and (I, ω) is a dualizing object,

then ω is a dualizing element of the quantale Q(I).

Problem
If I is a dualizing object of B and ω is a dualizing element of Q(I),

is (I, ω) a dualizing object of
∫

Q?

: 20/29
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A double negation nucleus
Recall: B is ∗-autonomous, Q : B −−−−→ SLatt is monoidal, and ω ∈ Q(0).
For each object X of B, α ∈ Q(X) and β ∈ Q(X ∗), let

〈α, β〉X := Q(evX ,0)(µX ,X∗(α, β)) , so ωX(α) =
∨
{ β ∈ X ∗ | 〈α, β〉X ≤ ω } .

Define then

⊥(β) :=
∨
{α ∈ X | 〈α, β〉X ≤ ω } .

Theorem
Let

¬¬ωX(α) :=
⊥(ωX(α)) and Q¬¬ω(X) := {α ∈ Q(X) | ¬¬ωX(α) = α } .

Then
• Q¬¬ω is made into a monoidal functor Q¬¬ω : B −−−−→ SLatt,
• ¬¬ωX : Q(X) −−−−→ Q¬¬ω(X) is an epi in SLatt, natural in X,
• ω ∈ Q¬¬ω(X) and (0, ω) is dualizing in

∫
Q¬¬ω .

Remark This generalises Hyland/Schalk focused orthogonality structures.
: 21/29
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A representation theorem

Phase semantics. If Q is a commutative quantale and ω ∈ Q , then
¬¬ω(x) = (x ( ω)( ω is a nucleus on Q and the quotient Q¬¬ω is a Girard
quantale.

Completeness of phase semantics. If Q is a commutative Girard quantale,
then we can choose ω ∈ P(Q), so that Q and P(Q)jω are isomorphic quantales.

Theorem
Let 0 ∈ B be dualizing and Q : B −−−−→ SLatt monoidal such that

∫
Q is

∗-autonomous.
Let PUQ be the functor

B SLatt Set SLatt .Q U P

Then Q is naturally isomorphic to PUQ¬¬ω for some ω ⊆ Q(0).
Thus,

∫
Q and

∫
PUQ¬¬ω are equivalent categories.

: 22/29
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Lifting coalgebras of functors

Suppose F : B −−−−→ B has been lifted to F :
∫

Q −−−−→
∫

Q by means of the lax
natural ιX : Q(X) −−−−→ Q(F(X)).

Proposition

CoAlg(F) '
∫

Qν −−−−→ CoAlg(F)

with Qν : CoAlg(F) −−−−→ Pos defined by

Qν(ψ : X −−−−→ F(X) ) := {α ∈ Q(X) | Q(ψ)(α) ≤ ιX(α) } .

Corollary If Q : B −−−−→ Pos, with the Q(X) complete lattices, then

νX .F(X) = ( (ν.F , ξ) , ν.φ )

with

φ := Q(ν.F)
ιν.F
−−−−→ Q(F( ν.F ) )

Q(ξ−1)
−−−−−−→ Q( ν.F ) .

: 24/29
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Lifting algebras of functors

Remark
We have

AlgC(F) = CoAlgCop (Fop) .

Considering that SLatt is auto dual (∗-autonomous), we can get initial algebra lifting from
the previous proposition/coroallary when Q : B −−−−−→ SLatt.

In general:
Proposition If Q(X) is a complete lattice (for all objects X ), then define
Qµ : Alg(F) −−−−−→ Pos by

Qµ(ψ : F(X) −−−−−→ X) = {α ∈ Q(X) | Q(ψ)(ιX (α)) ≤ α } .

Then Qµ is a pseudofunctor, so
∫

Qµ is well defined. If Q(f) preserves suprema of chains,
then

µX .F(X) = ((µ.F , ξ), µ.φ)

with

φ := Q(µ.F)
ιµ.F
−−−→ Q(F(µ.F))

Q(ξ)
−−−−→ Q(µ.F) .

: 25/29
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the previous proposition/coroallary when Q : B −−−−−→ SLatt.

In general:
Proposition If Q(X) is a complete lattice (for all objects X ), then define
Qµ : Alg(F) −−−−−→ Pos by

Qµ(ψ : F(X) −−−−−→ X) = {α ∈ Q(X) | Q(ψ)(ιX (α)) ≤ α } .

Then Qµ is a pseudofunctor, so
∫

Qµ is well defined. If Q(f) preserves suprema of chains,
then

µX .F(X) = ((µ.F , ξ), µ.φ)

with

φ := Q(µ.F)
ιµ.F
−−−→ Q(F(µ.F))

Q(ξ)
−−−−→ Q(µ.F) .
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Plan

1. Background

2. Lifting closed structure

3. Dualizing objects, star-autonomy

4. Coalgebras and algebras of a functor

5. Ongoing and future work
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TODO list

• Other kind of liftings:
• limits/colimits,
• monads, comonads,
• algebras of a functor,
• linearly distributive structures, . . .

• Understand various monoidal categories of the form
∫

Q w.r.t. the theory just
developed. In particular:
• finite dimensional Banach (normed) spaces and contracting linear maps.

• Understand the categorical structure of various categories of fuzzy relations,
as generalization of Q-Set, by replacing Rel by Rel(Q).
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TODO list: an interesting conjecture

All the previous computations as if we had a typed quantale.

Conjecture Let B be ∗-autonomous and let Q : B −−−−→ SLatt be monoidal.
Then

∫
Q is ∗-autonomous if and only if Q is a Girard monoid in the monoidal

category [B,SLatt] (with convolution as tensor).

Remarks
• If B is ∗-autonomous, then [B,SLatt] is ∗-autonomous as well (Egger 2008).
• The conjecture yields a test ground for the results in (De Lacroix and S.,

CSL 2023).
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Thanks!
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