Binomial lattice congruences and flat dihomotopy types

LambdaComb Days

Paris

Cameron Calk \& Luigi Santocanale

Lis

$23^{\text {rd }}$ of January 2024

Introduction

Resumé

- Objective : Characterise congruences of multinomial lattices and their continuous analogues.
- Lattice theoretic approach to rewriting, algebraic semantics of linear logic.

Resumé

- Objective : Characterise congruences of multinomial lattices and their continuous analogues.
- Lattice theoretic approach to rewriting, algebraic semantics of linear logic.
- Inspiration : Geometric interpretation of these lattices. - Elements can be seen as directed paths.

Resumé

- Objective : Characterise congruences of multinomial lattices and their continuous analogues.
- Lattice theoretic approach to rewriting, algebraic semantics of linear logic.
- Inspiration : Geometric interpretation of these lattices. - Elements can be seen as directed paths.
- Idea : Join-prime elements as points separating these paths:

Resumé

- Objective : Characterise congruences of multinomial lattices and their continuous analogues.
- Lattice theoretic approach to rewriting, algebraic semantics of linear logic.
- Inspiration : Geometric interpretation of these lattices. - Elements can be seen as directed paths.
- Idea : Join-prime elements as points separating these paths:

Overview and context : the discrete case

- Multinomial lattices were introduced by Bennett \& Birkhoff.
- Study of the rewriting system associated to commutativity from a lattice-theoretic perspective:

$$
a b b a a \rightarrow a b a b a \rightarrow a a b b a \rightarrow a a b a b \rightarrow a a a b b
$$

Overview and context : the discrete case

- Multinomial lattices were introduced by Bennett \& Birkhoff.
- Study of the rewriting system associated to commutativity from a lattice-theoretic perspective:

$$
a b b a a \rightarrow a b a b a \rightarrow a a b b a \rightarrow a a b a b \rightarrow a a a b b
$$

- These lattices and their congruences are strongly related to concurrency.
- The word abbaa represents interleaving actions of two agents.
- Multinomial lattice congruences give rise to certain Parikh equivalences central to scheduling problems in concurrency.
- A geometric interpretation closely relates these lattices to a semantics of concurrent systems, namely directed topology.

In this talk. . .

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.

In this talk. . .

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.

In this talk. . .

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.
- Directed algebraic topology.
- Recall the notion of directed space, and define cubical complexes.
- Introduce the binomial complex and describe the dihomotopy types of its subcomplexes.

In this talk...

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.
- Directed algebraic topology.
- Recall the notion of directed space, and define cubical complexes.
- Introduce the binomial complex and describe the dihomotopy types of its subcomplexes.
- Result: the correspondence.
- Congruences correspond to dihomotopy types of subcomplexes.
- The congruence lattice of a binomial lattice is isomorphic to the lattice of subcomplex dihomotopy types.

In this talk...

- Goal: instantiate the link between dihomotopy and binomial lattice congruences.
- Binomial lattices.
- Define binomial lattices and describe their congruences.
- Recall their interpretation as lattices of lattice paths.
- Describe the geometric intuition of their congruences.
- Directed algebraic topology.
- Recall the notion of directed space, and define cubical complexes.
- Introduce the binomial complex and describe the dihomotopy types of its subcomplexes.
- Result: the correspondence.
- Congruences correspond to dihomotopy types of subcomplexes.
- The congruence lattice of a binomial lattice is isomorphic to the lattice of subcomplex dihomotopy types.
- We will end by briefly describing ongoing work in the continuous setting.

Binomial lattices and their congruences

Multinomial lattices

- Given $v \in \mathbb{N}^{k}$, we denote by $\mathcal{L}(v)$ the set of words on the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ such that:
- w contains v_{i} occurrences of the letter a_{i}.

We equip this set with the partial order generated by

$$
w \leq w^{\prime} \quad \Longleftrightarrow \quad \exists u, v \quad\left\{\begin{array}{l}
w=u \cdot a_{i} a_{j} \cdot v \\
w^{\prime}=u \cdot a_{j} a_{i} \cdot v
\end{array} \quad \text { and } i<j\right.
$$

- The poset $(\mathcal{L}(v), \leq)$ has the structure of a lattice.

Multinomial lattices

- Given $v \in \mathbb{N}^{k}$, we denote by $\mathcal{L}(v)$ the set of words on the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ such that:
- w contains v_{i} occurrences of the letter a_{i}.

We equip this set with the partial order generated by

$$
w \leq w^{\prime} \quad \Longleftrightarrow \quad \exists u, v \quad\left\{\begin{array}{l}
w=u \cdot a_{i} a_{j} \cdot v \\
w^{\prime}=u \cdot a_{j} a_{i} \cdot v
\end{array} \quad \text { and } i<j\right.
$$

- The poset $(\mathcal{L}(v), \leq)$ has the structure of a lattice.
- These structures generalize permutations to permutations of multisets, called multipermutations.
- Indeed, for $v=(1, \ldots, 1)$, we have $\mathcal{L}(v)=S_{k}$.
- The order \leq generalizes the weak Bruhat order defining the permutohedron.

Binomial lattices

Today, we will focus on binomial lattices:

- Given $n, m \in \mathbb{N}$, we denote by $\mathcal{L}(n, m)$ the set of words on the alphabet $\Sigma=\{a, b\}$ such that:
- w contains n occurrences of the letter a,
- and m occurrences of the letter b.
which we equip with the partial order generated by

$$
w \leq w^{\prime} \quad \Longleftrightarrow \quad \exists u, v \quad\left\{\begin{array}{l}
w=u \cdot a b \cdot v \\
w^{\prime}=u \cdot b a \cdot v
\end{array}\right.
$$

- We will henceforth denote $\mathcal{L}(n, m)$ simply by \mathcal{L}.

Proposition (L. Santocanale '05)

\mathcal{L} is a distributive lattice.

As lattices of lattice paths

- The elements of \mathcal{L} are interpreted as paths in an n by m grid:

$$
w \in \mathcal{L} \quad \quad f_{w}:[n+m] \rightarrow[n] \times[m]
$$

- an occurrence of a is a step in the x-axis,
- an occurrence of b is a step in the y-axis. $a b b a a$

As lattices of lattice paths

- The elements of \mathcal{L} are interpreted as paths in an n by m grid:

$$
w \in \mathcal{L} \quad \nrightarrow \quad f_{w}:[n+m] \rightarrow[n] \times[m]
$$

- an occurrence of a is a step in the x-axis,
- an occurrence of b is a step in the y-axis.

$a b b a a$

The ordering is recovered as a point-wise ordering on paths.

$$
(x, y) \leq_{2}\left(x^{\prime}, y^{\prime}\right) \quad \text { iff } \quad x^{\prime} \leq x \text { and } y \leq y^{\prime}
$$

Then $f \leq g$ if, and only if, $f(k) \leq_{2} g(k)$ for all $k \in[n+m]$.

As lattices of lattice paths

- The elements of \mathcal{L} are interpreted as paths in an n by m grid:

$$
w \in \mathcal{L} \quad \nVdash \quad f_{w}:[n+m] \rightarrow[n] \times[m]
$$

- an occurrence of a is a step in the x-axis,
- an occurrence of b is a step in the y-axis.

abbaa

The ordering is recovered as a point-wise ordering on paths.

- The join and meet of \mathcal{L} become point-wise maxima and minima:

- Note that these paths are increasing in each coordinate.

Distributive lattice congruences

Let L be a distributive lattice.

- A congruence on L is an equivalence relation $\theta \subseteq L \times L$ which is compatible with the lattice operations.
- In distributive lattices, congruences are given by sets of join-prime elements.
- $j \in L$ is join-prime if

$$
j=u \vee v \quad \Rightarrow \quad j=u \text { or } j=v .
$$

- The set of join-prime elements of L is denoted by \mathcal{J}.

Distributive lattice congruences

Let L be a distributive lattice.

- A congruence on L is an equivalence relation $\theta \subseteq L \times L$ which is compatible with the lattice operations.
- In distributive lattices, congruences are given by sets of join-prime elements.
- $j \in L$ is join-prime if

$$
j=u \vee v \quad \Rightarrow \quad j=u \text { or } j=v .
$$

- The set of join-prime elements of L is denoted by \mathcal{J}.
- Given $S \subseteq \mathcal{J}$, the congruence \equiv_{S} is defined by:

$$
u \equiv_{S} v \quad \Longleftrightarrow \quad \forall j \in S, \quad j \leq u \text { iff } j \leq v
$$

"
u and v are above the same elements of S "

Join-prime elements of $\mathcal{L}(n, m)$

- What are the join-prime elements of \mathcal{L} ?

$w=u v v$

Join-prime elements of $\mathcal{L}(n, m)$

- What are the join-prime elements of \mathcal{L} ?

$w=u v v$

- They are the paths that have exactly one north-east turn:

Join-prime elements of $\mathcal{L}(n, m)$

- What are the join-prime elements of \mathcal{L} ?

$w=u v v$

- They are the paths that have exactly one north-east turn:

- As words, these are of the form

$$
a^{k} b^{l} a^{n-k} b^{m-l}
$$

They are thus characterized by (k, l), with $\left\{\begin{array}{l}0 \leq k<n \\ 0<l \leq m\end{array}\right.$

Geometric interpretation of congruences

- Let us look at the particular case when $S=\{j\}$.
- Recall that

$$
w \equiv_{S} w^{\prime} \quad \Longleftrightarrow \quad j \leq w \text { iff } j \leq w^{\prime}
$$

- Let (k, l) be the coordinate of the NE turn of j.
- $j \leq u$ means f_{u} passes "above" (k, l),
- $j \not \leq v$ means f_{v} passes "below" (k, l).

Geometric interpretation of congruences

- Let us look at the particular case when $S=\{j\}$.
- Recall that

$$
w \equiv_{S} w^{\prime} \quad \Longleftrightarrow \quad j \leq w \text { iff } j \leq w^{\prime}
$$

- Let (k, l) be the coordinate of the NE turn of j.
- $j \leq u$ means f_{u} passes "above" (k, l),
- $j \not \leq v$ means f_{v} passes "below" (k, l).

- The same holds for arbitrary $S \subseteq \mathcal{J}$.
- So, lattice congruences of \mathcal{L} correspond to separating directed paths by squares. This reminds us of directed homotopy...

Directed homotopy and binomial complexes

Directed topology

- Directed topology provides a geometric semantics for true concurrency.

Directed topology

- Directed topology provides a geometric semantics for true concurrency.
- A directed space \mathcal{X} consists of
- A topological space X,
- A set of directed paths $d X$.
- We interpret directed paths as executions.

Directed topology

- Directed topology provides a geometric semantics for true concurrency.
- A directed space \mathcal{X} consists of
- A topological space X,
- A set of directed paths $d X$.
- We interpret directed paths as executions.
- Today, we focus on a particular class of directed spaces, namely cubical complexes. In two dimensions, these consist of:
- vertices, which may be related by...
- edges, which may form the border of...
- squares.
- Such two-dimensional complexes model two-agent concurrent
systems:

Bob takes/neleases the apple whilst Alice says hell. Then Alice takes/ueleases the apple.

Alice says hello, takes/neleares the apple and then Bob takes/neleases the apple.

- Directed paths are those which increase in each coordinate.

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the binomial complex C :
- $C_{0}:=\left\{v_{(i, j)} \mid 0 \leq i \leq n\right.$ and $\left.0 \leq j \leq m\right\}$,
- $C_{1}:=\left\{e_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} \mid i_{2}=i_{1}+1\right.$ exor $\left.j_{2}=j_{1}+1\right\}$,
- $C_{2}:=\left\{F_{(k, l)} \mid 0 \leq k<n\right.$ and $\left.0<l \leq m\right\}$.
- This cubical complex corresponds to the n by m grid, with all "holes" filled by squares.

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the binomial complex C :
- $C_{0}:=\left\{v_{(i, j)} \mid 0 \leq i \leq n\right.$ and $\left.0 \leq j \leq m\right\}$,
- $C_{1}:=\left\{e_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} \mid i_{2}=i_{1}+1\right.$ exor $\left.j_{2}=j_{1}+1\right\}$,
- $C_{2}:=\left\{F_{(k, l)} \mid 0 \leq k<n\right.$ and $\left.0<l \leq m\right\}$.
- This cubical complex corresponds to the n by m grid, with all "holes" filled by squares.
- Note that we encode squares by their upper-left corner.

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the binomial complex C :

$$
\begin{aligned}
& \text { - } C_{0}:=\left\{v_{(i, j)} \mid 0 \leq i \leq n \text { and } 0 \leq j \leq m\right\} \text {, } \\
& \text { - } C_{1}:=\left\{e_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} \mid i_{2}=i_{1}+1 \text { exor } j_{2}=j_{1}+1\right\} \text {, } \\
& \text { - } C_{2}:=\left\{F_{(k, l)} \mid 0 \leq k<n \text { and } 0<l \leq m\right\} \text {. } 0 \leq k \text {. }
\end{aligned}
$$

- This cubical complex corresponds to the n by m grid, with all "holes" filled by squares.
- Note that we encode squares by their upper-left corner.

- Given $S \subseteq C_{2}$, we denote by C^{S} the cubical complex with the same set of vertices and edges, but in which $C_{2}^{S}:=C_{2} \backslash S$.

Cubical homotopy

- Given a concurrent system, which executions produce the same output?

All executions end with

1	2
x	y

Euds with

2	
x	y

Cubical homotopy

- Given a concurrent system, which executions produce the same output?

Ends with

2	
x	y
Ends with	
1	
x	y

- We say that paths are dihomotopic if we can "slide" one onto the other through a sequence of directed paths, and if they start and end at the same point.

Cubical homotopy

- Given a concurrent system, which executions produce the same output?

Ends with

2	
x	y

1	
x	y

- We say that paths are dihomotopic if we can "slide" one onto the other through a sequence of directed paths, and if they start and end at the same point.
- In a cubical complex Γ, it suffices to consider
- combinatorial dipaths,
i.e. those which are contained in the set of edges Γ_{1},
- combinatorial homotopy,
i.e. dipaths are equivalent
when the space between them is filled by squares in Γ_{2}.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\leftrightarrow}$, is an equivalence relation on combinatorial dipaths with the same beginning- and end-points.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\leftrightarrow}$, is an equivalence relation on combinatorial dipaths with the same beginning- and end-points.
- Given the binomial complex C, we denote by $\overrightarrow{\mathbb{P}}(C)$ the set of combinatorial dipaths from $(0,0)$ to (n, m).
- Note that for any $S \subseteq C_{2}$, we have $\overrightarrow{\mathbb{P}}(C)=\overrightarrow{\mathbb{P}}\left(C^{S}\right)$.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\rightarrow}$, is an equivalence relation on combinatorial dipaths with the same beginning- and end-points.
- Given the binomial complex C, we denote by $\overrightarrow{\mathbb{P}}(C)$ the set of combinatorial dipaths from $(0,0)$ to (n, m).
- Note that for any $S \subseteq C_{2}$, we have $\overrightarrow{\mathbb{P}}(C)=\overrightarrow{\mathbb{P}}\left(C^{S}\right)$.
- We are interested in the quotient by combinatorial dihomotopy:

$$
\overrightarrow{\mathbb{P}}\left(C^{S}\right) / \stackrel{*}{\leadsto} .
$$

- In the particular case in which $S=\left\{F_{(k, l)}\right\} \ldots$

Paths going above F are all identified.
Path going under F are all identified.

The correspondence

Correspondences

- Elements of \mathcal{L}. - Elements of $\overrightarrow{\mathbb{P}}\left(C^{S}\right)$.

Lattice paths

Correspondences

- Elements of \mathcal{L}.
- Elements of $\overrightarrow{\mathbb{P}}\left(C^{S}\right)$.

Lattice paths

- Join prime elements of \mathcal{L}.
- Squares in C.

$$
\mathcal{J} \simeq\{(\mathbf{k}, \mathbf{l}) \mid \mathbf{0} \leq \mathbf{k}<\mathbf{n} \text { and } \mathbf{0}<\mathbf{l} \leq \mathbf{m}\} \simeq \mathbf{C}_{\mathbf{2}}
$$

Correspondences

- Elements of \mathcal{L}.
- Elements of $\overrightarrow{\mathbb{P}}\left(C^{S}\right)$.

Lattice paths

- Join prime elements of \mathcal{L}.
- Squares in C.

$$
\mathcal{J} \simeq\{(\mathbf{k}, \mathbf{l}) \mid \mathbf{0} \leq \mathbf{k}<\mathbf{n} \text { and } \mathbf{0}<\mathbf{l} \leq \mathbf{m}\} \simeq \mathbf{C}_{\mathbf{2}}
$$

- Congruences \equiv_{S} of $\mathcal{L}(n, m)$
- Subcomplexes $C^{S}(n, m)$.

Results

- Using the point-wise order induced on paths in C, we have that $\mathcal{L} \simeq \overrightarrow{\mathbb{P}}\left(C^{S}\right)$ as lattices.

$$
(x, y) \leqslant_{2}\left(x^{\prime}, y^{\prime}\right)
$$

$$
\text { iff } x^{\prime} \leqslant x \text { and } y \leqslant y^{\prime}
$$

Results

- Using the point-wise order induced on paths in C, we have that $\mathcal{L} \simeq \overrightarrow{\mathbb{P}}\left(C^{S}\right)$ as lattices.
- Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any $S \subseteq \mathcal{J} \simeq C_{2}$, we have the lattice isomorphism

$$
\mathcal{L}(n, m) / \equiv_{S} \cong \overrightarrow{\mathbb{P}}\left(C^{S}\right) / \stackrel{*}{\sim}
$$

Results

- Using the point-wise order induced on paths in C, we have that $\mathcal{L} \simeq \overrightarrow{\mathbb{P}}\left(C^{S}\right)$ as lattices.
- Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any $S \subseteq \mathcal{J} \simeq C_{2}$, we have the lattice isomorphism

$$
\mathcal{L}(n, m) / \equiv_{S} \cong \overrightarrow{\mathbb{P}}\left(C^{S}\right) / \stackrel{*}{\leftrightarrow}
$$

- Moreover, the maps induced by inclusions $S^{\prime} \subseteq S$ on each side correspond, i.e. the following maps coincide:

$$
\begin{aligned}
q_{S^{\prime}, S} & \overrightarrow{\mathbb{P}}\left(C^{S^{\prime}}\right) / \stackrel{*}{\leftrightarrow} \\
p_{S^{\prime}, S} & \longrightarrow \mathcal{L}(n, m) / S^{\prime}
\end{aligned} \longrightarrow \mathcal{P}\left(C^{S}\right) / \stackrel{*}{\leftrightarrow}(n, m) / S .
$$

Ongoing work

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}\left(v_{1}, \ldots, v_{n}\right)$, for $n \geq 3 \ldots$
- $\mathcal{L}(v)$ is not distributive.
- Because of this, its congruences are not as simple.
- Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}\left(v_{1}, \ldots, v_{n}\right)$, for $n \geq 3 \ldots$
- $\mathcal{L}(v)$ is not distributive.
- Because of this, its congruences are not as simple.
- Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.
- On the geometric side...
- Join-dependency means that adding squares is no longer "free" in the sense that adding a square may necessitate adding parallel squares.
- We can also consider higher homotopy groups - what is their interpretation?

Multinomial lattice quotients

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}\left(v_{1}, \ldots, v_{n}\right)$, for $n \geq 3 \ldots$
- $\mathcal{L}(v)$ is not distributive.
- Because of this, its congruences are not as simple.
- Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.
- On the geometric side...
- Join-dependency means that adding squares is no longer "free" in the sense that adding a square may necessitate adding parallel squares.
- We can also consider higher homotopy groups - what is their interpretation?
- In this direction, we are studying the higher dimensional automata associated to the multinomial complexes.

The continuous case

- Let $Q_{\vee}(I)$ denote the set of order preserving maps

$$
f: I \rightarrow I \quad \text { s.t. } \quad f(\bigvee X)=\bigvee f(X)
$$

equipped with the point-wise ordering \leq.

Proposition (M.J. Gouveia, L. Santocanale '18)

- The structure $\left(Q_{\vee}(I), \leq\right)$ is a completely distributive lattice.
- With composition \circ, the lattice $Q_{\vee}(I)$ is a \star-autonomous quantale which moreover satisfies the mix rule.

The continuous case

- Let $Q_{\vee}(I)$ denote the set of order preserving maps

$$
f: I \rightarrow I \quad \text { s.t. } \quad f(\bigvee X)=\bigvee f(X)
$$

equipped with the point-wise ordering \leq.
f is left-continuous

Segments in red are discontinuity points

The continuous case

- Let $Q_{\vee}(I)$ denote the set of order preserving maps

$$
f: I \rightarrow I \quad \text { s.t. } \quad f(\bigvee X)=\bigvee f(X)
$$

equipped with the point-wise ordering \leq.

Given $f \in Q_{v}(I)$, add segments at discontinuity points

$$
\begin{array}{cccc}
f: I \rightarrow I & & C \subseteq I^{2} & \\
\text { complete, dense, } & \leftarrow & \begin{array}{c}
\text { continuous, } \\
\text { totally ordered }
\end{array} & \\
\text { monotone paths }
\end{array}
$$

The continuous case

- Let $Q_{\vee}(I)$ denote the set of order preserving maps

$$
f: I \rightarrow I \quad \text { s.t. } \quad f(\bigvee X)=\bigvee f(X)
$$

equipped with the point-wise ordering \leq.

Given $f \in Q_{V}(I)$, add segments at discontinuity points

$C \subseteq I^{2}$
\simeq complete, dense, $\quad \leftarrow$ totally ordered
mod out by para metrication

$$
p: I \rightarrow I^{2}
$$

continuous, monotone paths

Dihomotopy and the continuous order

- In the discrete case, paths $f[n+m] \rightarrow[n] \times[m]$ are parametrised by arc-length.
- We can recover the ordering on \mathcal{L} in two ways:
- As the point-wise order inherited from

$$
(x, y) \leq_{2}\left(x^{\prime}, y^{\prime}\right) \quad \text { iff } \quad x^{\prime} \leq x \text { and } y \leq y^{\prime},
$$

- or as that generated by the elementary cubical homotopy relation \rightsquigarrow : $\exists F \in C_{2}$

Dihomotopy and the continuous order

- In the continuous case, parametrisation is an obstruction to this characterisation.

$$
t \mapsto(t, t) \quad t \mapsto\left(t^{2}, t^{2}\right)
$$

Dihomotopy and the continuous order

- In the continuous case, parametrisation is an obstruction to this characterisation.

$$
t \mapsto(t, t) \quad t \mapsto\left(t^{2}, t^{2}\right)
$$

- We define simultaneous parametrisations of given maps in order to recover these results:

Dihomotopy and the continuous order

- In the continuous case, parametrisation is an obstruction to this characterisation.

$$
t \mapsto(t, t) \quad t \mapsto\left(t^{2}, t^{2}\right)
$$

- We define simultaneous parametrisations of given maps in order to recover these results:

Proposition (C.C, L. Santocanale)

Let $f, g \in Q_{\vee}(I)$ such that $f \leq g$. There exist parametrisations π_{f}, π_{g} of f and g such that:

- $\pi_{f}(t) \leq_{2} \pi_{g}(t)$ for all $t \in I$,
- there exists an increasing homotopy $\psi_{f, g}: \pi_{f} \Rightarrow \pi_{g}$.

Dihomotopy and the continuous order

- In the continuous case, parametrisation is an obstruction to this characterisation.

$$
t \mapsto(t, t) \quad t \mapsto\left(t^{2}, t^{2}\right)
$$

- We define simultaneous parametrisations of given maps in order to recover these results:

Proposition (C.C, L. Santocanale)

Let $f, g \in Q_{\vee}(I)$ such that $f \leq g$. There exist parametrisations π_{f}, π_{g} of f and g such that:

- $\pi_{f}(t) \leq_{2} \pi_{g}(t)$ for all $t \in I$,
- there exists an increasing homotopy $\psi_{f, g}: \pi_{f} \Rightarrow \pi_{g}$.
- A characterisation of all congruences of $Q_{\vee}(I)$ akin to that obtained for $\mathcal{L}(n, m)$ via dihomotopy types is not possible...

Dualities

- Priestley duality relates bounded, distributive lattices to topological spaces:
- Given a lattice L, construct a space X whose points are prime filters of L.
- There is a Galois connection
fixed points are $\quad[[-]]: \mathcal{P}\left(L^{2}\right) \rightleftharpoons \mathcal{P}(X): \theta \quad$ fixed points lattice congruences
- We have identified the topology on $X_{J} \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^{2}.

Dualities

- Priestley duality relates bounded, distributive lattices to topological spaces:
- Given a lattice L, construct a space X whose points are prime filters of L.
- There is a Galois connection

$$
[[-]]: \mathcal{P}\left(L^{2}\right) \rightleftharpoons \mathcal{P}(X): \theta
$$

- We have identified the topology on $X_{J} \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^{2}.
- Frame duality relates certain lattices to topological spaces:
- A frame is a complete lattice in which finite meets distribute over arbitrary joins.
- Given such a lattice L, its set X of meet-prime elements are endowed with a topology.

Dualities

- Priestley duality relates bounded, distributive lattices to topological spaces:
- Given a lattice L, construct a space X whose points are prime filters of L.
- There is a Galois connection

$$
[[-]]: \mathcal{P}\left(L^{2}\right) \rightleftharpoons \mathcal{P}(X): \theta
$$

- We have identified the topology on $X_{J} \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^{2}.
- Frame duality relates certain lattices to topological spaces:
- A frame is a complete lattice in which finite meets distribute over arbitrary joins.
- Given such a lattice L, its set X of meet-prime elements are endowed with a topology.
- We have identified which congruences of $Q_{\vee}(I)$ are spatial.

Dualities

- Priestley duality relates bounded, distributive lattices to topological spaces:
- Given a lattice L, construct a space X whose points are prime filters of L.
- There is a Galois connection

$$
[[-]]: \mathcal{P}\left(L^{2}\right) \rightleftharpoons \mathcal{P}(X): \theta
$$

- We have identified the topology on $X_{J} \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^{2}.
- Frame duality relates certain lattices to topological spaces:
- A frame is a complete lattice in which finite meets distribute over arbitrary joins.
- Given such a lattice L, its set X of meet-prime elements are endowed with a topology.
- We have identified which congruences of $Q_{\checkmark}(I)$ are spatial.
- Which congruences are complete?

Thank you

