Binomial lattice congruences and flat dihomotopy types

LambdaComb Days Paris

> LABORATOIRE D'INFORMATIQUE & SYSTÈMES

<u>Cameron Calk</u> & Luigi Santocanale

 23^{rd} of January 2024

Introduction

- **Objective** : Characterise **congruences** of multinomial lattices and their continuous analogues.
 - Lattice theoretic approach to **rewriting**, algebraic semantics of linear **logic**.

- **Objective** : Characterise **congruences** of multinomial lattices and their continuous analogues.
 - Lattice theoretic approach to **rewriting**, algebraic semantics of linear **logic**.
- Inspiration : Geometric interpretation of these lattices.
 - Elements can be seen as **directed paths**.

- **Objective** : Characterise **congruences** of multinomial lattices and their continuous analogues.
 - Lattice theoretic approach to **rewriting**, algebraic semantics of linear **logic**.
- Inspiration : Geometric interpretation of these lattices.
 - Elements can be seen as **directed paths**.
- <u>Idea</u> : Join-prime elements as points **separating** these paths:

- **Objective** : Characterise **congruences** of multinomial lattices and their continuous analogues.
 - Lattice theoretic approach to rewriting, algebraic semantics of linear **logic**.
- Inspiration : Geometric interpretation of these lattices.
 - Elements can be seen as **directed paths**.
- Idea : Join-prime elements as points separating these paths:

• Multinomial lattices were introduced by Bennett & Birkhoff.

• Study of the rewriting system associated to **commutativity** from a lattice-theoretic perspective:

 $abbaa \rightarrow ababa \rightarrow aabba \rightarrow aabab \ \rightarrow aaabb$

- Multinomial lattices were introduced by Bennett & Birkhoff.
 - Study of the rewriting system associated to **commutativity** from a lattice-theoretic perspective:

 $abbaa \rightarrow ababa \rightarrow aabba \rightarrow aabab \ \rightarrow aaabb$

- These lattices and their congruences are strongly related to **concurrency**.
 - The word *abbaa* represents **interleaving actions** of two agents.
 - Multinomial lattice congruences give rise to certain **Parikh** equivalences central to scheduling problems in concurrency.
 - A geometric interpretation closely relates these lattices to a semantics of concurrent systems, namely directed topology.

• <u>Goal</u>: instantiate the link between **dihomotopy** and **binomial** lattice congruences.

- <u>Goal</u>: instantiate the link between **dihomotopy** and **binomial** lattice congruences.
- **Binomial lattices**.
 - Define binomial lattices and describe their congruences.
 - Recall their interpretation as lattices of lattice paths.
 - Describe the **geometric** intuition of their congruences.

- <u>Goal</u>: instantiate the link between **dihomotopy** and **binomial** lattice congruences.
- **Binomial lattices**.
 - Define binomial lattices and describe their congruences.
 - Recall their interpretation as lattices of lattice paths.
 - Describe the **geometric** intuition of their congruences.
- Directed algebraic topology.
 - Recall the notion of directed space, and define **cubical complexes**.
 - Introduce the **binomial complex** and describe the dihomotopy types of its subcomplexes.

- <u>Goal</u>: instantiate the link between **dihomotopy** and **binomial** lattice congruences.
- **Binomial lattices**.
 - Define binomial lattices and describe their congruences.
 - Recall their interpretation as lattices of lattice paths.
 - Describe the **geometric** intuition of their congruences.
- Directed algebraic topology.
 - Recall the notion of directed space, and define **cubical complexes**.
 - Introduce the **binomial complex** and describe the dihomotopy types of its subcomplexes.

• Result: the correspondence.

- Congruences correspond to dihomotopy types of subcomplexes.
- The congruence lattice of a binomial lattice is isomorphic to the lattice of subcomplex dihomotopy types.

- <u>Goal</u>: instantiate the link between **dihomotopy** and **binomial** lattice congruences.
- **Binomial lattices**.
 - Define binomial lattices and describe their congruences.
 - Recall their interpretation as lattices of lattice paths.
 - Describe the **geometric** intuition of their congruences.
- Directed algebraic topology.
 - Recall the notion of directed space, and define **cubical complexes**.
 - Introduce the **binomial complex** and describe the dihomotopy types of its subcomplexes.
- Result: the correspondence.
 - Congruences correspond to dihomotopy types of subcomplexes.
 - The congruence lattice of a binomial lattice is isomorphic to the lattice of subcomplex dihomotopy types.
- We will end by briefly describing ongoing work in the **continuous** setting.

Cameron Calk (LIS)

Binomial lattices and their congruences

Multinomial lattices

- Given $v \in \mathbb{N}^k$, we denote by $\mathcal{L}(v)$ the set of words on the alphabet $\Sigma = \{a_1, \ldots, a_k\}$ such that:
 - w contains v_i occurrences of the letter a_i .

We equip this set with the **partial order** generated by

$$w \le w' \qquad \Longleftrightarrow \qquad \exists u, v \quad \begin{cases} w = u \cdot a_i a_j \cdot v \\ w' = u \cdot a_j a_i \cdot v \end{cases} \quad \text{and } i < j.$$

• The poset $(\mathcal{L}(v), \leq)$ has the structure of a lattice.

Multinomial lattices

- Given $v \in \mathbb{N}^k$, we denote by $\mathcal{L}(v)$ the set of words on the alphabet $\Sigma = \{a_1, \ldots, a_k\}$ such that:
 - w contains v_i occurrences of the letter a_i .

We equip this set with the **partial order** generated by

$$w \le w' \qquad \Longleftrightarrow \qquad \exists u, v \quad \begin{cases} w = u \cdot a_i a_j \cdot v \\ w' = u \cdot a_j a_i \cdot v \end{cases} \quad \text{and } i < j.$$

- The poset $(\mathcal{L}(v), \leq)$ has the structure of a lattice.
- These structures generalize **permutations** to permutations of multisets, called **multipermutations**.
 - Indeed, for $v = (1, \ldots, 1)$, we have $\mathcal{L}(v) = S_k$.
 - The order ≤ generalizes the weak Bruhat order defining the permutohedron.

Binomial lattices

Today, we will focus on **binomial lattices**:

- Given $n, m \in \mathbb{N}$, we denote by $\mathcal{L}(n, m)$ the set of words on the alphabet $\Sigma = \{a, b\}$ such that:
 - w contains n occurrences of the letter a,
 - and m occurrences of the letter b.

which we equip with the **partial order** generated by

$$w \le w' \qquad \Longleftrightarrow \qquad \exists u, v \quad \begin{cases} w = u \cdot ab \cdot v, \\ w' = u \cdot ba \cdot v. \end{cases}$$

• We will henceforth denote $\mathcal{L}(n,m)$ simply by \mathcal{L} .

Proposition (L. Santocanale '05)

 \mathcal{L} is a **distributive** lattice.

As lattices of lattice paths

• The elements of \mathcal{L} are interpreted as **paths** in an *n* by *m* grid:

 $w \in \mathcal{L} \qquad \iff \qquad f_w : [n+m] \to [n] \times [m]$

- an occurrence of *a* is a step in the *x*-axis,
- an occurrence of *b* is a step in the *y*-axis.

As lattices of lattice paths

n.bbaa

• The elements of \mathcal{L} are interpreted as **paths** in an *n* by *m* grid:

$$w \in \mathcal{L} \qquad \iff \qquad f_w : [n+m] \to [n] \times [m]$$

- an occurrence of a is a step in the x-axis,
- an occurrence of *b* is a step in the *y*-axis.

The ordering is recovered as a point-wise ordering on paths.

 $(x,y) \leq_2 (x',y')$ iff $x' \leq x$ and $y \leq y'$,

Then $f \leq g$ if, and only if, $f(k) \leq_2 g(k)$ for all $k \in [n+m]$.

aabab < abbaa

As lattices of lattice paths

• The elements of \mathcal{L} are interpreted as **paths** in an *n* by *m* grid:

 $w \in \mathcal{L} \qquad \iff \qquad f_w : [n+m] \to [n] \times [m]$

- an occurrence of a is a step in the x-axis,
- an occurrence of *b* is a step in the *y*-axis.

The ordering is recovered as a point-wise ordering on paths.

• The join and meet of \mathcal{L} become point-wise maxima and minima:

• Note that these paths are increasing in each coordinate.

Let L be a distributive lattice.

- A congruence on L is an equivalence relation $\theta \subseteq L \times L$ which is compatible with the lattice operations.
- In distributive lattices, congruences are given by **sets** of join-prime elements.
 - $j \in L$ is join-prime if

 $j = u \lor v \qquad \Rightarrow \qquad j = u \text{ or } j = v.$

• The set of join-prime elements of L is denoted by \mathcal{J} .

Let L be a distributive lattice.

- A congruence on L is an equivalence relation $\theta \subseteq L \times L$ which is compatible with the lattice operations.
- In distributive lattices, congruences are given by **sets** of join-prime elements.
 - $j \in L$ is join-prime if

$$j = u \lor v \qquad \Rightarrow \qquad j = u \text{ or } j = v.$$

- The set of join-prime elements of L is denoted by \mathcal{J} .
- Given $S \subseteq \mathcal{J}$, the congruence \equiv_S is defined by:

$$u \equiv_S v \iff orall j \in S, \quad j \leq u \quad iff \quad j \leq v.$$

"U and v are above the same elements of S"

Join-prime elements of $\mathcal{L}(n,m)$

• What are the join-prime elements of \mathcal{L} ?

W=UVU

Join-prime elements of $\mathcal{L}(n,m)$

• What are the join-prime elements of \mathcal{L} ?

• They are the paths that have exactly one **north-east turn**:

Join-prime elements of $\mathcal{L}(n,m)$

• What are the join-prime elements of \mathcal{L} ?

• They are the paths that have exactly one **north-east turn**:

• As words, these are of the form

$$a^k b^l a^{n-k} b^{m-l}$$

They are thus characterized by (k, l), with \cdot

$$\begin{cases} 0 \le k < n \\ 0 < l \le m \end{cases}$$

Cameron Calk (LIS)

Geometric interpretation of congruences

- Let us look at the particular case when $S = \{j\}$.
- Recall that

$$w \equiv_S w' \qquad \Longleftrightarrow \qquad j \le w \quad iff \ j \le w'.$$

• Let (k, l) be the coordinate of the NE turn of j.

- $j \leq u$ means f_u passes "above" (k, l),
- $j \leq v$ means f_v passes "below" (k, l).

Geometric interpretation of congruences

- Let us look at the particular case when $S = \{j\}$.
- Recall that

$$w \equiv_S w' \qquad \Longleftrightarrow \qquad j \le w \quad iff \ j \le w'.$$

• Let (k, l) be the coordinate of the NE turn of j.

- $j \leq u$ means f_u passes "above" (k, l),
- $j \not\leq v$ means f_v passes "below" (k, l).

- The same holds for arbitrary $S \subseteq \mathcal{J}$.
- So, lattice congruences of \mathcal{L} correspond to separating directed paths by squares. This reminds us of **directed homotopy**...

Cameron Calk (LIS)

Congruences & Dihomotopy

Directed homotopy and binomial complexes

Directed topology

• **Directed topology** provides a geometric semantics for **true concurrency**.

Directed topology

- **Directed topology** provides a geometric semantics for **true concurrency**.
- A directed space \mathcal{X} consists of
 - A topological space X,
 - A set of **directed paths** dX.
- We interpret **directed paths** as **executions**.

Directed topology

- **Directed topology** provides a geometric semantics for **true concurrency**.
- A directed space \mathcal{X} consists of
 - A topological space X,
 - A set of **directed paths** dX.
- We interpret **directed paths** as **executions**.
- Today, we focus on a particular class of directed spaces, namely **cubical complexes**. In two dimensions, these consist of:
 - vertices, which may be related by...
 - **edges**, which may form the border of...
 - squares.
- Such two-dimensional complexes model two-agent concurrent

Bob takes/releases the apple whilst Alice says hells. Then Alice takes/releases the apple.

Alice says hells, takes/releases the apple and then Book takes/releases the apple.

• Directed paths are those which increase in each coordinate.

Cameron Calk (LIS)

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the **binomial complex** C:
 - $C_0 := \{ v_{(i,j)} \mid 0 \le i \le n \text{ and } 0 \le j \le m \},$
 - $C_1 := \{ e_{(i_1,j_1),(i_2,j_2)} \mid i_2 = i_1 + 1 \text{ exor } j_2 = j_1 + 1 \},\$
 - $C_2 := \{F_{(k,l)} \mid 0 \le k < n \text{ and } 0 < l \le m\}.$
- This cubical complex corresponds to the n by m grid, with all "holes" filled by squares.

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the **binomial complex** C:
 - $C_0 := \{ v_{(i,j)} \mid 0 \le i \le n \text{ and } 0 \le j \le m \},$
 - $C_1 := \{ e_{(i_1,j_1),(i_2,j_2)} \mid i_2 = i_1 + 1 \text{ exor } j_2 = j_1 + 1 \},$
 - $C_2 := \{ F_{(k,l)} \mid 0 \le k < n \text{ and } 0 < l \le m \}.$
- This cubical complex corresponds to the *n* by *m* grid, with **all** "holes" filled by squares. $({}^{({}_{k},{}^{l})})$
- Note that we encode squares by their **upper-left** corner.

$$(k, 0, 0)$$

$$F_{(k, 0)}$$
 $(k-1, 0, 0)$
 $(k-1, 0, 0)$

Binomial complexes

- In particular, for $n, m \in \mathbb{N}$, we consider the **binomial complex** C:
 - $C_0 := \{ v_{(i,j)} \mid 0 \le i \le n \text{ and } 0 \le j \le m \},\$
 - $C_1 := \{e_{(i_1,j_1),(i_2,j_2)} \mid i_2 = i_1 + 1 \text{ exor } j_2 = j_1 + 1\},$ $C_2 := \{F_{(k,l)} \mid 0 \le k < n \text{ and } 0 < l \le m\}.$
- This cubical complex corresponds to the n by m grid, with all "holes" filled by squares.
- Note that we encode squares by their **upper-left** corner.

$$(k, l, l)$$
 $F_{(k, l)}$ $(k+1, l)$
 $(k, l-1)$ $(k-1, l-1)$

• Given $S \subseteq C_2$, we denote by C^S the cubical complex with the same set of vertices and edges, but in which $C_2^S := C_2 \setminus S$.

 $S = \{(0,2), (2,1)\}$

 $C^{s}(3,z)$

Cubical homotopy

• Given a concurrent system, which executions produce the same output?

Cubical homotopy

• Given a concurrent system, which executions produce the same output?

• We say that paths are **dihomotopic** if we can "slide" one onto the other through a sequence of directed paths, and if they start and end at the same point.

Cubical homotopy

• Given a concurrent system, which executions produce the same output?

- We say that paths are **dihomotopic** if we can "slide" one onto the other through a sequence of directed paths, and if they start and end at the same point.
- In a cubical complex Γ , it suffices to consider
 - combinatorial dipaths, *i.e.* those which are contained in the set of adves Γ
 - in the set of edges Γ_1 ,
 - combinatorial homotopy,

i.e. dipaths are equivalent when the space between them is filled by squares in Γ_2 .

Dihomotopy quotients

• The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\longleftrightarrow}$, is an **equivalence relation** on combinatorial dipaths with the same beginning- and end-points.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\longleftrightarrow}$, is an **equivalence relation** on combinatorial dipaths with the same beginning- and end-points.
- Given the binomial complex C, we denote by $\overrightarrow{\mathbb{P}}(C)$ the set of combinatorial dipaths from (0,0) to (n,m).
- Note that for any $S \subseteq C_2$, we have $\overrightarrow{\mathbb{P}}(C) = \overrightarrow{\mathbb{P}}(C^S)$.

Dihomotopy quotients

- The combinatorial dihomotopy relation, denoted by $\stackrel{*}{\longleftrightarrow}$, is an **equivalence relation** on combinatorial dipaths with the same beginning- and end-points.
- Given the binomial complex C, we denote by $\overrightarrow{\mathbb{P}}(C)$ the set of combinatorial dipaths from (0,0) to (n,m).
- Note that for any $S \subseteq C_2$, we have $\overrightarrow{\mathbb{P}}(C) = \overrightarrow{\mathbb{P}}(C^S)$.
- We are interested in the **quotient** by combinatorial dihomotopy:

$$\overrightarrow{\mathbb{P}}(C^S) / \underset{\longleftrightarrow}{*}.$$

• In the particular case in which $S = \{F_{(k,l)}\}...$

Cameron Calk (LIS)

The correspondence

Lattice paths

• Elements of \mathcal{L} . • Elements of $\overrightarrow{\mathbb{P}}(C^S)$.

Lattice paths

• Join prime elements of \mathcal{L} . • Squares in C.

 $\mathcal{J} \simeq \{(k,l) \mid 0 \leq k < n \text{ and } 0 < l \leq m \} \simeq C_2$

• Elements of \mathcal{L} . • Elements of $\overrightarrow{\mathbb{P}}(C^S)$.

Lattice paths

• Join prime elements of \mathcal{L} . • Squares in C.

 $\mathcal{J} \simeq \{ (k,l) \mid 0 \leq k < n \text{ and } 0 < l \leq m \} \simeq C_2$

• Congruences \equiv_S of $\mathcal{L}(n,m)$ • Subcomplexes $C^S(n,m)$.

Results

• Using the point-wise order induced on paths in C, we have that $\mathcal{L} \simeq \overrightarrow{\mathbb{P}}(C^S)$ as lattices.

 $(x,y) \leq_{2} (x',y')$ iff $x' \leq x$ and $y \leq y'$

Results

- Using the point-wise order induced on paths in C, we have that $\mathcal{L} \simeq \overrightarrow{\mathbb{P}}(C^S)$ as lattices.
- Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any $S \subseteq \mathcal{J} \simeq C_2$, we have the lattice isomorphism

$$\mathcal{L}(n,m) /_{\equiv_S} \cong \overrightarrow{\mathbb{P}}(C^S) /_{\Longleftrightarrow}.$$

Results

- Using the point-wise order induced on paths in C, we have that $\mathcal{L} \simeq \overrightarrow{\mathbb{P}}(C^S)$ as lattices.
- Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition

For any $S \subseteq \mathcal{J} \simeq C_2$, we have the lattice isomorphism

$$\mathcal{L}(n,m) /_{\equiv_S} \cong \overrightarrow{\mathbb{P}}(C^S) /_{\Longleftrightarrow}.$$

• Moreover, the maps induced by inclusions $S' \subseteq S$ on each side correspond, *i.e.* the following maps coincide:

$$\begin{array}{ccc} q_{S',S} : \overrightarrow{\mathbb{P}}(C^{S'}) / \underset{\longleftrightarrow}{\ast} \longrightarrow \overrightarrow{\mathbb{P}}(C^{S}) / \underset{\varphi_{S',S}}{\ast} \\ p_{S',S} : \mathcal{L}(n,m) / S' \longrightarrow \mathcal{L}(n,m) / S. \end{array}$$

Ongoing work

Multinomial lattice quotients

• We have established a concrete link between directed algebraic topology and binomial lattices.

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}(v_1, \ldots, v_n)$, for $n \geq 3...$
 - $\mathcal{L}(v)$ is not distributive.
 - Because of this, its congruences are not as simple.
 - Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}(v_1, \ldots, v_n)$, for $n \geq 3...$
 - $\mathcal{L}(v)$ is not distributive.
 - Because of this, its congruences are not as simple.
 - Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.
- On the geometric side...
 - Join-dependency means that adding squares is no longer "free" in the sense that adding a square may necessitate adding parallel squares.
 - We can also consider higher homotopy groups what is their interpretation?

- We have established a concrete link between directed algebraic topology and binomial lattices.
- In the case of multinomial lattices $\mathcal{L}(v_1, \ldots, v_n)$, for $n \geq 3...$
 - $\mathcal{L}(v)$ is not distributive.
 - Because of this, its congruences are not as simple.
 - Indeed, here congruences correspond to subsets $S \subseteq \mathcal{J}$ which are closed under the join-dependency relation.
- On the geometric side...
 - Join-dependency means that adding squares is no longer "free" in the sense that adding a square may necessitate adding parallel squares.
 - We can also consider higher homotopy groups what is their interpretation?
- In this direction, we are studying the higher dimensional automata associated to the multinomial complexes.

• Let $Q_{\vee}(I)$ denote the set of order preserving maps

 $f: I \to I$ s.t. $f(\bigvee X) = \bigvee f(X),$

equipped with the point-wise ordering \leq .

Proposition (M.J. Gouveia, L. Santocanale '18)

- The structure $(Q_{\vee}(I), \leq)$ is a completely distributive lattice.
- With composition ◦, the lattice Q_∨(I) is a ***-autonomous quantale which moreover satisfies the *mix rule*.

• Let $Q_{\vee}(I)$ denote the set of order preserving maps

 $f: I \to I$ s.t. $f(\bigvee X) = \bigvee f(X),$

equipped with the point-wise ordering \leq .

• Let $Q_{\vee}(I)$ denote the set of order preserving maps

 $f: I \to I$ s.t. $f(\bigvee X) = \bigvee f(X),$

23/26

equipped with the point-wise ordering \leq .

• Let $Q_{\vee}(I)$ denote the set of order preserving maps

 $f: I \to I$ s.t. $f(\bigvee X) = \bigvee f(X),$

equipped with the point-wise ordering \leq .

- In the discrete case, paths $f[n+m] \rightarrow [n] \times [m]$ are parametrised by **arc-length**.
- We can recover the ordering on \mathcal{L} in two ways:
 - As the **point-wise order** inherited from

 $(x,y) \leq_2 (x',y')$ iff $x' \leq x$ and $y \leq y'$,

• or as that generated by the elementary cubical homotopy relation \rightsquigarrow : $\exists F \in C_2$

$$\chi_1 \longrightarrow \chi_2 \iff$$

• In the continuous case, **parametrisation** is an obstruction to this characterisation.

$$t \mapsto (t, t)$$
 $t \mapsto (t^2, t^2)$

• In the continuous case, **parametrisation** is an obstruction to this characterisation.

$$t \mapsto (t, t)$$
 $t \mapsto (t^2, t^2)$

• We define **simultaneous parametrisations** of given maps in order to recover these results:

• In the continuous case, **parametrisation** is an obstruction to this characterisation.

$$t \mapsto (t, t)$$
 $t \mapsto (t^2, t^2)$

• We define **simultaneous parametrisations** of given maps in order to recover these results:

Proposition (C.C, L. Santocanale)

Let $f, g \in Q_{\vee}(I)$ such that $f \leq g$. There exist parametrisations π_f, π_g of f and g such that:

• $\pi_f(t) \leq_2 \pi_g(t)$ for all $t \in I$,

• there exists an *increasing* homotopy $\psi_{f,g} : \pi_f \Rightarrow \pi_g$.

• In the continuous case, **parametrisation** is an obstruction to this characterisation.

$$t \mapsto (t, t)$$
 $t \mapsto (t^2, t^2)$

• We define **simultaneous parametrisations** of given maps in order to recover these results:

Proposition (C.C, L. Santocanale)

Let $f, g \in Q_{\vee}(I)$ such that $f \leq g$. There exist parametrisations π_f, π_g of f and g such that:

- $\pi_f(t) \leq_2 \pi_g(t)$ for all $t \in I$,
- there exists an *increasing* homotopy $\psi_{f,g} : \pi_f \Rightarrow \pi_g$.
- A characterisation of all congruences of $Q_{\vee}(I)$ akin to that obtained for $\mathcal{L}(n,m)$ via dihomotopy types is not possible...

Cameron Calk (LIS)

Congruences & Dihomotopy

- **Priestley duality** relates bounded, distributive lattices to topological spaces:
 - Given a lattice *L*, construct a space *X* whose points are **prime** filters of *L*.
 - There is a Galois connection

fixed points are $[[-]]: \mathcal{P}(L^2) \rightleftharpoons \mathcal{P}(X): \theta$ fixed points lattice congruences

• We have identified the topology on $X_J \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^2 .

- **Priestley duality** relates bounded, distributive lattices to topological spaces:
 - Given a lattice *L*, construct a space *X* whose points are **prime** filters of *L*.
 - There is a Galois connection

$$[[-]]: \mathcal{P}(L^2) \rightleftharpoons \mathcal{P}(X): \theta$$

- We have identified the topology on $X_J \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^2 .
- Frame duality relates certain lattices to topological spaces:
 - A **frame** is a complete lattice in which finite meets distribute over arbitrary joins.
 - Given such a lattice L, its set X of meet-prime elements are endowed with a topology.

- **Priestley duality** relates bounded, distributive lattices to topological spaces:
 - Given a lattice *L*, construct a space *X* whose points are **prime** filters of *L*.
 - There is a Galois connection

$$[[-]]: \mathcal{P}(L^2) \rightleftharpoons \mathcal{P}(X): \theta$$

- We have identified the topology on $X_J \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^2 .
- Frame duality relates certain lattices to topological spaces:
 - A **frame** is a complete lattice in which finite meets distribute over arbitrary joins.
 - Given such a lattice L, its set X of meet-prime elements are endowed with a topology.
 - We have identified which congruences of $Q_{\vee}(I)$ are spatial.

- **Priestley duality** relates bounded, distributive lattices to topological spaces:
 - Given a lattice *L*, construct a space *X* whose points are **prime** filters of *L*.
 - There is a Galois connection

$$[[-]]: \mathcal{P}(L^2) \rightleftharpoons \mathcal{P}(X): \theta$$

• We have identified the topology on $X_J \subset X$, the set of principal prime filters, as a directed-suprema closure topology on I^2 .

• Frame duality relates certain lattices to topological spaces:

- A **frame** is a complete lattice in which finite meets distribute over arbitrary joins.
- Given such a lattice L, its set X of meet-prime elements are endowed with a topology.
- We have identified which congruences of $Q_{\vee}(I)$ are spatial.
- Which congruences are **complete**?

Thank you