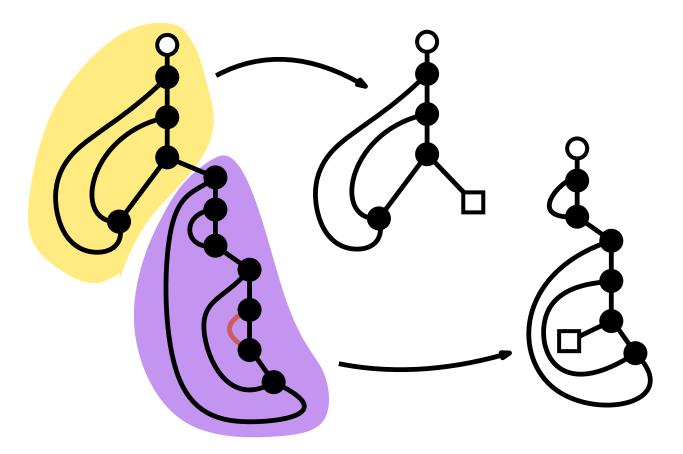
A novel interpretation of the planar Goulden-Jackson recurrence using the planar λ -calculus

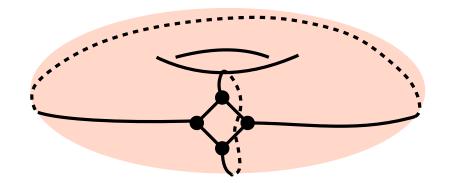


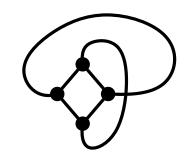
Alexandros Singh (LIASD, Paris 8), Noam Zeilberger (PARTOUT, LIX) Wednesday, January 24th 2023 Journées LamdaComb 2024

The plan

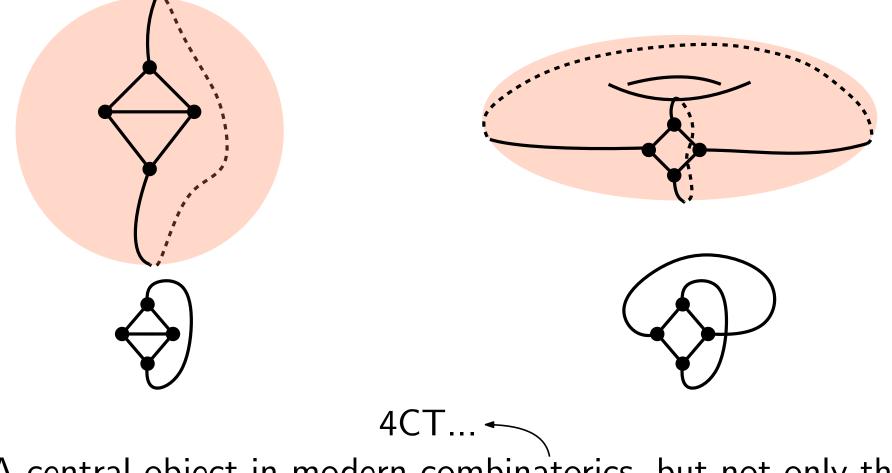
- \bullet A brief overview of maps and the $\lambda\text{-calculus}$
- Context and related results
- The planar λ -calculus
- Goulden-Jackson recurrence for planar maps
- Closing remarks

What are maps?



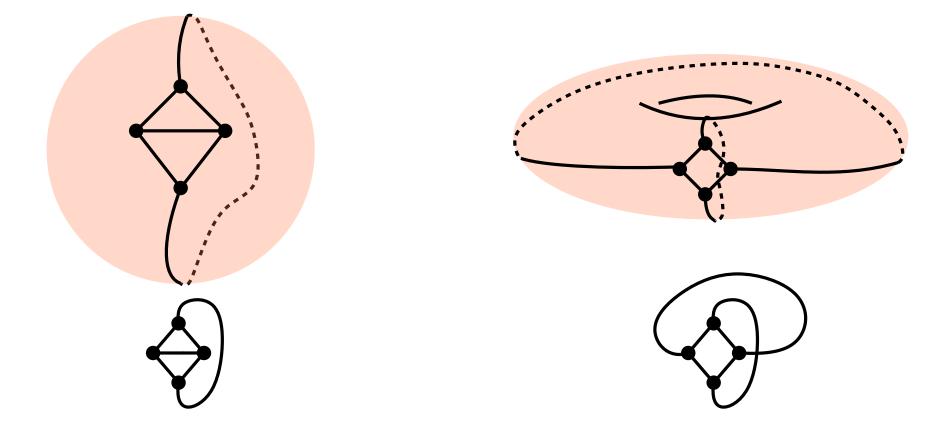


What are maps?



• A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics... scaling limits... matrix integrals, Witten's conjecture, ...

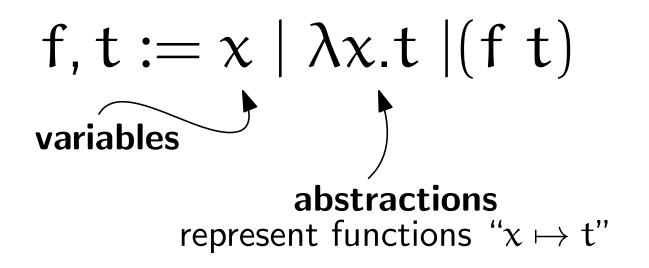
What are maps?

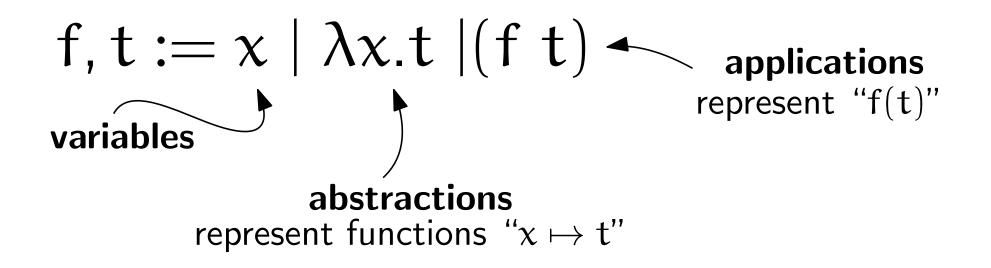


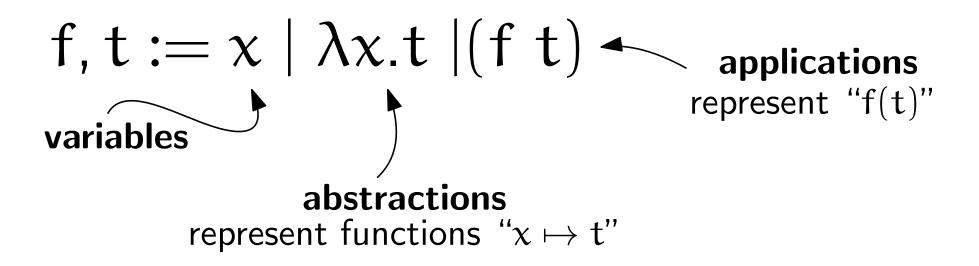
- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics...
- Their enumeration was pioneered by Tutte in the 60s, as part of his approach to the four colour theorem.

$f, t := x \mid \lambda x.t \mid (f t)$

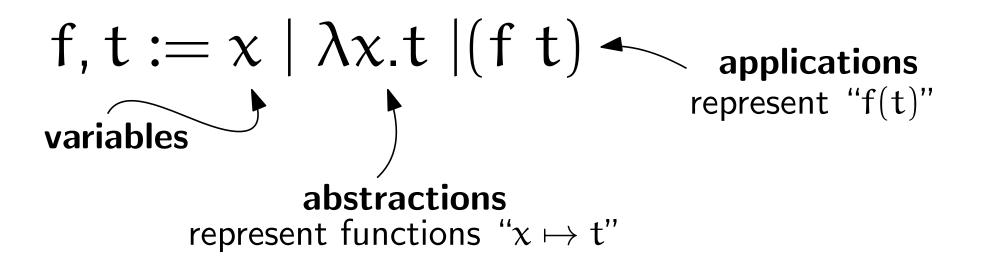
f, t := $x \mid \lambda x.t \mid (f t)$ variables



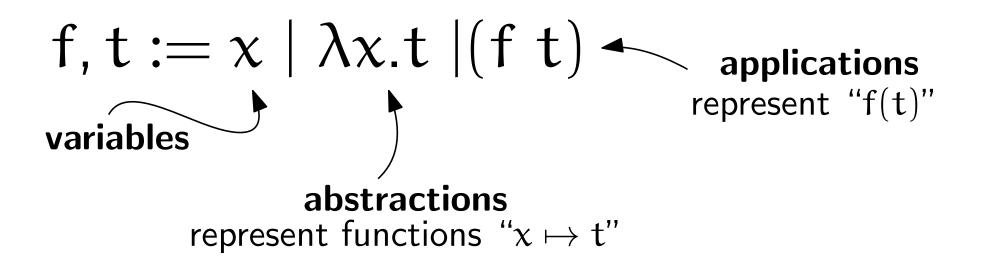




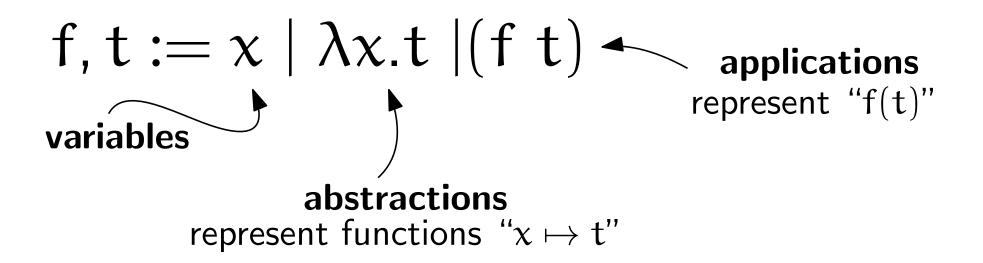
•Introduced by Church around 1928, developed together with Kleene, Rosser.



- •Introduced by Church around 1928, developed together with Kleene, Rosser.
- •Equivalent to: Herbrand-Gödel recursive functions (Kleene), Turing machines (Turing).



- •Introduced by Church around 1928, developed together with Kleene, Rosser.
- •Equivalent to: Herbrand-Gödel recursive functions (Kleene), Turing machines (Turing).
- •Church-Turing thesis: "effectively computable" = definable in λ -calculus (or Turing machines, or recursive functions).



- •Introduced by Church around 1928, developed together with Kleene, Rosser.
- •Equivalent to: Herbrand-Gödel recursive functions (Kleene), Turing machines (Turing).
- •Church-Turing thesis: "effectively computable" = definable in λ -calculus (or Turing machines, or recursive functions).
- •In its typed form: functional programming, proof theory,...

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms
 In the same year, together with Gittenberger, they study: BCI(p) terms (each bound variable appears p times) general closed λ-terms

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms
 In the same year, together with Gittenberger, they study: BCI(p) terms (each bound variable appears p times) general closed λ-terms

In 2014, Zeilberger and Giorgetti describe a bijection:
 rooted planar maps ↔ normal planar lambda terms

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ -terms

• In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps \leftrightarrow normal planar lambda terms

Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ -terms

• In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps \leftrightarrow normal planar lambda terms

Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

• In 2015, Zeilberger advocates for

"linear lambda terms as invariants of rooted trivalent maps"

Some results $\bullet = w$. Bodini, Zeilberger $\bullet = \bullet +$ Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):

Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Bridges in trivalent maps and closed subterms in closed linear terms
 Limit law: Poisson(1)

 Vertices of degree 1 in (1,3)-valent maps and free variables in open linear terms

Limit law: $\mathcal{N}((2n)^{1/3}, (2n)^{1/3})$

Patterns in trivalent maps and redices in closed linear terms

Asymptotic mean and variance: $\frac{\pi}{24}$

Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11n}{240}$

Some results $\bullet = w$. Bodini, Zeilberger $\bullet = \bullet +$ Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):

Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Bridges in trivalent maps and closed subterms in closed linear terms
 Limit law: Poisson(1)

 Vertices of degree 1 in (1,3)-valent maps and free variables in open linear terms

Limit law: $\mathcal{N}((2n)^{1/3}, (2n)^{1/3})$

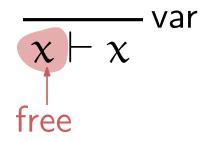
- Patterns in trivalent maps and redices in closed linear terms Asymptotic mean and variance: $\frac{n}{24}$
- Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11n}{240}$

Similar results for planar maps/terms, plus: a new interpretation of a recurrence of Goulden and Jackson.

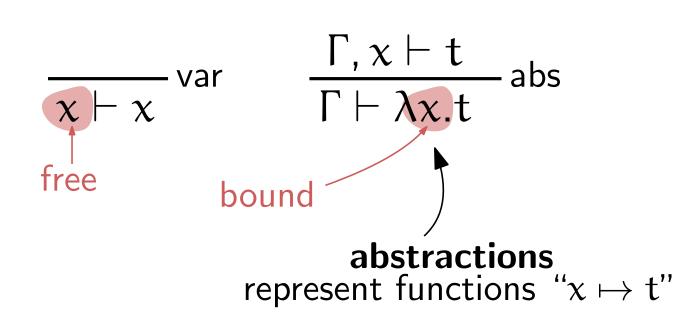
The planar λ -calculus - formally

Inductive definition (keeping track of variables not "captured" by a λ):



The planar λ -calculus - formally

Inductive definition (keeping track of variables not "captured" by a λ):



The planar λ -calculus - formally

Inductive definition (keeping track of variables not "captured" by a λ):

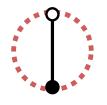
$$\begin{array}{c} \overbrace{\mathbf{x}\vdash\mathbf{x}} \text{var} & \overbrace{\Gamma\vdash\mathbf{x},\mathbf{x}\vdash\mathbf{t}}^{\Gamma,\mathbf{x}\vdash\mathbf{t}} \text{abs} \\ \overbrace{\mathbf{free}}^{\text{disjoint}} & \overbrace{\Gamma\vdash\mathbf{f} \quad \bigtriangleup\vdash\mathbf{t}}^{\Gamma,\mathbf{x}\vdash\mathbf{t}} \text{app} \\ \hline{\mathbf{bound}} & \overbrace{\mathbf{bound}}^{\text{abstractions}} \\ \text{represent functions "} x \mapsto t" \\ \hline{\text{applications}} \\ \text{represent "f(t)"} \end{array}$$

Decomposing planar trivalent maps

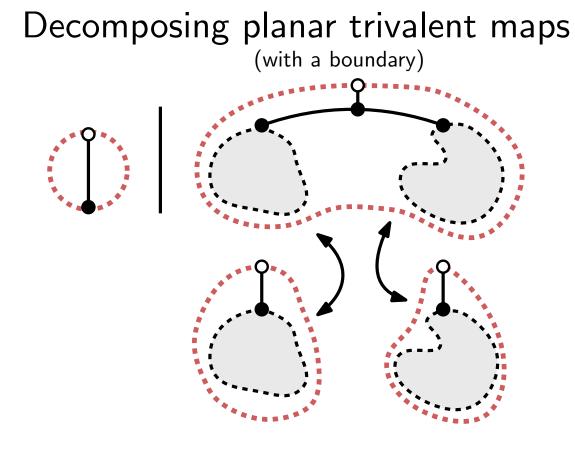
(with a boundary)

Decomposing planar trivalent maps

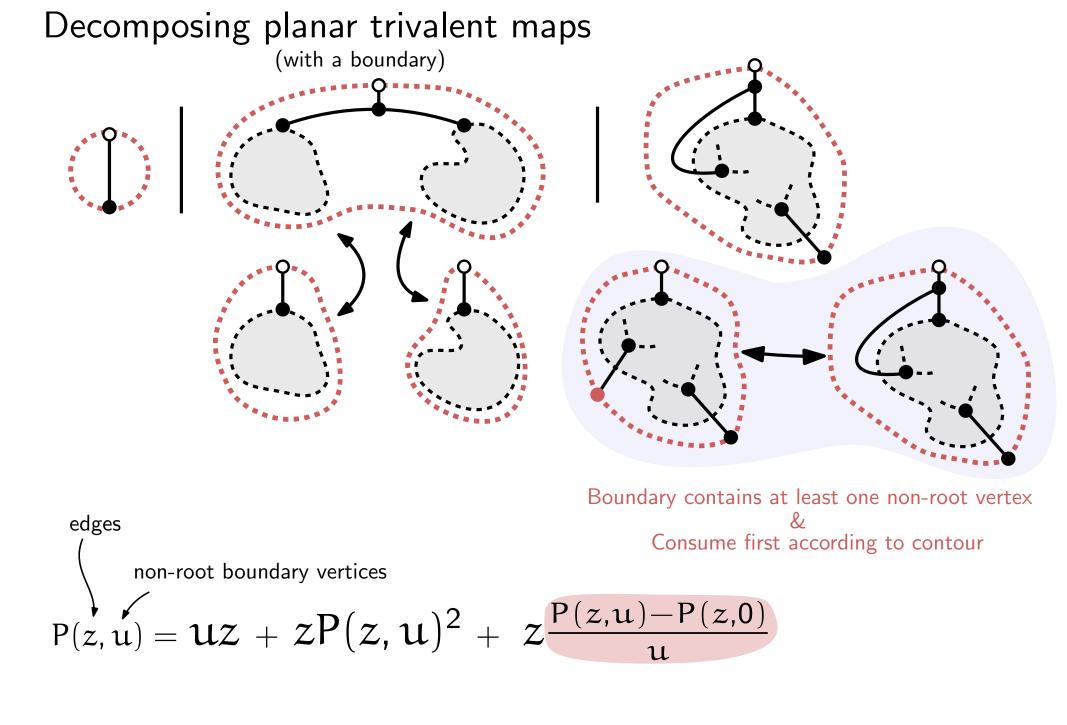
(with a boundary)

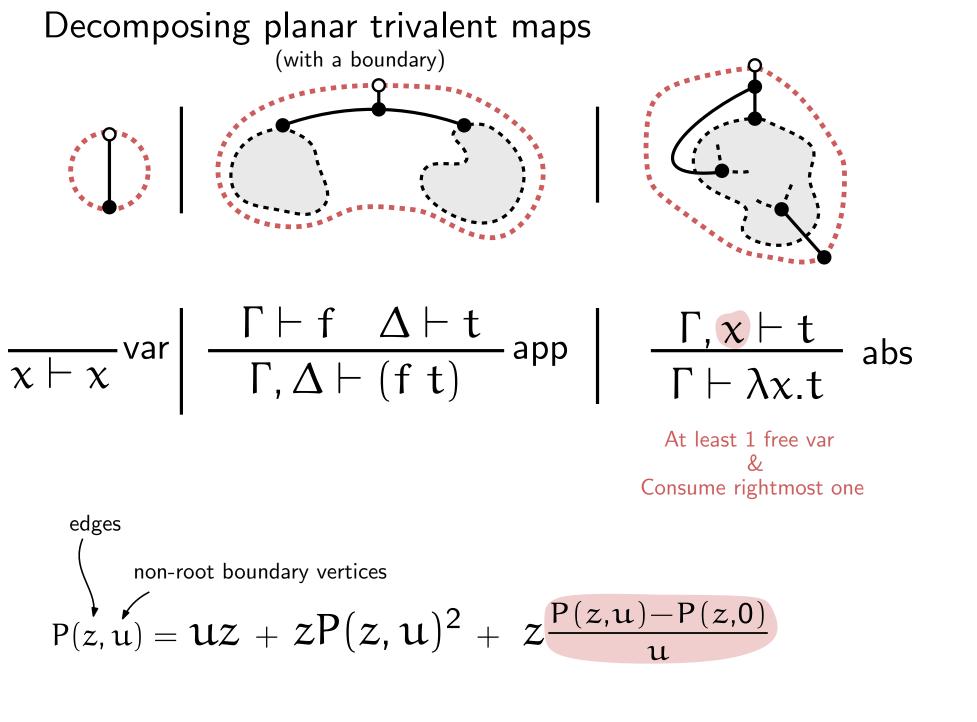


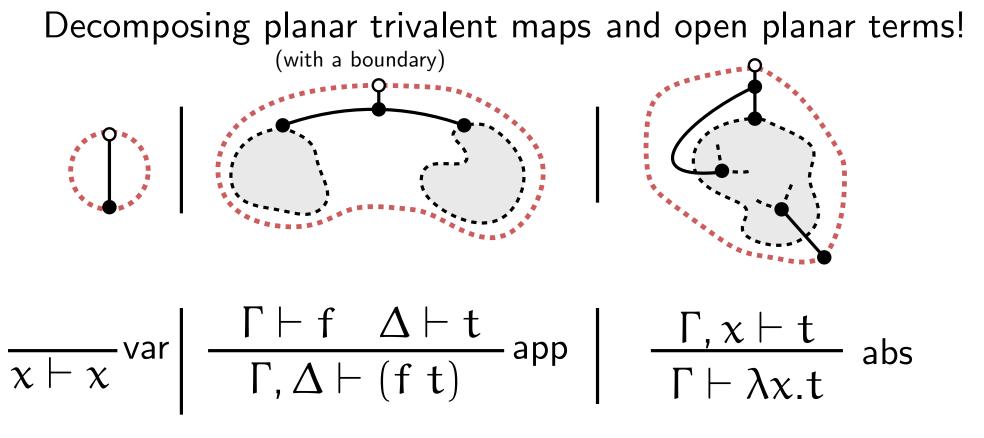
edges non-root boundary vertices P(z, u) = UZ



edges non-root boundary vertices $P(z, u) = uz + zP(z, u)^2$



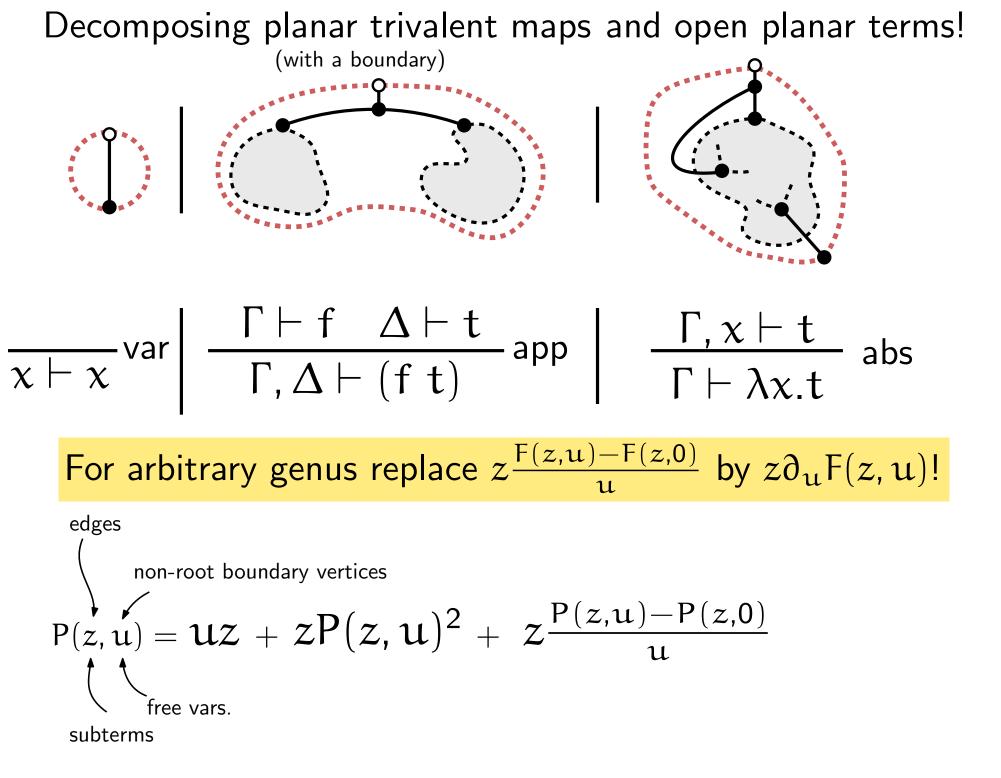




edges
non-root boundary vertices

$$P(z, u) = uz + zP(z, u)^2 + z\frac{P(z, u) - P(z, 0)}{u}$$

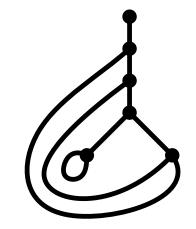
free vars.
subterms



●Restricting the previous bijection we have:
 closed planar terms ⇔ rooted trivalent planar maps

 \leftrightarrow

 $\lambda x.\lambda y.((x y) (\lambda z.z))$

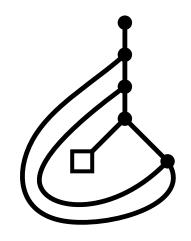


Restricting the previous bijection we have:
 closed planar terms ⇔ rooted trivalent planar maps

$$\lambda x. \lambda y. ((x y) (\lambda z. z)) \leftrightarrow$$

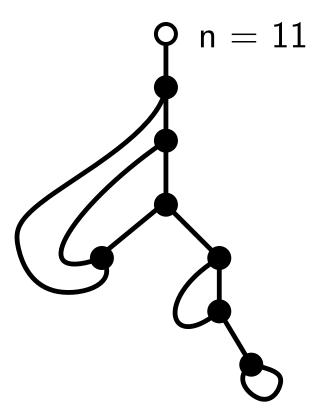
•We can also consider contexts:

$$\lambda x.\lambda y.((x y) \Box) \qquad \leftrightarrow$$



Lemma

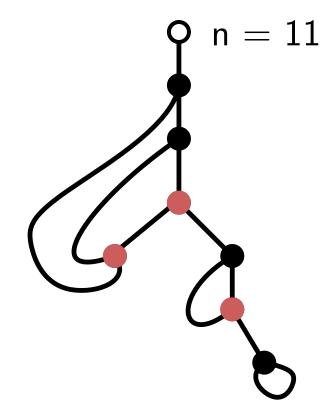
A closed planar term with $n = 3k + 2, k \in \mathbb{N}$, subterms has:



Lemma

A closed planar term with $n = 3k + 2, k \in \mathbb{N}$, subterms has:

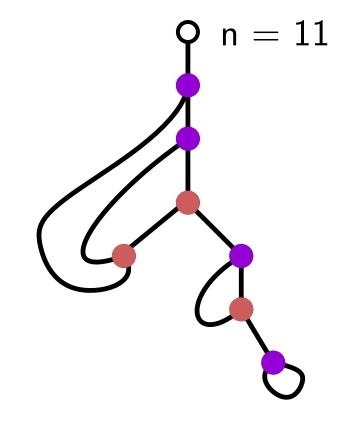
• k applications



Lemma

A closed planar term with $n = 3k + 2, k \in \mathbb{N}$, subterms has:

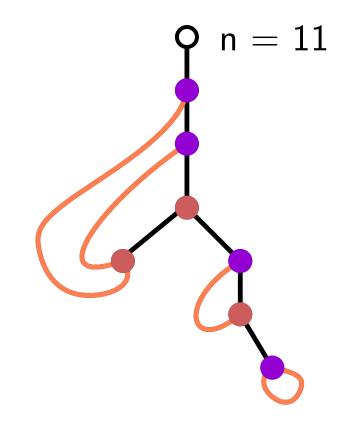
- k applications
- k + 1 abstractions



Lemma

A closed planar term with $n = 3k + 2, k \in \mathbb{N}$, subterms has:

- k applications
- k + 1 abstractions
- k + 1 variables



The planar Goulden-Jackson recurrence

In [GJ08], Goulden and Jackson give the following recurrence for F(k, g) = # of rooted triangulations of k faces and genus g: $F(k, g) = \frac{f(k,g)}{3k+2}, \text{ for } (k,g) \in S \setminus \{(-1,0), (0,0)\},$ where S = {(k, g) $\in \mathbb{Z}^2 \mid k \ge -1, 0 \le g \le \frac{k+1}{2}$ } and f(k, g) is f(-1,0) = $\frac{1}{2}$ f(k, g) = 0, for (k, g) \notin S. f(k, g) = $\frac{4(3k+2)}{k+1}$ (k(3k-2)f(k-2, g-1) + $\sum f(i, h)f(j, \ell)$),

with the sum being taken over all pairs $(i, h) \in S$, $(j, \ell) \in S$ such that i + j = k - 2 and $h + \ell = g$.

using the KP hierarchy!

In [GJ08], Goulden and Jackson give the following recurrence for F(k, g) = # of rooted triangulations of k faces and genus g:

$$F(k, g) = \frac{f(k, g)}{3k+2}$$
, for $(k, g) \in S \setminus \{(-1, 0), (0, 0)\}$,

where $S=\{(k,g)\in\mathbb{Z}^2\mid k\geqslant -1, 0\leqslant g\leqslant \frac{k+1}{2}\}$ and f(k,g) is

$$\begin{split} &f(-1,0) = \frac{1}{2} \\ &f(k,g) = 0, \text{ for } (k,g) \not\in S. \\ &f(k,g) = \frac{4(3k+2)}{k+1} \left(k(3k-2)f(k-2,g-1) + \sum f(i,h)f(j,\ell) \right), \end{split}$$

with the sum being taken over all pairs $(i, h) \in S$, $(j, \ell) \in S$ such that i + j = k - 2 and $h + \ell = g$.

Open problem: give a combinatorial interpretation of the above. Planar case resolved by Baptiste Louf [B19].

Reparameterising and setting g = 0, we have:

$$u(0) = 1$$

$$u(k+1) = 2(3k+2)p(k)$$

$$(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$$

where u(k) counts contexts with 2k vertices and p(k) counts:

Reparameterising and setting g = 0, we have:

$$u(0) = 1$$

$$u(k+1) = 2(3k+2)p(k)$$

$$(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$$

where u(k) counts contexts with 2k vertices and p(k) counts: •rooted planar triangulations with 2k faces

Reparameterising and setting g = 0, we have:

$$u(0) = 1$$

$$u(k+1) = 2(3k+2)p(k)$$

$$(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$$

where u(k) counts contexts with 2k vertices and p(k) counts: •rooted planar triangulations with 2k faces \frown

duality

rooted planar trivalent maps with 2k vertices

To keep in mind: $3k + 2 \text{ edges} \leftrightarrow 2k \text{ vertices}$

Reparameterising and setting g = 0, we have:

$$u(0) = 1$$

$$u(k+1) = 2(3k+2)p(k)$$

$$(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$$

where u(k) counts contexts with 2k vertices and p(k) counts: •rooted planar triangulations with 2k faces \frown

rooted planar trivalent maps with 2k vertices

•closed planar terms with k applications

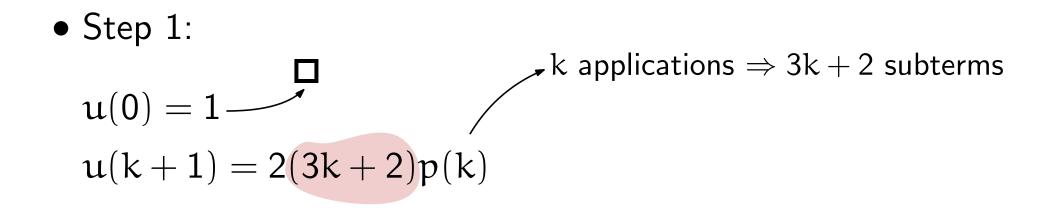
To keep in mind: $3k + 2 \text{ edges} \leftrightarrow 2k \text{ vertices}$ $3k + 2 \text{ subterms} \leftrightarrow k \text{ applications}$ duality

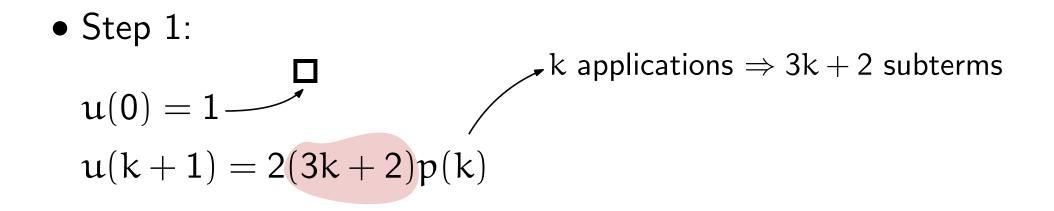
bijection

• Step 1:

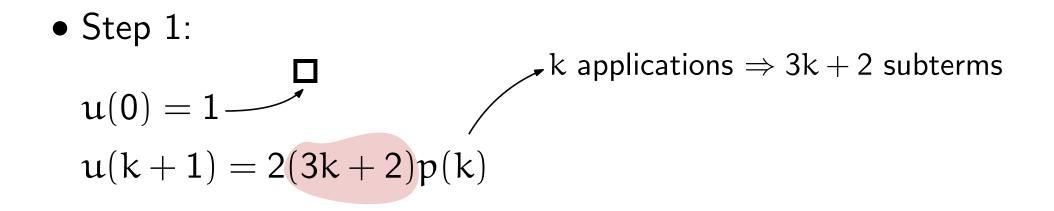
• Step 1:

u(0) = 1u(k+1) = 2(3k+2)p(k)

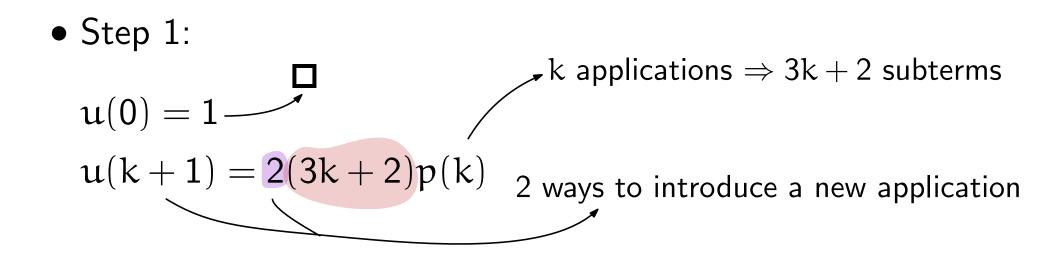




$\lambda x.\lambda y.(x y)$

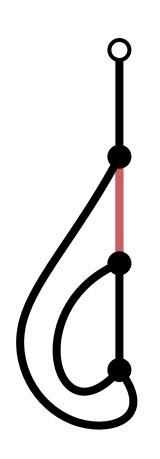


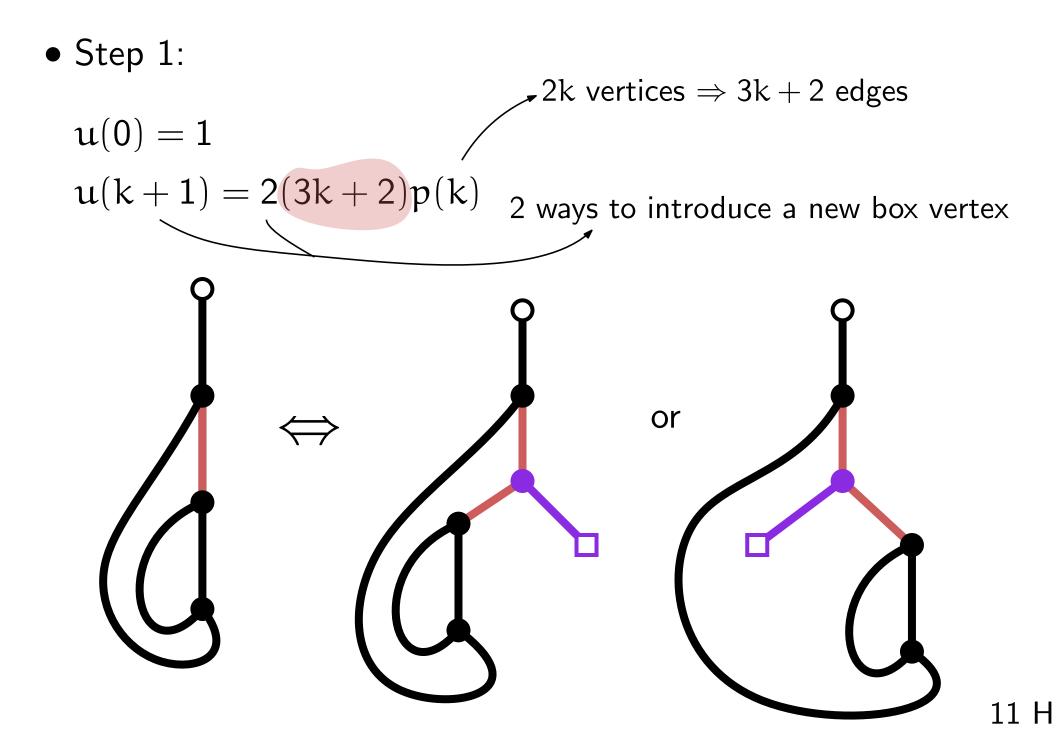
 $\lambda x \cdot \lambda y \cdot (x \cdot y)$



 $\lambda x.\lambda y.(\Box (x y))$ $\lambda x.\lambda y.(x y) \Leftrightarrow \text{ or }$ $\lambda x.\lambda y.((x y) \Box)$

• Step 1: u(0) = 1 u(k+1) = 2(3k+2)p(k)• Step 1: 2k vertices $\Rightarrow 3k+2$ edges





• Step 2:

$$(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$$

• Step 2:
•
$$k$$
 applications \Rightarrow $(k+1)$ variables
 $(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$

$\lambda x.\lambda y.(\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w)(x y)$

• Step 2:
• k applications
$$\Rightarrow$$
 (k+1) variables
(k+1)p(k) = $\sum_{i=0}^{n} u(i)u(n-i)$

split var-pointed term into two contexts

 $\lambda x.\lambda y.(\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w)(x y)$

• Step 2:

$$(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$$
split var-pointed term into two contexts
minimal closed subterm that contains v
 $\lambda x.\lambda y.(\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w)(x y)$
(always starts with λ !)

 $\lambda x.\lambda y.\Box(x y)$

 $\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w$

• Step 2:
•
$$k$$
 applications \Rightarrow $(k + 1)$ variables
• $(k + 1)p(k) = \sum_{i=0}^{n} u(i)u(n - i)$
• split var-pointed term into two contexts
• minimal closed subterm that contains v
(always starts with λ !)
 $\lambda x.\lambda y.(\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w)(x y)$

$\lambda x.\lambda y.\Box(x y)$

 $\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w$

• Step 2:

$$(k+1)p(k) = \sum_{i=0}^{n} u(i)u(n-i)$$
split var-pointed term into two contexts
minimal closed subterm that contains v
 $\lambda x.\lambda y.(\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w)(x y)$

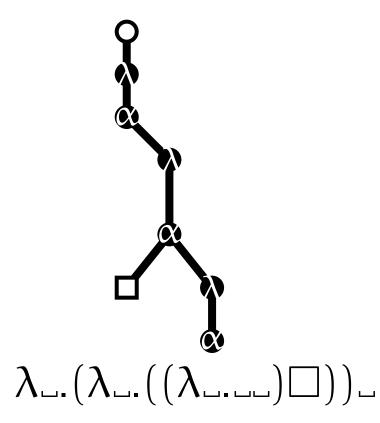
$\lambda x.\lambda y.\Box(x y)$

 $\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w$ not a context!

• Step 2:
• k applications
$$\Rightarrow$$
 (k+1) variables
(k+1)p(k) = $\sum_{i=0}^{n} u(i)u(n-i)$

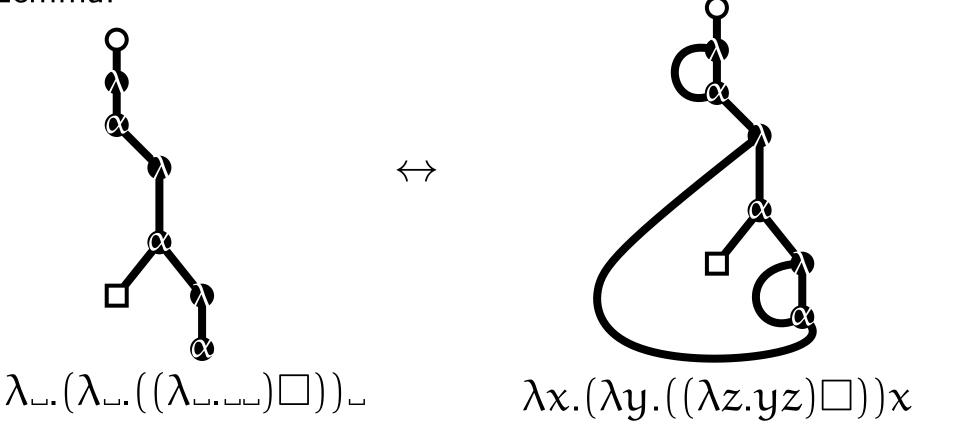
split var-pointed term into two contexts

Lemma:



• Step 2: • k applications \Rightarrow (k + 1) variables (k+1)p(k) = $\sum_{i=0}^{n} u(i)u(n-i)$

split var-pointed term into two contexts



$\lambda x.\lambda y.\Box(x y)$

$$\frac{\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w}{\text{not a context!}} \longrightarrow \lambda_{u}.\lambda_{u}.(\lambda_{u}.\lambda_{u}.u u) u$$

• Step 2:
• k applications
$$\Rightarrow$$
 (k + 1) variables
(k + 1)p(k) = $\sum_{i=0}^{n} u(i)u(n - i)$
split var-pointed term into two contexts
• minimal closed subterm that contains v
(always starts with λ !)
 $\lambda x.\lambda y.(\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w)(x y)$

$\lambda x.\lambda y.\Box(x y)$

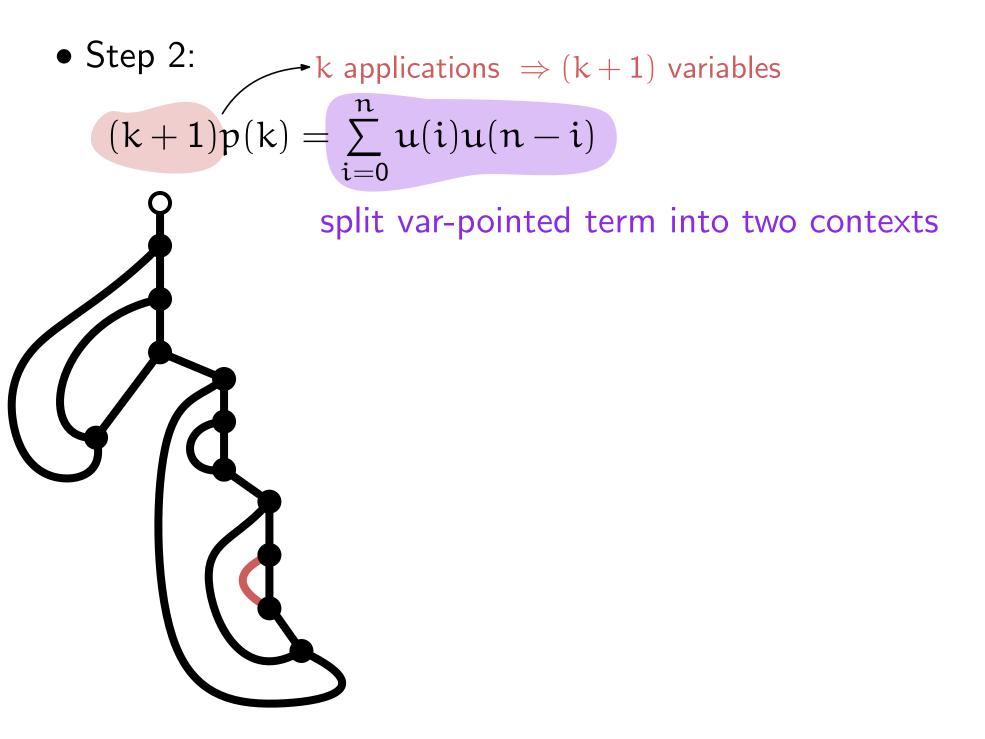
 $\begin{array}{ccc} \lambda z.\lambda w.(\lambda u.\lambda v.z u v) w & \longrightarrow \lambda \sqcup \lambda \sqcup (\lambda \sqcup \lambda \sqcup \sqcup \Box) \sqcup \\ & \text{not a context!} & \longrightarrow \lambda \sqcup (\lambda \sqcup \lambda \sqcup \sqcup \Box) \sqcup \end{array}$

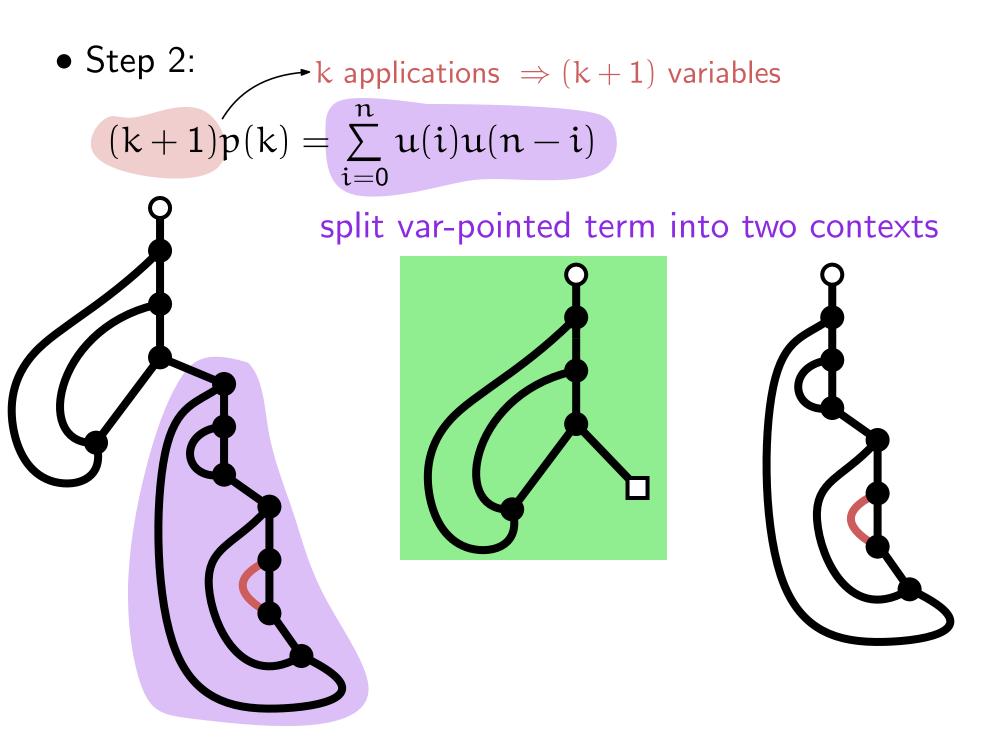
• Step 2:
• k applications
$$\Rightarrow$$
 (k + 1) variables
(k + 1)p(k) = $\sum_{i=0}^{n} u(i)u(n - i)$
split var-pointed term into two contexts
• minimal closed subterm that contains v
(always starts with λ !)
 $\lambda x.\lambda y.(\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w)(x y)$

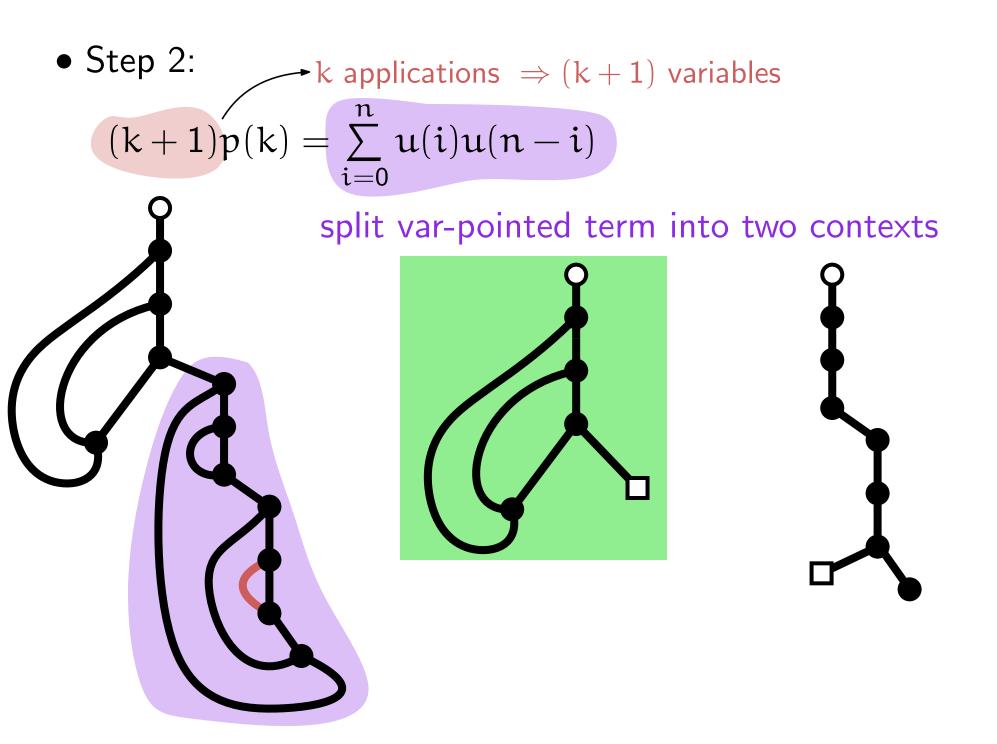
$\lambda x.\lambda y.\Box(x y)$

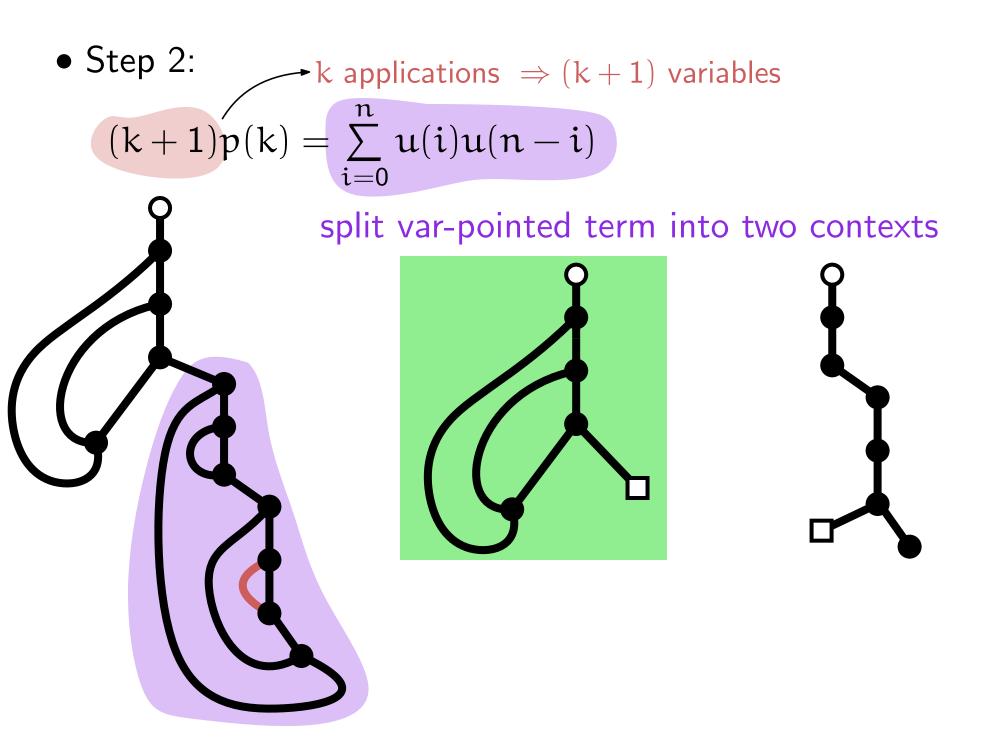
 $\lambda z.\lambda w.(\lambda u.\lambda v.z u v) w$ - not a context! -

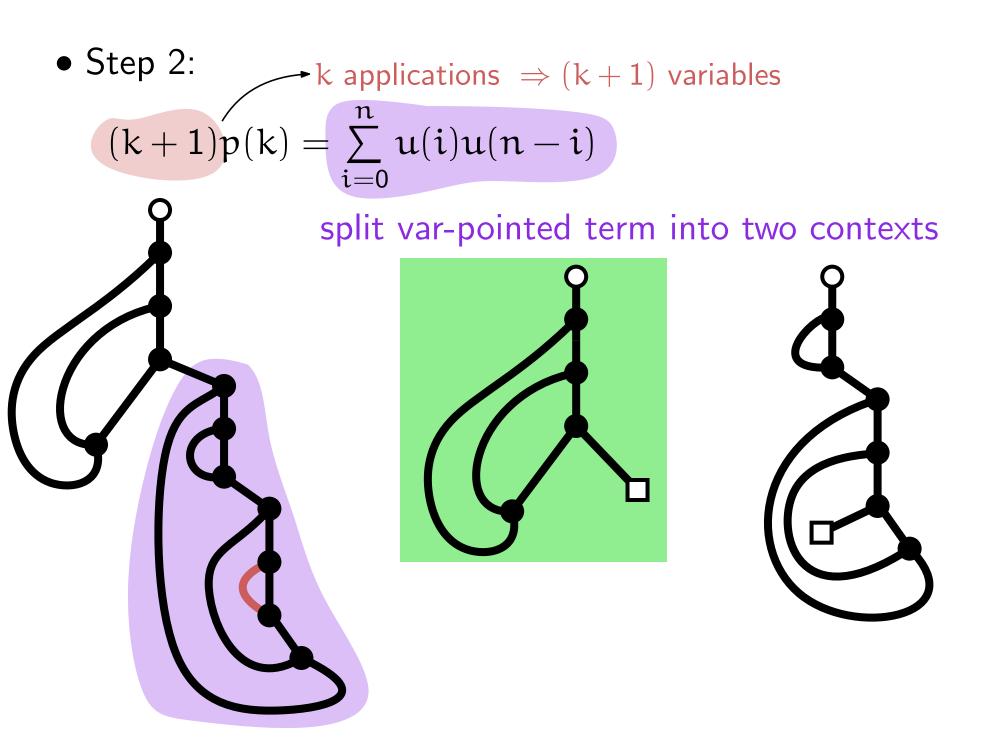
$$\rightarrow \lambda_{\sqcup}.\lambda_{\sqcup}.(\lambda_{\sqcup}.\lambda_{\sqcup}.\sqcup \Box) \sqcup$$
$$\rightarrow \lambda_{\sqcup}.(\lambda_{\sqcup}.\lambda_{\sqcup}.\sqcup \Box) \sqcup$$
$$\rightarrow \lambda w.(\lambda u.\lambda v.u v \Box) w$$

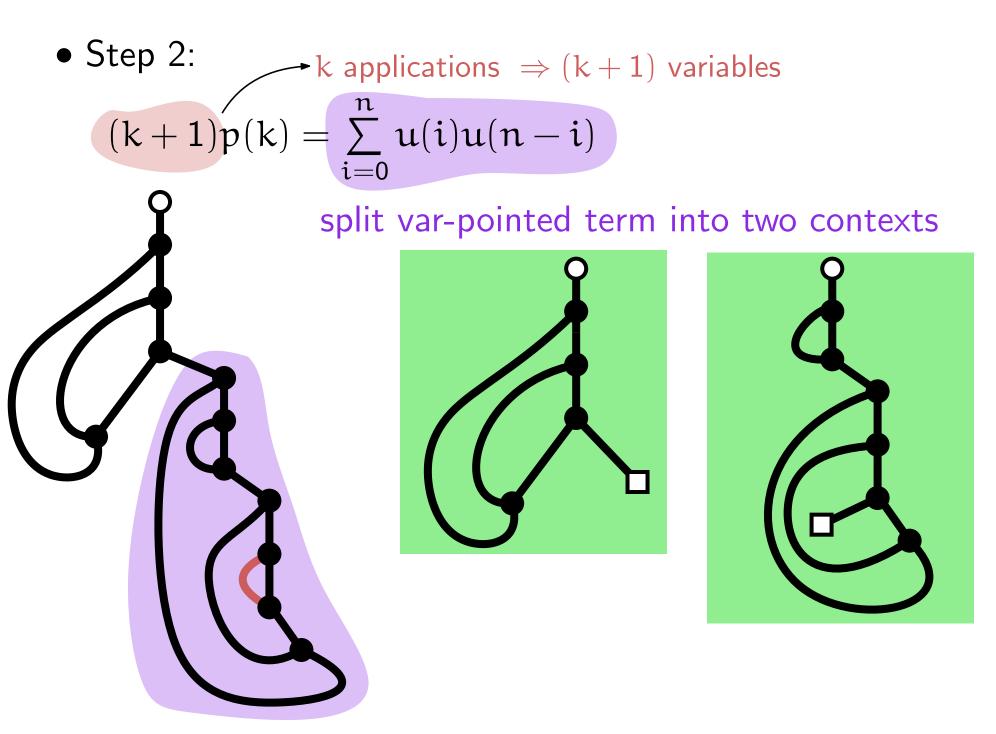












Some open problems

• Bijective interpretation of G&J rec. for general genus

$$o(0, g) = 1$$

 $o(k + 1, g) = 2(3k + 2)t(k, g)$

$$(k+1)t(k,g) = +$$

$$\sum_{\substack{i+j=k\\h+\ell=g}}^{n} o(i,h)o(j,\ell)$$

 $\iota \mid \iota -$

Some open problems

• Bijective interpretation of G&J rec. for general genus

$$o(0, g) = 1$$

$$o(k + 1, g) = 2(3k + 2)t(k, g)$$

$$2k(3k - 2)o(k - 1, g - 1)$$

$$(k + 1)t(k, g) = +$$

$$\sum_{i=1}^{n} o(i, h)o(j, \ell)$$

i+j=k $h+\ell=q$

• Genus for λ-terms?

Some open problems

• Bijective interpretation of G&J rec. for general genus

$$o(0, g) = 1$$

 $o(k + 1, g) = 2(3k + 2)t(k, g)$
 $2k(3k - 2)o(k - 1, g - 1)$

$$(k+1)t(k,g) = +$$

$$\sum_{\substack{i+j=k\\h+\ell=q}}^{n} o(i,h)o(j,\ell)$$

y

• Genus for λ -terms?

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., & Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms. The Electronic Journal of Combinatorics, P30-P30.

[Z16] Zeilberger, N. (2016).

Linear lambda terms as invariants of rooted trivalent maps. Journal of functional programming, 26.

[AB00] Arques, D., & Béraud, J. F. (2000). Rooted maps on orientable surfaces, Riccati's equation and continued fractions Discrete mathematics, 215(1-3), 1-12.

[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., & Soria, M. (2001). Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures & Algorithms, 19(3-4), 194-246.

Bibliography

- [BR86] Bender, E. A., & Richmond, L. B. (1986). A survey of the asymptotic behaviour of maps. Journal of Combinatorial Theory, Series B, 40(3), 297-329.
- [BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., & Zaionc, M. (2016). A natural counting of lambda terms.
- In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
- [BBD19] Bendkowski, M., Bodini, O., & Dovgal, S. (2019). Statistical Properties of Lambda Terms.
- The Electronic Journal of Combinatorics, P4-1.
- [BCDH18] Bodini, O., Courtiel, J., Dovgal, S., & Hwang, H. K. (2018, June).
 Asymptotic distribution of parameters in random maps.
 In 29th International Conference on Probabilistic, Combinatorial and
 Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).

An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.

[FS93] Flajolet, P., & Soria, M. (1993).

General combinatorial schemas: Gaussian limit distributions and exponential tails. Discrete Mathematics, 114(1-3), 159-180.

[B18] Borinsky, M. (2018).

Generating Asymptotics for Factorially Divergent Sequences. The Electronic Journal of Combinatorics, P4-1.

[BKW21] Banderier, C., Kuba, M., & Wallner, M. (2021).

Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.

arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., & Jacquot, A. (2013). Asymptotics and random sampling for BCI and BCK lambda terms Theoretical Computer Science, 502, 227-238.

[M04] Mairson, H. G. (2004).

Linear lambda calculus and PTIME-completeness Journal of Functional Programming, 14(6), 623-633.

[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., & David, R. (2013) Asymptotically almost all λ-terms are strongly normalizing Logical Methods in Computer Science, 9

[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., & Tsukada, T. (2017) Almost Every Simply Typed λ -Term Has a Long β -Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg. Bibliography

[B19] Baptiste L. (2019).

A new family of bijections for planar maps

Journal of Combinatorial Theory, Series A.