The Lambda Calculus, its Syntax and Semantics 40 years later

Henk Barendregt & Giulio Manzonetto

giulio.manzonetto@lipn.univ-paris13.fr

LIPN, Université Sorbonne Paris Nord

January 11th, 2023

Introduction

Theoretical Foundations of Computer Science

Turing Machines

Alan Turing \simeq 1936 Manipulating symbols via primitive instructions.

Introduction

Theoretical Foundations of Computer Science

Turing Machines

Alan Turing \simeq 1936 Manipulating symbols via primitive instructions.

The Lambda Calculus

Church \simeq 1932 Based on a primitive notion of function.

- variable: x
- abstraction: $\lambda x.P$, read f(x) = P
- application: PQ, read P(Q)

Computation becomes substitution: $(\lambda x.P)Q \rightarrow_{\beta} P[x := Q]$

Self-reference

Russell's paradox. Let $R = \{x \mid x \notin x\}$, then $R \in R \iff R \notin R$.

Turing Machines and the Halting Problem

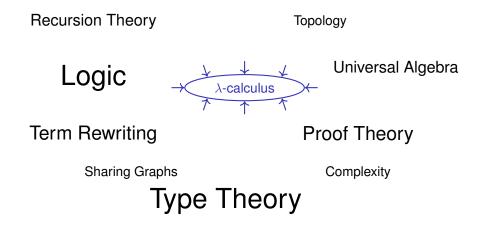
Key point: Encode programs with natural numbers: P(n) where n = #P

Lambda calculus

Programs can be seen both as functions and as arguments.

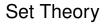
$$\Omega = (\lambda x. xx)(\lambda x. xx) \rightarrow_{\beta} \Omega \rightarrow_{\beta} \Omega \rightarrow_{\beta} \cdots$$

A wealth of techniques are employed

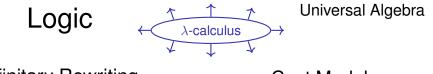


Lambda calculus has many applications

Programming Languages



Proof Assistants



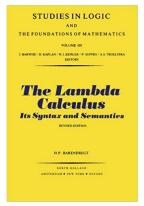
Infinitary Rewriting

Cost Models

Type Systems

Introduction

The "Bible" of Lambda Calculus — 1981/84



The Lambda Calculus Its Syntax and Semantics

by Henk Barendregt

Best seller, translated in

- Russian (MIR),
- Chinese (Nanjing University Press).
- > 11 000 copies sold.

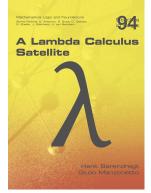
Problems & conjectures:

- Complexity of $\lambda \omega$,
- Range property for \mathcal{H} ,
- Sallé's conjecture,
- Bijectivity in $\lambda \eta$

o . . .

Introduction

The "New Testament" of λ -calculus?



A Lambda Calculus Satellite

by Henk Barendregt

& Giulio Manzonetto

Contents in short

About λ -calculus xv
About this book xxvii
Acknowledgements xxxvii
General notations xxxix

I Preliminaries

1	The λ -calculus in a nutshell
2	Böhm trees and variations
3	Theories and models of λ -calculus55

II Reduction

4	Leaving a β -reduction plane
5	Optimal lambda reduction93
6	Infinitary lambda calculus
7	Starlings
11	I Conversion

8	Perpendicular	Lines	Property	• •	•	•	•	•	•	•	•	21	5
---	---------------	-------	----------	-----	---	---	---	---	---	---	---	----	---

9 Bijectivity and invertibility in $\lambda \eta \dots 227$

IV Theories

10 Sensible theories	l
11 The kite	,

V Models

12 Ordered models and theories
13 Filter models
14 Relational models
15 Church algebras for λ -calculus411

VI Open Problems

VII Appendix

Α	Mathen	natical	ba	ckg	rou	nd	••	• •	• •	• •	• •	• •	465
Re	ferences						•••	• •		• •		• •	526
Inc	dices												527

Overview of this talk

- 1. The plane conjecture
- 2. Bijectivity and invertibility in $\lambda \eta$
- 3. Dance of the starlings

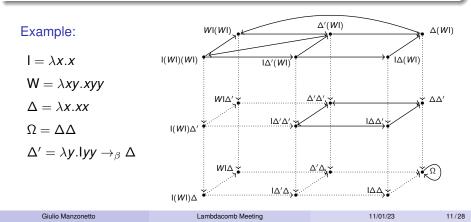
[Reduction] [Conversion] [Combinatory Logic]

- Reduction - Leaving a β -reduction plane

A β -reduction plane

Definition

- (i) Define an equivalence relation: $M \circ N \iff M \twoheadrightarrow_{\beta} N \twoheadrightarrow_{\beta} M$.
- (ii) Planes = the equivalence classes $[M]_{\odot}$.
- (iii) *M* is an exit (of its plane) if $M \rightarrow_{\beta} N$ and $N \notin [M]_{\circlearrowright}$.



The Plane Conjecture

"If a plane has an exit point, then every point of the plane is an exit." Klop's conjecture (1980)

Theorem (Mulder 1984 / Sekimoto-Hirokawa 1986)

The plane conjecture is invalid.

PROOF (MULDER). Define

 $H = \lambda fg.ff(\lambda y.g(gy)),$ $P = (\lambda x.l)z, \text{ for a variable } z,$ $P^{\eta} = \lambda x.Px.$

Then $M = HH(\lambda y.P(Py))$ is not an exit, but reduces to one. so the variable *z* is erased forever,

The Plane Conjecture

"If a plane has an exit point, then every point of the plane is an exit." Klop's conjecture (1980)

Theorem (Mulder 1984 / Sekimoto-Hirokawa 1986)

The plane conjecture is invalid.

PROOF (MULDER). Define

$$H = \lambda fg.ff(\lambda y.g(gy)),$$

$$P = (\lambda x.l)z, \text{ for a variable } z,$$

$$P^{\eta} = \lambda x.Px.$$

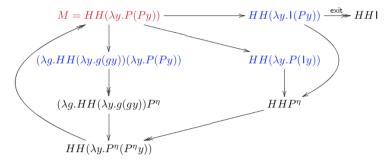
One has $P \rightarrow_{\beta} I$, so the variable *z* is erased forever, $P^{\eta} = \lambda x.Px \rightarrow_{\beta} \lambda x.Ix \rightarrow_{\beta} I$ $P^{\eta}X \rightarrow_{\beta} PX \rightarrow_{\beta} IX \rightarrow_{\beta} X$

Mulder's Proof (continues...)

Consider $M = HH(\lambda y. P(Py))$. The only three 1-step reducts are the following

 $(\lambda g.HH(\lambda y.g(gy))(\lambda y.P(Py)), HH(\lambda y.I(Py)), HH(\lambda y.P(Iy)))$

These all three flow back to M and hence are in its plane:



Hence M is not an exit. But $N = HH(\lambda y. \mathbf{1}(Py)) \rightarrow HH(\lambda y. \mathbf{1}(|y|)) \twoheadrightarrow HH\mathbf{1}$, and the latter misses the free variable z, so cannot be in the plane of M. So N is an exit. \Box

— Conversion —

Does bijectivity correspond to invertibility modulo $\beta\eta$?

Bijectivity vs Invertibility

In Set Theory:

```
f is bijective \iff f is invertible
```

More precisely:

- (i) *f* is injective \iff *f* is left-invertible (assuming the excluded middle).
- (ii) *f* is surjective \iff *f* is right-invertible (assuming AC).

In λ -calculus:

A (closed) λ -term F is bijective if it is

- injective: $\forall X, Y \in \Lambda^o$. $FX = FY \Rightarrow X = Y;$
- and surjective: $\forall Y \in \Lambda^o, \exists X \in \Lambda^o . FX = Y.$

A (closed) λ -term *F* is invertible if it is

- left-invertible: $\exists L \in \Lambda^o . L \circ F = I;$
- and right-invertible: $\exists R \in \Lambda^o$. $I = F \circ R$.

Bijectivity vs Invertibility

In Set Theory:

f is bijective $\iff f$ is invertible

More precisely:

- (i) *f* is injective \iff *f* is left-invertible (assuming the excluded middle).
- (ii) *f* is surjective \iff *f* is right-invertible (assuming AC).

In λ -calculus:

A (closed) λ -term F is bijective if it is

- injective: $\forall X, Y \in \Lambda^o . FX = FY \Rightarrow X = Y;$
- and surjective: $\forall Y \in \Lambda^o, \exists X \in \Lambda^o . FX = Y.$

A (closed) λ -term F is invertible if it is

- left-invertible: $\exists L \in \Lambda^o . L \circ F = I;$
- and right-invertible: $\exists R \in \Lambda^o$. $I = F \circ R$.

Does bijectivity correspond to invertibility for $=_{\beta\eta}$?

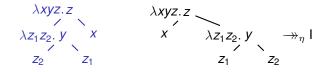
For set-theoretic reasons:

F invertible \Rightarrow F bijective

Question: *F* bijective \Rightarrow *F* invertible?

Theorem [Dezani 1974 & Bergstra-Klop 1982]

F is invertible \iff *F* is a hereditary permutation of a finite η -expansion of I.



Proposition [Batenburg-Velmans 1983]

F is injective and right-invertible \Rightarrow *F* invertible

Giulio Manzonetto

Lambdacomb Meeting

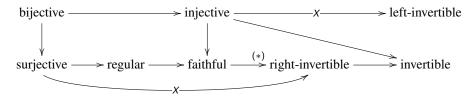
11/01/23

A positive answer by Folkerts

Theorem [Folkerts 1995]

Modulo $\beta\eta$: *F* bijective \iff *F* invertible.

PROOF. The usual (injective \Rightarrow L-invertible, surjective \Rightarrow R-inv) doesn't work.



where

- *F* is regular if $F =_{\beta\eta} \lambda x \vec{y} \cdot x P_1 \cdots P_k$.
- *F* is faithful if $F =_{\beta\eta} \lambda x \vec{y} \cdot x P_1 \cdots P_k$, such that the P_i 's are unsolvable or have one of the *y*'s as free head-variable.

Interesting analysis of unsolvables...

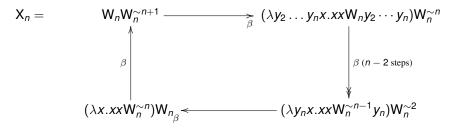
The most difficult part is to prove

surjective & faithful \Rightarrow right-invertible

Folkerts needs infinitely many unsolvables remaining essentially different. This happens when they have a different 'unsolvable core':

$$X_n = W_n W_n^{\sim n+1}$$
, where
 $W_n = \lambda y_1 \dots y_n x . x x y_1 \dots y_n$

Their looping reduction graph is:



Dance of the starlings

Combinatory logic

Curry&Schönfinkel's combinatory logic is based on two 'combinators':

In Smullyan's beautiful fable about combinators figuring as birds in an enchanted forest, S is the starling.

Theorem

Combinatory logic is (almost) as powerful as λ -calculus.

Idea: Every λ -term is expressible as a combination of K and S.

The S-fragment of CL

What about the fragment S containing exclusively S?

$$Sxyz \rightarrow_w xz(yz)$$

Examples:

 $S, SSS(SSS)S, SS(SS)(SSS), \ldots$

Some properties:

- Not as powerful as the λ -calculus (no cancellation).
- Reduction \rightarrow_w is confluent.
- The anti-reduction $_{w} \leftarrow$ is strongly normalizable.
- S-terms tends to grow in size along reduction.
- (S, \rightarrow_w) is acyclic: $\forall P \in S, \nexists Q \in S . P \rightarrow_w Q \twoheadrightarrow_w P$.

Is there a non-terminating S-term?

How to construct a non-terminating term?

Look for a 'spiralling' term P, i.e.: $P \rightarrow^+_w C[P]$, for some context C[].

Waldmann 2000

There is no spiralling $P \in S$.

Property

For every $k \in \mathbb{N}$ there exists a $P_k \in S$ such that

 $k < \operatorname{growth}(P_k) < \infty.$

where

$$\operatorname{growth}(\boldsymbol{P}) = \begin{cases} \frac{\operatorname{size}(nf_w(\boldsymbol{P}))}{\operatorname{size}(\boldsymbol{P})}, & \text{if } \boldsymbol{P} \text{ has a } \boldsymbol{w}\text{-nf;} \\ \infty, & \text{otherwise.} \end{cases}$$

Non-terminating S-terms

P	Year found	Ву
(SSS)(SSS)(SSS)	1975	Barendregt
S(SS)SSSS	1976	Dubou&Baron
S(SSS)(SSS)(S(SSS)(SSS))	1976	Pettorossi
S(SS)(SS)(S(SS)(SS))	1978	Zachos

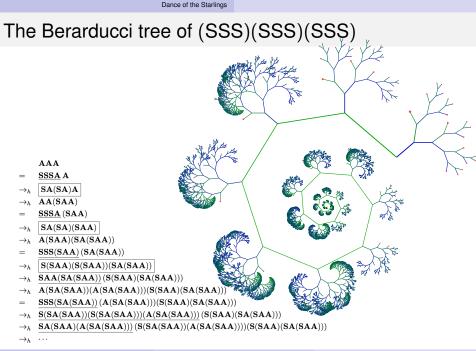
$$\begin{array}{l} A = SSS \quad ; \quad A \times Y = \times Y(GT(Y) \\ A = A A (SAA) = A(BAA)(SA(SAA)) \geq SAA(SA(SAAAAA)(SC(SAA)(SA(SAA)))) \geq A(FA(SAA))(A(SA(SAA))) \\ \geq SA(SAA)(A(SA(SAA))) (S(SA(SAA))) (S(SA(SAA))(A(SA(SAA)))) (S(SAA)(SA(SAA)))) \geq A(FA(SAA))) \\ \geq A(SA(SAA))(SAA(A(SA(SAA)))) - - \geq SA(SAA)(SA(SAA)(SA(SAA)))) = A(SAA) \\ \geq SAA(A(SA(SAA))(SAA(A(SA(SAA))))) - - \geq A^{2}(SA(SAA))(A^{2}(SA(SAA)))) \geq A(SAA) \\ \geq SAA(A(SA(SAA))(A^{2}(A(SAA)))) \geq SA(SAA)(A^{2}(SA(SAA))) \geq A^{2}(SA(SAA))) \geq A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA))) = A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA))) = A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA))) = A^{2}(SA(SAA)) = A^{2}(SA(SAA))) = A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA))) = A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA))) = A^{2}(SA(SAA)) = A^{2}(SA(SAA)) = A^{2}(SA(SAA))) = A^{2}(SA(SAA)) = A^{2}(SA(SA)) = A^{2}(SA(SA)) = A^{2}(SA(SA)) = A^{2$$

Non-terminating S-terms

Р	Year found	By
(SSS)(SSS)(SSS)	1975	Barendregt
S(SS)SSSS	1976	Dubou&Baron
S(SSS)(SSS)(S(SSS)(SSS))	1976	Pettorossi
S(SS)(SS)(S(SS)(SS))	1978	Zachos

It makes sense to define the Berarducci tree BeT(P) of an S-term. Idea:

- 'push' the reduction into infinity;
- collect the 'stable pieces' of the term in a tree-like structure.



Decidable properties

Theorem (Waldmann 1998)

(Strong) normalization of S-terms is decidable in linear time.

Proof: Waldmann constructed a finite state automaton accepting the normalizing S-terms only.

Theorem (Padovani 2020)

Head normalization of S-terms is decidable.

Proof: Padovani gave a criterion characterizing head-normalizable terms.

Berarducci trees equality

Define:

$$\begin{array}{rcl} \mathsf{S}_1 & = & \mathsf{S}, \\ \mathsf{S}_{n+1} & = & \mathsf{S}(\mathsf{S}_n), & \mathrm{for} \; n > 1. \end{array}$$

Theorem (Padovani 2020)

Let

$$\begin{array}{rcl} A & = & S(S_4(S_4S_3))(S(S_2S_3)S_3), \\ B & = & S(S_3S_3)(S_4S_3). \end{array}$$

Then

- $AA \neq_w BB$, but
- BeT(AA) = BeT(BB).

Open problem

The word problem: Is w-conversion decidable for S-terms?

Padovani's example shows that $=_{W}$ is not the equality of Berarducci trees.

THE END

(THANKS)