
1

A lower bound on reduction legnth for random closed linear λ-terms

Alexandros Singh (LIPN, Paris 13)

Olivier Bodini (LIPN, Paris 13)

Noam Zeilberger (LIX, Polytechnique)

LambdaComb KIckoff Meeting, 11 April 2022

Michael Wallner (TU Wien)

Bernhard Gittenberger (TU WIen)

2 A

What is the λ-calculus?

2 B

What is the λ-calculus?

A universal system of computation

2 C

What is the λ-calculus?

A universal system of computation

Its terms are formed using the following grammar

x | λx.t |(s t)

variable

2 D

What is the λ-calculus?

A universal system of computation

Its terms are formed using the following grammar

x | λx.t |(s t)

variable

abstraction
represents an anonymous function

2 E

What is the λ-calculus?

A universal system of computation

Its terms are formed using the following grammar

x | λx.t |(s t)

variable

abstraction
represents an anonymous function

application
feeding an argument t to a function s

2 F

What is the λ-calculus?

A universal system of computation

Its terms are formed using the following grammar

x | λx.t |(s t)

variable

abstraction
represents an anonymous function

application
feeding an argument t to a function s

We’re interested in terms up to α-equivalence:

(λx.xx)(λx.xx)
α
= (λy.yy)(λx.xx)

α

̸= (λy.ya)(λx.xx)

3 A

Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

3 B

Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

3 C

Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]

(λ-terms together with β-reduction are enough to encode any computation!)

3 D

Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]

Examples of reductions

(λ-terms together with β-reduction are enough to encode any computation!)

3 E

Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]

Examples of reductions

(λ-terms together with β-reduction are enough to encode any computation!)

((λx.x) y)
β→ x[x := y] = y

3 F

Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]

Examples of reductions

(λ-terms together with β-reduction are enough to encode any computation!)

((λx.x) y)
β→ x[x := y] = y

(λx.((λy.x y) u))
β→ (λy.(x y))[y := u] = (λx.(x u))

3 G

Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]

Examples of reductions

(λ-terms together with β-reduction are enough to encode any computation!)

((λx.x) y)
β→ x[x := y] = y

(λx.((λy.x y) u))
β→ (λy.(x y))[y := u] = (λx.(x u))

(λx.(x x))(λy.(y y))
β→ (λy.(y y))(λy.(y y))

α
= (λx.(x x))(λy.(y y))

4 A

More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

4 B

More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

4 C

More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

A term with no beta-redices (redexes?) is called a normal form

((λx.((λy.(y x)) x)) (a b))
β→ (λx.(x x))(a b)

β→ (a b)(a b)
normal form!

4 D

More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

A term with no beta-redices (redexes?) is called a normal form

((λx.((λy.(y x)) x)) (a b))
β→ (λx.(x x))(a b)

β→ (a b)(a b)
normal form!

β-reduction is quite complicated:

4 E

More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

A term with no beta-redices (redexes?) is called a normal form

((λx.((λy.(y x)) x)) (a b))
β→ (λx.(x x))(a b)

β→ (a b)(a b)
normal form!

β-reduction is quite complicated:

Reducing a redex can create new redices!

((λx.(x z)) (λy.y))
β→ ((λy.y) z)

4 F

More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

A term with no beta-redices (redexes?) is called a normal form

((λx.((λy.(y x)) x)) (a b))
β→ (λx.(x x))(a b)

β→ (a b)(a b)
normal form!

β-reduction is quite complicated:

Reducing a redex can create new redices!

((λx.(x z)) (λy.y))
β→ ((λy.y) z)

Terms may never reach a normal form, their size might even increase!

((λx.(x x))(λx.(x x x)))
β→ (λx.(x x x))(λx.(x x x))(λx.(x x x))

4 G

More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

A term with no beta-redices (redexes?) is called a normal form

((λx.((λy.(y x)) x)) (a b))
β→ (λx.(x x))(a b)

β→ (a b)(a b)
normal form!

β-reduction is quite complicated:

Reducing a redex can create new redices!

((λx.(x z)) (λy.y))
β→ ((λy.y) z)

Terms may never reach a normal form, their size might even increase!

((λx.(x x))(λx.(x x x)))
β→ (λx.(x x x))(λx.(x x x))(λx.(x x x))

Order in which redices are reduced matters!

(λx.z)((λx.(x x))(λx.(x x)))
z[x := (λx.x x)(λx.x x)] = z

(λx.z)((x x)[x := (λx.(x x))]) = . . .

5 A

Previous work on the reduction of λ-terms

5 B

Previous work on the reduction of λ-terms

Asymptotically almost all λ-terms are strongly normalizing.
[DGKRTZ13]

5 C

Previous work on the reduction of λ-terms

Asymptotically almost all λ-terms are strongly normalizing.

Asymptotically almost no λ-term is strongly normalizing.

[DGKRTZ13]

[DGKRTZ13,BGLZ16]

5 D

Previous work on the reduction of λ-terms

Asymptotically almost all λ-terms are strongly normalizing.

Asymptotically almost no λ-term is strongly normalizing.

[DGKRTZ13]

[DGKRTZ13,BGLZ16]

5 E

Previous work on the reduction of λ-terms

Asymptotically almost all λ-terms are strongly normalizing.

Parameter sensitive to the definition of the syntax
and the size of terms!

For terms expressed in the previously-presented syntax
and size defined recursively as:

|x|= 0, |(a b)|= 1+ |a|+|b|, |λx.t|= 1+ |t|

Asymptotically almost no λ-term is strongly normalizing.

For terms expressed using de Bruijn indices or combinators
(together with appropriate size functions)

[DGKRTZ13]

[DGKRTZ13,BGLZ16]

Almost every simply-typed λ-term has a long β-reduction sequence
[SAKT17]

6 A

Subfamilies of λ-terms

(λx.xx)(λy.yy)
λx.λy.x

λx.λy.x (y a)

General terms: no restrictions on variable use

6 B

Subfamilies of λ-terms

(λx.xx)(λy.yy)
λx.λy.x

λx.λy.x (y a)

General terms: no restrictions on variable use

free variable
unused abstraction

var. used twice

6 C

Subfamilies of λ-terms

(λx.xx)(λy.yy)
λx.λy.x

λx.λy.x (y a)

General terms: no restrictions on variable use

free variable
unused abstraction

var. used twice

λx.λy.yλx.λy.λz.(x a) y
(λx.λy.a)(λx.x)

Affine Terms: bound variables occur at most once

6 D

Subfamilies of λ-terms

(λx.xx)(λy.yy)
λx.λy.x

λx.λy.x (y a)

General terms: no restrictions on variable use

free variable
unused abstraction

var. used twice

λx.λy.yλx.λy.λz.(x a) y
(λx.λy.a)(λx.x)

Affine Terms: bound variables occur at most once

λx.λy.(y x)a λx.λy.(y a)(b x)

Linear Terms: bound variables occur exactly once

λx.a(λz.(λy.y (x z)))

7 A

β-reducing closed linear terms

7 B

β-reducing closed linear terms

Closed linear lambda calculus is strongly normalising!

7 C

β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

a unique normal form, and reduction order doesn’t matter!

7 D

β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

No longer Turing-complete, many interesting connections

with complexity theory (e.g PTIME-completeness [M04])

a unique normal form, and reduction order doesn’t matter!

7 E

β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

No longer Turing-complete, many interesting connections

with complexity theory (e.g PTIME-completeness [M04])

a unique normal form, and reduction order doesn’t matter!

How many β-reduction steps, on average, does one need to

reach a normal form starting from a random λ-term?

7 F

β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

No longer Turing-complete, many interesting connections

with complexity theory (e.g PTIME-completeness [M04])

a unique normal form, and reduction order doesn’t matter!

How many β-reduction steps, on average, does one need to

reach a normal form starting from a random λ-term?

7 G

β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

No longer Turing-complete, many interesting connections

with complexity theory (e.g PTIME-completeness [M04])

a unique normal form, and reduction order doesn’t matter!

How many β-reduction steps, on average, does one need to

reach a normal form starting from a random λ-term?

A lower bound is given by the number of β-redices!

This motivates the central question of this work:

What is the number of β-redices in a random linear λ-term?

7 H

β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

No longer Turing-complete, many interesting connections

with complexity theory (e.g PTIME-completeness [M04])

a unique normal form, and reduction order doesn’t matter!

How many β-reduction steps, on average, does one need to

reach a normal form starting from a random λ-term?

A lower bound is given by the number of β-redices!

This motivates the central question of this work:

What is the number of β-redices in a random linear λ-term?

uniform distributionrandom variable!

7 I

β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

No longer Turing-complete, many interesting connections

with complexity theory (e.g PTIME-completeness [M04])

a unique normal form, and reduction order doesn’t matter!

How many β-reduction steps, on average, does one need to

reach a normal form starting from a random λ-term?

A lower bound is given by the number of β-redices!

This motivates the central question of this work:

What is the number of β-redices in a random linear λ-term?

asymptotically!
uniform distribution
on the set of terms of size n

seq. of random variables!

8 A

What are maps?

8 B

What are maps?

8 C

What are maps?

We’re interested in unrestricted genus, restricted vertex degrees

9 A

Why should you, a logician, be interested in maps?

λ = λx.t

t
x

= (s t)

s t

@

String diagrams! [BGJ13, Z16]

= x

9 B

Why should you, a logician, be interested in maps?

λ = λx.t

t
x

= (s t)

s t

@

order matters!

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

9 C

Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

λ = λx.t

t
x

= (s t)

s t

@

order matters!

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

9 D

Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

λ = λx.t

t
x

= (s t)

s t

@

order matters!

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

9 E

Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

Identity-subterm ↔ loop

λ = λx.t

t
x

= (s t)

s t

@

order matters!

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

9 F

Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

Closed subterm ↔ bridge

Identity-subterm ↔ loop

λ = λx.t

t
x

= (s t)

s t

@

order matters!

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

9 G

Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

Closed subterm ↔ bridge

Identity-subterm ↔ loop

subterms ↔ # edges

λ = λx.t

t
x

= (s t)

s t

@

order matters!

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

9 H

Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

Closed subterm ↔ bridge

Identity-subterm ↔ loop

subterms ↔ # edges

λ = λx.t

t
x

= (s t)

s t

@

order matters!

Closed linear terms ↔ trivalent maps

Established in [BGJ13, BGGJ13]

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

Closed affine terms ↔ (2,3)-valent maps

10 A

Decomposing (closed) rooted trivalent maps [BGJ13]

Why should you, a combinatorialist, be interested in λ-terms?

10 B

Decomposing (closed) rooted trivalent maps

T(z) = z2

edges

[BGJ13]

Why should you, a combinatorialist, be interested in λ-terms?

10 C

Decomposing (closed) rooted trivalent maps

T(z) = z2 zT(z)2+

edges

[BGJ13]

Why should you, a combinatorialist, be interested in λ-terms?

10 D

Decomposing (closed) rooted trivalent maps

T(z) = z2 zT(z)2+ + 2z4∂uT(z)

edges

[BGJ13]

Why should you, a combinatorialist, be interested in λ-terms?

10 E

Decomposing (closed) rooted trivalent maps

T(z) = z2 zT(z)2+ + 2z4∂uT(z)

edges

λx.x (s t) λx.t[u := (x u)] or
subterms

and open linear terms!
[BGJ13]

lin.term =
λx.t[u := (u x)]

Why should you, a combinatorialist, be interested in λ-terms?

11 A

Some of our previous results: limit distributions

λx.λy.(y λw.w)x

11 B

Some of our previous results: limit distributions

loops = # id-subterms

λx.λy.(y λw.w)x

11 C

Some of our previous results: limit distributions

Xid
n

D→ Poisson(1)

loops = # id-subterms

λx.λy.(y λw.w)x

12 A

Some of our previous results: limit distributions

λx.λy.(y λz.λw.zw)x

12 B

Some of our previous results: limit distributions

bridges = # closed subterms

λx.λy.(y λz.λw.zw)x

12 C

Some of our previous results: limit distributions

Xsub
n

D→ Poisson(1)

bridges = # closed subterms

λx.λy.(y λz.λw.zw)x

12 D

Some of our previous results: limit distributions

Xsub
n

D→ Poisson(1)

bridges = # closed subterms

λx.λy.(y λz.λw.zw)x

one bridge ↔ no bridge

13 A

β-reduction as map rewriting

λx.(λy.y(λz.λw.zw))((λu.u)x)

13 B

β-reduction as map rewriting

λx.(λy.y(λz.λw.zw))((λu.u)x)

13 C

β-reduction as map rewriting

λx.(λy.y(λz.λw.zw))((λu.u)x)

13 D

β-reduction as map rewriting

λx.(λy.y(λz.λw.zw))((λu.u)x)

λx.((λy.y(λz.λw.zw))x)

13 E

β-reduction as map rewriting

λx.(λy.y(λz.λw.zw))((λu.u)x)

λx.((λy.y(λz.λw.zw))x)

λx.x (λz.λw.zw)

14 A

Our workflow:

14 B

Our workflow:

1) Track evolution of parameter during an appropriately chosen

decomposition of closed linear terms/trivalent maps.

14 C

Our workflow:

1) Track evolution of parameter during an appropriately chosen

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

14 D

Our workflow:

1) Track evolution of parameter during an appropriately chosen

resulting OGFs are purely formal, which makes them difficult to analyse!

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

14 E

Our workflow:

1) Track evolution of parameter during an appropriately chosen

resulting OGFs are purely formal, which makes them difficult to analyse!

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

2) Find appropriate tools to deal with their analysis.

14 F

Our workflow:

1) Track evolution of parameter during an appropriately chosen

resulting OGFs are purely formal, which makes them difficult to analyse!

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

2) Find appropriate tools to deal with their analysis.

14 G

Our workflow:

1) Track evolution of parameter during an appropriately chosen

resulting OGFs are purely formal, which makes them difficult to analyse!

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

2) Find appropriate tools to deal with their analysis.

Bender’s theorem for compositions F(z,G(z))

14 H

Our workflow:

1) Track evolution of parameter during an appropriately chosen

resulting OGFs are purely formal, which makes them difficult to analyse!

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

2) Find appropriate tools to deal with their analysis.

Bender’s theorem for compositions F(z,G(z))

Coefficient asymptotics of Cauchy products

[zn](A · B) =
n∑

k=n0

akbn−k

first order asymptotics given by k = n0 and k = n

14 I

Our workflow:

1) Track evolution of parameter during an appropriately chosen

resulting OGFs are purely formal, which makes them difficult to analyse!

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

2) Find appropriate tools to deal with their analysis.

Bender’s theorem for compositions F(z,G(z))

Coefficient asymptotics of Cauchy products

[zn](A · B) =
n∑

k=n0

akbn−k

first order asymptotics given by k = n0 and k = n

crucial ingredient: coefficients are growing rapidly

15 A

Mean number of β-redices in closed terms

15 B

Mean number of β-redices in closed terms

Tracking redices during the decomposition

15 C

Mean number of β-redices in closed terms

Tracking redices during the decomposition

no redex

15 D

Mean number of β-redices in closed terms

Tracking redices during the decomposition

no redex applications

λ

λ

+1

+0

15 E

Mean number of β-redices in closed terms

Tracking redices during the decomposition

Abstractions, subcase 1.1

-1

+0

#ways to do this

|t|β

number of redices in t

15 F

Mean number of β-redices in closed terms

Tracking redices during the decomposition

Abstractions, subcase 1.2

+0

+1

#ways to do this

|t|λ − |t|β

number of abstractions in t

15 G

Mean number of β-redices in closed terms

Tracking redices during the decomposition

Abstractions, subcase 1.3

+0

+0

#ways to do this

|t|− |t|λ

number of subterms in t = size of t

15 H

Mean number of β-redices in closed terms

r∂rT0 =
∑
t∈T0

|t|βz
|t|r|t|β

z∂zT0+T0

3 =
∑
t∈T0

|t|+1
3 z|t|v|t|β

2z∂zT0−T0

3 =
∑

t∈T0

2|t|−1
3 z|t|v|t|β

|t|λ = |t|+1
3 , |t|− |t|λ = 2|t|−1

3

Building the specification of the OGF

15 I

Mean number of β-redices in closed terms

Translating to a differential equation and pumping

T0 = −z
(
z2(r+ 1)(1+ (r− 1)zT)(r− 1)∂rT0

− (1+z(r−1)T)z3(r+5)∂zT0

3 −
z3(r−1)2T 2

0

3 − 4z2(r−1)T0

3 − z− T2
0

)

15 J

Mean number of β-redices in closed terms

Translating to a differential equation and pumping

T0 = −z
(
z2(r+ 1)(1+ (r− 1)zT)(r− 1)∂rT0

− (1+z(r−1)T)z3(r+5)∂zT0

3 −
z3(r−1)2T 2

0

3 − 4z2(r−1)T0

3 − z− T2
0

)

Mean ∼ k
8

Variance ∼ 29k
320

Writing the size as n = 3k+ 2, we have:

A plot of the dist. of redices for terms/maps of size n = 119

16 A

Three special kinds of β-redices

16 B

Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)

16 C

Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)

A reduction step applied to any of these leaves the number
of redices invariant.

16 D

Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)

A reduction step applied to any of these leaves the number
of redices invariant.

These are the only patterns with this property.

16 E

Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)

A reduction step applied to any of these leaves the number
of redices invariant.

These are the only patterns with this property.

Can be used to give a lower bound on number of steps
to reach normal form:

#steps ⩾ |t|β+|t|p1 + |t|p2
+ |t|p3

17 A

Enumerating p1-patterns

Tracking the creation/destruction of patterns during the
recursive decomposition:

17 B

Enumerating p1-patterns

Tracking the creation/destruction of patterns during the

⇒
⇒

Cuts destroying a p1-pattern:

recursive decomposition:

17 C

Enumerating p1-patterns

Tracking the creation/destruction of patterns during the

⇒

Cuts creating a p1-pattern:

⇒

Thus we also need to keep track of:

C1[λx.C2[(t1 x)])(λy.t2)] C1[(λx.x)(λy.t2)]

recursive decomposition:

17 D

Enumerating p1-patterns

Tracking the creation/destruction of patterns during the

Applications creating p1 and auxilliary patterns:

Thus, for an app. of the form (l1 λy.t1) we need to consider
how l1 was formed.

recursive decomposition:

17 E

A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

L = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Enumerating p1-patterns

Thus we have the following equations:

17 F

A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

L = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Extracting the mean:

=
(
2zS∂uS+ 2z4∂z,uS+ z7∂zS+ 2z9(∂zS)

2 − 5z3∂uS+ z3∂vS
)
|u=1,v=1

∂uS|u=1,v=1

Enumerating p1-patterns

Thus we have the following equations:

17 G

A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

L = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Extracting the mean:

=
(
2zS∂uS+ 2z4∂z,uS+ z7∂zS+ 2z9(∂zS)

2 − 5z3∂uS+ z3∂vS
)
|u=1,v=1

∂uS|u=1,v=1 bijection needed!

⇔ × ⇔

pointed at abstraction
pointed at p1-pattern

Enumerating p1-patterns

Thus we have the following equations:

17 H

Finally we obtain a mean number of occurences:

E[Xp1] ∼
1
6

Enumerating p1-patterns

17 I

Finally we obtain a mean number of occurences:

E[Xp1] ∼
1
6

Enumerating p1-patterns and p2-patterns

Analogously, we have a mean number of occurences for p2:

E[Xp2] ∼
1
48

Both are asymptotically constant in expectation!

18 A

Enumerating p3-patterns

As before, we’ll also need to enumerate auxilliary patterns:

(λx.λy.t1)

(λx.λy.t1) t2

(λx.λy.t1) t2 t3 (p3)

18 B

Enumerating p3-patterns

As before, we’ll also need to enumerate auxilliary patterns:

(λx.λy.t1)

(λx.λy.t1) t2

(λx.λy.t1) t2 t3 (p3)

However we run into a problem:

Pointing inside p3

Pointing inside (λx.λy.t1)

18 C

Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Xp4
) = EΛn

(Xp4
) · |Λn|

|Ln|
+ EAn

(Xp4
) · |An|

|Ln|

18 D

Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Xp4
) = EΛn

(Xp4
) · |Λn|

|Ln|
+ EAn

(Xp4
) · |An|

|Ln|

asymptotically negligible

18 E

Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Xp4
) = EΛn

(Xp4
) · |Λn|

|Ln|
+ EAn

(Xp4
) · |An|

|Ln|

asymptotically negligible

Xn = 2nXn−3 − 10Xn−3 + 2Yn−3

Yn = 2nY ′
n−3 − 6Y ′

n−3 + Z ′
n−3

where: Xn is the sum of Xp4,n over families of abs.,

Yn is the same for the pattern (λx.λy.t1) t2, and

Y ′
n is the same for Y ′

n = Yn − Xn

Magic: linear over families of all possible abstractions created via cuts from a fixed term!

18 F

Finally, using the asymptotic mean for Zn, counting occurences
of the λx.λy.t1 pattern, we have:

Enumerating p3-patterns

E[Xn] =
n
240

18 G

Finally, using the asymptotic mean for Zn, counting occurences
of the λx.λy.t1 pattern, we have:

Enumerating p3-patterns

E[Xn] =
n
240

Therefore, for the number Wn of steps required to reduce
a term of size n = 3k+ 2 to its β-normal form, we have:

E[Xn] ⩾ 11k
80

which is quite close to Noam’s conjecture of E[Wn] =
k
7 !

18 H

Finally, using the asymptotic mean for Zn, counting occurences
of the λx.λy.t1 pattern, we have:

Enumerating p3-patterns

E[Xn] =
n
240

Therefore, for the number Wn of steps required to reduce
a term of size n = 3k+ 2 to its β-normal form, we have:

E[Xn] ⩾ 11k
80

which is quite close to Noam’s conjecture of E[Wn] =
k
7 !

Thank you for your patience!

19

Bibliography

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., & Jacquot, A. (2013).

Enumeration of Generalized BCI Lambda-terms.

The Electronic Journal of Combinatorics, P30-P30.

[Z16] Zeilberger, N. (2016).

Linear lambda terms as invariants of rooted trivalent maps.

Journal of functional programming, 26.

[AB00] Arques, D., & Béraud, J. F. (2000).

Rooted maps on orientable surfaces, Riccati’s equation and continued fractions

Discrete mathematics, 215(1-3), 1-12.

[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., & Soria, M. (2001).

Random maps, coalescing saddles, singularity analysis, and Airy phenomena.

Random Structures & Algorithms, 19(3-4), 194-246.

20

Bibliography

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

[BR86] Bender, E. A., & Richmond, L. B. (1986).

A survey of the asymptotic behaviour of maps.

Journal of Combinatorial Theory, Series B, 40(3), 297-329.

[BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., & Zaionc, M. (2016).

A natural counting of lambda terms.

In International Conference on Current Trends in Theory and Practice of

Informatics (pp. 183-194). Springer, Berlin, Heidelberg.

[BBD19] Bendkowski, M., Bodini, O., & Dovgal, S. (2019).

Statistical Properties of Lambda Terms.

The Electronic Journal of Combinatorics, P4-1.

[BCDH18] Bodini, O., Courtiel, J., Dovgal, S., & Hwang, H. K. (2018, June).

Asymptotic distribution of parameters in random maps.

In 29th International Conference on Probabilistic, Combinatorial and

Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

21

Bibliography

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

[B75] Bender, E. A. (1975).

An asymptotic expansion for the coefficients of some formal power series.

Journal of the London Mathematical Society, 2(3), 451-458.

[FS93] Flajolet, P., & Soria, M. (1993).

General combinatorial schemas: Gaussian limit distributions and exponential tails.

Discrete Mathematics, 114(1-3), 159-180.

[B18] Borinsky, M. (2018).

Generating Asymptotics for Factorially Divergent Sequences.

The Electronic Journal of Combinatorics, P4-1.

[BKW21] Banderier, C., Kuba, M., & Wallner, M. (2021).

Analytic Combinatorics of Composition schemes and phase transitions

arXiv preprint arXiv:2103.03751.

mixed Poisson distributions.

22

Bibliography

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

[BGJ13] Bodini, O., Gardy, D., & Jacquot, A. (2013).

Asymptotics and random sampling for BCI and BCK lambda terms

Theoretical Computer Science, 502, 227-238.

[M04] Mairson, H. G. (2004).

Linear lambda calculus and PTIME-completeness

Journal of Functional Programming, 14(6), 623-633.

[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J.,

Asymptotically almost all λ-terms are strongly normalizing

Logical Methods in Computer Science, 9

J., Grygiel, K., & David, R. (2013)

[SAKT17] Sin’Ya, R., Asada, K., Kobayashi, N., & Tsukada, T. (2017)

Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence

In International Conference on Foundations of Software Science and

In International Conference on Foundations of Software Science and
In International Conference on Foundations of Software Science and

and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg.

