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What is the λ-calculus?

A universal system of computation

Its terms are formed using the following grammar

x | λx.t |(s t)

variable

abstraction
represents an anonymous function

application
feeding an argument t to a function s

We’re interested in terms up to α-equivalence:

(λx.xx)(λx.xx)
α
= (λy.yy)(λx.xx)

α

̸= (λy.ya)(λx.xx)
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(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]
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Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]

Examples of reductions

(λ-terms together with β-reduction are enough to encode any computation!)

((λx.x) y)
β→ x[x := y] = y

(λx.((λy.x y) u))
β→ (λy.(x y))[y := u] = (λx.(x u))
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Computing with the λ-calculus

Substitution rule:

“replace free occurences of v in T1 with T2”
(α-converting T if necessary, to avoid capturing variables of T2)

T1[v := T2]

Examples of substitutions

(λx.(x y))[y := x] ̸= (λx.(x x))

(λx.(x y))[y := x]
α
= (λz.(z y))[y := x] = (λz.(z x))

Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]

Examples of reductions

(λ-terms together with β-reduction are enough to encode any computation!)

((λx.x) y)
β→ x[x := y] = y

(λx.((λy.x y) u))
β→ (λy.(x y))[y := u] = (λx.(x u))

(λx.(x x))(λy.(y y))
β→ (λy.(y y))(λy.(y y))

α
= (λx.(x x))(λy.(y y))
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More on β-reductions

An occurence of the ((λx.t1) t2) “pattern” is called a β-redex:

((λx.((λy.(y x)) x)) (a b))

A term with no beta-redices (redexes?) is called a normal form

((λx.((λy.(y x)) x)) (a b))
β→ (λx.(x x))(a b)

β→ (a b)(a b)
normal form!

β-reduction is quite complicated:

Reducing a redex can create new redices!

((λx.(x z)) (λy.y))
β→ ((λy.y) z)

Terms may never reach a normal form, their size might even increase!

((λx.(x x))(λx.(x x x)))
β→ (λx.(x x x))(λx.(x x x))(λx.(x x x))

Order in which redices are reduced matters!

(λx.z)((λx.(x x))(λx.(x x)))
z[x := (λx.x x)(λx.x x)] = z

(λx.z)((x x)[x := (λx.(x x))]) = . . .
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Previous work on the reduction of λ-terms

Asymptotically almost all λ-terms are strongly normalizing.

Parameter sensitive to the definition of the syntax
and the size of terms!

For terms expressed in the previously-presented syntax
and size defined recursively as:

|x|= 0, |(a b)|= 1+ |a|+|b|, |λx.t|= 1+ |t|

Asymptotically almost no λ-term is strongly normalizing.

For terms expressed using de Bruijn indices or combinators
(together with appropriate size functions)

[DGKRTZ13]

[DGKRTZ13,BGLZ16]

Almost every simply-typed λ-term has a long β-reduction sequence
[SAKT17]
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Subfamilies of λ-terms

(λx.xx)(λy.yy)
λx.λy.x

λx.λy.x (y a)

General terms: no restrictions on variable use

free variable
unused abstraction

var. used twice

λx.λy.yλx.λy.λz.(x a) y
(λx.λy.a)(λx.x)

Affine Terms: bound variables occur at most once

λx.λy.(y x)a λx.λy.(y a)(b x)

Linear Terms: bound variables occur exactly once

λx.a(λz.(λy.y (x z)))
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β-reducing closed linear terms

Repeated β-reduction is guaranteed to terminate, there exists

Closed linear lambda calculus is strongly normalising!

No longer Turing-complete, many interesting connections

with complexity theory (e.g PTIME-completeness [M04])

a unique normal form, and reduction order doesn’t matter!

How many β-reduction steps, on average, does one need to

reach a normal form starting from a random λ-term?

A lower bound is given by the number of β-redices!

This motivates the central question of this work:

What is the number of β-redices in a random linear λ-term?

asymptotically!
uniform distribution
on the set of terms of size n

seq. of random variables!
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What are maps?

We’re interested in unrestricted genus, restricted vertex degrees
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Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

Identity-subterm ↔ loop

λ = λx.t

t
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order matters!
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Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

Closed subterm ↔ bridge

Identity-subterm ↔ loop

λ = λx.t

t
x

= (s t)

s t

@

order matters!
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Dictionary

Unused λ ↔ binary vertex

Closed subterm ↔ bridge

Identity-subterm ↔ loop
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order matters!
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Why should you, a logician, be interested in maps?

Free var ↔ unary vertex

Dictionary

Unused λ ↔ binary vertex

Closed subterm ↔ bridge

Identity-subterm ↔ loop

# subterms ↔ # edges

λ = λx.t

t
x

= (s t)

s t

@

order matters!

Closed linear terms ↔ trivalent maps

Established in [BGJ13, BGGJ13]

String diagrams! [BGJ13, Z16] (λy.λz.(y λw.w)z))(λu.λv.a u)

λ

λ

@

@

@

λ

λ

λ

@

= x

Closed affine terms ↔ (2,3)-valent maps
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Decomposing (closed) rooted trivalent maps

T(z) = z2 zT(z)2+ + 2z4∂uT(z)

edges

[BGJ13]

Why should you, a combinatorialist, be interested in λ-terms?
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Decomposing (closed) rooted trivalent maps

T(z) = z2 zT(z)2+ + 2z4∂uT(z)

edges

λx.x (s t) λx.t[u := (x u)] or
subterms

and open linear terms!
[BGJ13]

lin.term =
λx.t[u := (u x)]

Why should you, a combinatorialist, be interested in λ-terms?
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Some of our previous results: limit distributions

Xsub
n

D→ Poisson(1)

# bridges = # closed subterms

λx.λy.(y λz.λw.zw)x

one bridge ↔ no bridge
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β-reduction as map rewriting

λx.(λy.y(λz.λw.zw))((λu.u)x)

λx.((λy.y(λz.λw.zw))x)

λx.x (λz.λw.zw)
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Our workflow:

1) Track evolution of parameter during an appropriately chosen

resulting OGFs are purely formal, which makes them difficult to analyse!

decomposition of closed linear terms/trivalent maps.

There’s a lot, based on: differential equations, exponential Hadamard products, etc

2) Find appropriate tools to deal with their analysis.

Bender’s theorem for compositions F(z,G(z))

Coefficient asymptotics of Cauchy products

[zn](A · B) =
n∑

k=n0

akbn−k

first order asymptotics given by k = n0 and k = n

crucial ingredient: coefficients are growing rapidly
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Mean number of β-redices in closed terms

Tracking redices during the decomposition

no redex applications

λ

λ

+1

+0
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Mean number of β-redices in closed terms

Tracking redices during the decomposition

Abstractions, subcase 1.1

-1

+0

#ways to do this

|t|β

number of redices in t
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Mean number of β-redices in closed terms

Tracking redices during the decomposition

Abstractions, subcase 1.2

+0

+1

#ways to do this

|t|λ − |t|β

number of abstractions in t
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Mean number of β-redices in closed terms

Tracking redices during the decomposition

Abstractions, subcase 1.3

+0

+0

#ways to do this

|t|− |t|λ

number of subterms in t = size of t
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Mean number of β-redices in closed terms

r∂rT0 =
∑
t∈T0

|t|βz
|t|r|t|β

z∂zT0+T0

3 =
∑
t∈T0

|t|+1
3 z|t|v|t|β

2z∂zT0−T0

3 =
∑

t∈T0

2|t|−1
3 z|t|v|t|β

|t|λ = |t|+1
3 , |t|− |t|λ = 2|t|−1

3

Building the specification of the OGF
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Mean number of β-redices in closed terms

Translating to a differential equation and pumping

T0 = −z
(
z2(r+ 1)(1+ (r− 1)zT)(r− 1)∂rT0

− (1+z(r−1)T)z3(r+5)∂zT0

3 −
z3(r−1)2T 2

0

3 − 4z2(r−1)T0

3 − z− T2
0

)
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Mean number of β-redices in closed terms

Translating to a differential equation and pumping

T0 = −z
(
z2(r+ 1)(1+ (r− 1)zT)(r− 1)∂rT0

− (1+z(r−1)T)z3(r+5)∂zT0

3 −
z3(r−1)2T 2

0

3 − 4z2(r−1)T0

3 − z− T2
0

)

Mean ∼ k
8

Variance ∼ 29k
320

Writing the size as n = 3k+ 2, we have:

A plot of the dist. of redices for terms/maps of size n = 119
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Three special kinds of β-redices
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Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)
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Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)

A reduction step applied to any of these leaves the number
of redices invariant.
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Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)

A reduction step applied to any of these leaves the number
of redices invariant.

These are the only patterns with this property.
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Three special kinds of β-redices

Consider the following three families of redices

(λx.C[(x u)])(λy.t2) (p1) ((λx.λy.t1)t2)t3 (p2)

(λx.x)(λy.t1)t2 (p3)

A reduction step applied to any of these leaves the number
of redices invariant.

These are the only patterns with this property.

Can be used to give a lower bound on number of steps
to reach normal form:

#steps ⩾ |t|β+|t|p1 + |t|p2
+ |t|p3
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the
recursive decomposition:
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the

⇒
⇒

Cuts destroying a p1-pattern:

recursive decomposition:
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the

⇒

Cuts creating a p1-pattern:

⇒

Thus we also need to keep track of:

C1[λx.C2[(t1 x)])(λy.t2)] C1[(λx.x)(λy.t2)]

recursive decomposition:
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the

Applications creating p1 and auxilliary patterns:

Thus, for an app. of the form (l1 λy.t1) we need to consider
how l1 was formed.

recursive decomposition:
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A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

L = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Enumerating p1-patterns

Thus we have the following equations:
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A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

L = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Extracting the mean:

=
(
2zS∂uS+ 2z4∂z,uS+ z7∂zS+ 2z9(∂zS)

2 − 5z3∂uS+ z3∂vS
)
|u=1,v=1

∂uS|u=1,v=1

Enumerating p1-patterns

Thus we have the following equations:



17 G

A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

L = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Extracting the mean:

=
(
2zS∂uS+ 2z4∂z,uS+ z7∂zS+ 2z9(∂zS)

2 − 5z3∂uS+ z3∂vS
)
|u=1,v=1

∂uS|u=1,v=1 bijection needed!

⇔ × ⇔

pointed at abstraction
pointed at p1-pattern

Enumerating p1-patterns

Thus we have the following equations:
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Finally we obtain a mean number of occurences:

E[Xp1 ] ∼
1
6

Enumerating p1-patterns
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Finally we obtain a mean number of occurences:

E[Xp1 ] ∼
1
6

Enumerating p1-patterns and p2-patterns

Analogously, we have a mean number of occurences for p2:

E[Xp2 ] ∼
1
48

Both are asymptotically constant in expectation!
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Enumerating p3-patterns

As before, we’ll also need to enumerate auxilliary patterns:

(λx.λy.t1)

(λx.λy.t1) t2

(λx.λy.t1) t2 t3 (p3)
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Enumerating p3-patterns

As before, we’ll also need to enumerate auxilliary patterns:

(λx.λy.t1)

(λx.λy.t1) t2

(λx.λy.t1) t2 t3 (p3)

However we run into a problem:

Pointing inside p3

Pointing inside (λx.λy.t1)
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Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Xp4
) = EΛn

(Xp4
) · |Λn|

|Ln|
+ EAn

(Xp4
) · |An|

|Ln|
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Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Xp4
) = EΛn

(Xp4
) · |Λn|

|Ln|
+ EAn

(Xp4
) · |An|

|Ln|

asymptotically negligible
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Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Xp4
) = EΛn

(Xp4
) · |Λn|

|Ln|
+ EAn

(Xp4
) · |An|

|Ln|

asymptotically negligible

Xn = 2nXn−3 − 10Xn−3 + 2Yn−3

Yn = 2nY ′
n−3 − 6Y ′

n−3 + Z ′
n−3

where: Xn is the sum of Xp4,n over families of abs.,

Yn is the same for the pattern (λx.λy.t1) t2, and

Y ′
n is the same for Y ′

n = Yn − Xn

Magic: linear over families of all possible abstractions created via cuts from a fixed term!
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Finally, using the asymptotic mean for Zn, counting occurences
of the λx.λy.t1 pattern, we have:

Enumerating p3-patterns

E[Xn] =
n
240
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Finally, using the asymptotic mean for Zn, counting occurences
of the λx.λy.t1 pattern, we have:

Enumerating p3-patterns

E[Xn] =
n
240

Therefore, for the number Wn of steps required to reduce
a term of size n = 3k+ 2 to its β-normal form, we have:

E[Xn] ⩾ 11k
80

which is quite close to Noam’s conjecture of E[Wn] =
k
7 !
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Finally, using the asymptotic mean for Zn, counting occurences
of the λx.λy.t1 pattern, we have:

Enumerating p3-patterns

E[Xn] =
n
240

Therefore, for the number Wn of steps required to reduce
a term of size n = 3k+ 2 to its β-normal form, we have:

E[Xn] ⩾ 11k
80

which is quite close to Noam’s conjecture of E[Wn] =
k
7 !

Thank you for your patience!



19

Bibliography

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., & Jacquot, A. (2013).

Enumeration of Generalized BCI Lambda-terms.

The Electronic Journal of Combinatorics, P30-P30.

[Z16] Zeilberger, N. (2016).

Linear lambda terms as invariants of rooted trivalent maps.

Journal of functional programming, 26.

[AB00] Arques, D., & Béraud, J. F. (2000).
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