
AMI2B COB Graphs and Assembly Lab work

Assembling reads using the de Bruijn graph

The de Bruijn graph is a powerful tool for assembling genomes. It is built from the set
of k-mers occurring in the reads produced by a sequencing experiment.

In this lab assignment, we will work under the following assumptions:

1. large repeats do not occur in the target genome;

2. reads are error-free (inc. mismatches and gaps);

3. the target genome is fully covered by the sequencing experiment, i.e. every ge-
nomic position belongs is part of at least one read.

In this (fairly unrealistic) setting, reconstructing the genome is equivalent to finding
a Eulerian path, the object of this assignment.

Breaking down a read into a k-mers list

A list of k-mers is created from a list of reads, implement a list that breaks down a read
into its fragments of size k
Example:

Input Output
buildkmers("ACGUACGACU",k=4) −→ ["ACGU","CGUA""GUAC""UACG""ACGA","CGAC","GACU"]

Computing overlaps

Given a list of k-mers, when need to compute the (directed) pairs of k mers (w, w ′) that
overlap on (k −1) letters (the (k −1) first letters of w ′ are the same as the (k −1) last ones
of w)
Example:

Input Output
overlaps(["ACGU","CGUU","CGUG"]) −→ [("ACGU","CGUU"),("ACGU","CGUG")]

It is possible to use classic Python data structures, like dict, or use an optimized
prefix tree.

Building the de Bruijn graph

Build the de Bruijn graph as shown in the lecture.
To represent the graph G , we will use the networkx which includes many graph algo-

rithms.
Example:

Input Output
deBruijn(reads,k) −→ networkx.DiGraph object

Using the draw method of networkx (+ matplotlib), check on the example given in
the lecture that your implementation produces the same graph.



AMI2B COB Graphs and Assembly Lab work

Checking the input

Check that the graph in Eulerian is amenable to an assembly:

• indegree=outdegree for all nodes, except maybe for start/end nodes;

• single connected component.

Example:
Input Output

check_deBruijn(["AGCG","CCCC"],2) −→ False

Towards Eulerian path

Implement the Eulerian path reconstruction algorithm to generate a possible assembly
of k-mers
Example:

Input Output
eulerian(reads,k) −→ "XXX"

Beyond the single genome

Generate the list of all possible ordering for a given initial path. Is that all there is?
Example:

Input Output
all_eulerian(reads,k) −→ ["XXX","YYY"...]

Page 2


