M2 BIM – STRUCT - Lecture 2 Boltzmann equilibrium and beyond

Yann Ponty

AMIBio Team École Polytechnique/CNRS

Outline

Physics-based structure prediction Turner energy model MFold/Unatold

Boltzmann ensemble

Nussinov: Minimisation \Rightarrow Counting Computing the partition function Statistical sampling

Performances

Overall picture Family-level evaluation Evaluation issues

The specific case and issues of ML

Deep learning: Beauty and the beast ML performances as advertised by authors Surprising limitations Takeaways

Extended Alorithmics/DP techniques

Suboptimal structures Pseudoknots

Paradigms in RNA structural bioinformatics

A – Kinetic Landscape

B – Evolution of concentrations

Continuous-time Markov chain

Given free-energy $E : \{A, C, G, U\}^* \times S \to \mathbb{R}$, at the Boltzmann equilibrium:

 $\mathbb{P}(S \mid w) \propto e^{-E(w,S)/RT}$

- Minimum Free-Energy (MFE): Relevant structure = Most stable/probable
- Partition function: Equilibrium properties of Boltzmann ensemble
- Kinetics: Finite-time evolution of concentrations/probabilities

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles \ldots

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

Internal loops

- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles \ldots

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles \ldots

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles \ldots

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops

Free-energy Δ G of a loop depend on bases, assymmetry, dangles \ldots

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles \ldots

Experimentally determined + Interpolated for larger loops.

MFold Unafold

- $E_H(i, j)$: Energy of terminal loop *enclosed by* (i, j) pair
- $E_{BI}(i, j)$: Energy of bulge or internal loop *enclosed by* (i, j) pair
- $E_S(i, j)$: Energy of stacking (i, j)/(i + 1, j 1)
- Penalty for multi loop (a), and occurrences of unpaired base (b) and helix (c) in multi loops.

DP recurrence

$$\mathcal{M}'_{i,j} = \min \begin{cases} E_{H}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min}_{r,j'}(E_{BI}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \end{cases}$$
$$\mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min (\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\}$$
$$\mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\}$$

/ann Ponty (CNRS & Polytechnique) · BIM STRUCT 2024/2025 · Lecture 2 · 7 / 47

Backtracking

Backtracking to reconstruct MFE structure:

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} \mathcal{E}_{\mathcal{H}}(i,j) \\ \mathcal{E}_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min}_{i',j'}(\mathcal{E}_{Bi}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\} \end{cases}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

¹Using a trick/restriction for internal loops...

/ann Ponty (CNRS & Polytechnique) · BIM STRUCT 2024/2025 · Lecture 2 · 7 / 47

Backtracking

Backtracking to reconstruct MFE structure:

$$\mathcal{M}_{i,j}^{\prime} = -\operatorname{Min}_{k-1}^{\prime} \left\{ \operatorname{min}_{i,k-1}^{\prime} (E_{Bl}(i,i',j',j) + \mathcal{M}_{i',j'}^{\prime}) - \left(\operatorname{min}_{i',j'}^{\prime} (E_{Bl}(i,i',j',j) + \mathcal{M}_{i',j'}^{\prime}) - \left(\operatorname{min}_{i',j'}^{\prime} (E_{Bl}(i,i',j',j) + \mathcal{M}_{i',j'}^{\prime}) - \left(\operatorname{min}_{k}^{\prime} (\mathcal{M}_{i+1,k-1} + \mathcal{M}_{k,j-1}^{1}) \right) \right) \right\}$$

$$\mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \operatorname{min} (\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}_{k,j}^{1} \right\}$$

$$\mathcal{M}_{i,j}^{1} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}_{i,j-1}^{1}, c + \mathcal{M}_{i,j}^{\prime} \right\}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

¹Using a trick/restriction for internal loops...

Backtracking to reconstruct MFE structure:

$$\mathcal{M}'_{i,j} = \mathcal{M}_{i,j'} \{ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

¹Using a trick/restriction for internal loops...

Backtracking to reconstruct MFE structure:

$$\mathcal{M}'_{i,j} = \operatorname{Min} \left\{ \begin{array}{c} E_{\mathcal{H}}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min}_{i',j'}(E_{Bi}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ A + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \end{array} \right\}$$
$$\mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\}$$
$$\mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

¹Using a trick/restriction for internal loops...

Backtracking to reconstruct MFE structure:

$$\mathcal{M}'_{i,j} = \operatorname{Min} \left\{ \begin{array}{c} E_{\mathcal{H}}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ Min_{i',j'}(E_{Bi}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \end{array} \right\}$$
$$\mathcal{M}_{i,j} \leftarrow = -\operatorname{Min}_{k} \left\{ \min_{i=1}^{m} (\mathcal{M}_{i,k=1}, \mathcal{B}(k-1)) + \mathcal{M}^{1}_{k,j} \right\}$$
$$\mathcal{M}_{i,j}^{1} \leftarrow = -\operatorname{Min}_{k} \left\{ -b + \mathcal{M}^{1}_{-i,j=1}, c + \widetilde{\mathcal{M}}'_{i,j} \right\}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

¹Using a trick/restriction for internal loops...

Backtracking to reconstruct MFE structure:

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} E_{\mathcal{H}}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min}_{i',j'}(E_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\} \end{cases}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

¹Using a trick/restriction for internal loops...

Backtracking to reconstruct MFE structure:

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} E_{\mathcal{H}}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min}_{i',j'}(E_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

¹Using a trick/restriction for internal loops...

Outline

Physics-based structure prediction Turner energy model MFold/Unafold

Boltzmann ensemble

Nussinov: Minimisation \Rightarrow Counting Computing the partition function Statistical sampling

Performances

Overall picture Family-level evaluation Evaluation issues

The specific case and issues of ML

Deep learning: Beauty and the beast ML performances as advertised by authors Surprising limitations Takeaways

Extended Alorithmics/DP techniques

Suboptimal structures Pseudoknots

The canonical Boltzmann Ensemble

RNA *breathes* \Rightarrow There is no more than a single conformation.

New paradigm

The conformations of an RNA coexist in the Boltzmann distribution.

Consequence: The MFE probability can be arbitrarily small.

 \Rightarrow To understand how RNA acts, one must account for the set of alternative structures.

In particular, structurally close structures may *ally*, and become the most realistic candidate in the search for a functional conformation.

The canonical Boltzmann Ensemble

RNA *breathes* \Rightarrow There is no more than a single conformation.

New paradigm

The conformations of an RNA coexist in the Boltzmann distribution.

Consequence: The MFE probability can be arbitrarily small.

 \Rightarrow To understand how RNA acts, one must account for the set of alternative structures.

In particular, structurally close structures may *ally*, and become the most realistic candidate in the search for a functional conformation.

Boltzmann Distribution: Definition

For each structure *S* compatible with an RNA ω , the Boltzmann distribution associates a Boltzmann factor $\mathcal{B}_{S,\omega} = e^{\frac{-E_{S,\omega}}{RT}}$, where:

- $E_{S,\omega}$ is the free-energy *S* (kCal.mol⁻¹)
- ► *T* is the temperature (K)
- *R* is the perfect gaz constant (1.986.10⁻³ kCal.K⁻¹.mol⁻¹)

To obtain a distribution, one simply renormalizes by the partition function

$${\mathcal{Z}}_{\omega} = \sum_{{\mathcal{S}} \in {\mathcal{S}}_{\omega}} {oldsymbol{e}}^{-{oldsymbol{\mathcal{E}}}_{{\mathcal{S}},\omega}}$$

where S_{ω} is the set of conformations that are compatibles with ω .

The Boltzmann probability of a structure *S* is simply given by

$$P_{S,\omega} = rac{e^{rac{-E_{S,\omega}}{RT}}}{\mathcal{Z}_{\omega}}$$

$$N_{i,t} = 0, \quad \forall t \in [i, i + \theta]$$

$$N_{i,j} = \min \begin{cases} j & i \text{ unpaired} \\ \min_{k=i+\theta+1} \Delta G_{i,k} + N_{i+1,k-1} + N_{k+1,j} & i \text{ paired with } k \end{cases}$$

Ambiguity? Consider *i*: Either unpaired, or paired to *k*. Sets of structures generated in these two cases are clearly disjoint. (also holds for various values of k) \Rightarrow Unambiguous decomposition

Completeness?True, since scheme explores every possible outcome for *i*. + Induction on interval length \Rightarrow Complete decomposition

Recurrence for minimal free-energy of a fold :

$$\begin{aligned} &\mathcal{N}_{i,t} &= 0, \quad \forall t \in [i, i+\theta] \\ &\mathcal{N}_{i,j} &= \min \left\{ \begin{array}{ll} \mathcal{N}_{i+1,j} & (i \text{ unpaired}) \\ \min_{k=i+\theta+1}^{j} \mathcal{E}_{i,k} + \mathcal{N}_{i+1,k-1} + \mathcal{N}_{k+1,j} & (i \text{ comp. with } k) \end{array} \right. \end{aligned}$$

Recurrence for counting compatible structures :

$$C_{i,t} = 1, \quad \forall t \in [i, i + \theta]$$

$$C_{i,j} = \sum \begin{cases} C_{i+1,j} & (i \text{ unpaired}) \\ \sum_{k=i+\theta+1}^{j} 1 \times C_{i+1,k-1} \times C_{k+1,j} & (i \text{ comp. with } k) \end{cases}$$

Decomposition matters, and the rest (MFE, count...) follows!

$$\begin{aligned} \mathcal{Z}_{i,t} &= 1, \quad \forall t \in [i, i+\theta] \\ \mathcal{Z}_{i,j} &= \sum \begin{cases} \mathcal{Z}_{i+1,j} \\ \sum_{k=i+\theta+1}^{j} 1 \times \mathcal{Z}_{i+1,k-1} \times \mathcal{Z}_{k+1,j} \end{cases} \end{aligned}$$

$$\begin{aligned} \mathcal{Z}_{i,t} &= 1, \quad \forall t \in [i, i + \theta] \\ \mathcal{Z}_{i,j} &= \sum \begin{cases} \mathcal{Z}_{i+1,j} \\ \sum_{k=l+\theta+1}^{j} e^{-\frac{e_{\text{bp}}(i,k)}{RI}} \times \mathcal{Z}_{i+1,k-1} \times \mathcal{Z}_{k+1,j} \end{aligned}$$

$$\begin{split} \mathcal{M}'_{i,j} &= \operatorname{Min} \begin{cases} & E_{H}(i,j) \\ & E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ & \operatorname{Min}(E_{Bi}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ & a + c + \operatorname{Min}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ & \mathcal{M}_{i,j} &= \operatorname{Min} \left\{ \operatorname{Min}(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ & \mathcal{M}^{1}_{i,j} &= \operatorname{Min} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\} \end{aligned}$$

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} e^{\frac{-\mathcal{E}_{H}(i,j)}{\mathcal{H}'}} \\ e^{\frac{-\mathcal{E}_{g}(i,j)}{\mathcal{H}'}} + \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min} \left(e^{\frac{-\mathcal{E}_{g}(i,j)}{\mathcal{H}'}} + \mathcal{M}'_{i',j'} \right) \\ e^{\frac{-(\phi+\phi)}{\mathcal{H}'}} + \operatorname{Min} \left(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1} \right) \\ \mathcal{M}_{i,j} = \operatorname{Min} \left\{ \operatorname{Min} \left(\mathcal{M}_{i,k-1}, e^{\frac{-\phi(k-1)}{\mathcal{H}'}} \right) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min} \left\{ e^{\frac{-\phi}{\mathcal{H}'}} + \mathcal{M}^{1}_{i,j-1}, e^{\frac{-\phi}{\mathcal{H}'}} + \mathcal{M}'_{i,j} \right\} \end{cases}$$

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} e^{-\frac{E_{H}(i,j)}{H^{1}}} \\ e^{-\frac{E_{H}(i,j)}{H^{1}}} \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min} \left(e^{-\frac{E_{H}(i,l',j',j)}{H^{1}}} \mathcal{M}'_{i',j'} \right) \\ e^{-\frac{(a+c)}{H^{1}}} \operatorname{Min} \left(\mathcal{M}_{i+1,k-1} \mathcal{M}^{1}_{k,j-1} \right) \\ \mathcal{M}_{i,j} = \operatorname{Min} \left\{ \operatorname{Min} \left(\mathcal{M}_{i,k-1}, e^{-\frac{a(k-1)}{H^{1}}} \right) \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min} \left\{ e^{\frac{-b}{H^{1}}} \mathcal{M}^{1}_{i,j-1}, e^{\frac{-c}{H^{1}}} \mathcal{M}'_{i,j} \right\} \end{cases}$$

$$\begin{aligned} \mathcal{Z}'(i,j) &= \sum \begin{cases} e^{\frac{e^{-E_H(i,j)}}{RT}} \\ e^{\frac{-E_g(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) \\ + \sum \left(e^{\frac{-E_g(i,j',j',j)}{RT}} \mathcal{Z}'(i',j') \right) \\ + e^{\frac{-(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1) \mathcal{Z}^1(k,j-1) \right) \end{aligned}$$
$$\begin{aligned} \mathcal{Z}(i,j) &= \sum \left(\mathcal{Z}(i,k-1) + e^{\frac{-c_K(k-1)}{RT}} \right) \mathcal{Z}^1(k,j) \\ \mathcal{Z}^1(i,j) &= e^{\frac{-b}{RT}} \mathcal{Z}^1(i,j-1) + e^{\frac{-c_T}{RT}} \mathcal{Z}'(i,j) \end{aligned}$$

Partition function = Weighted count over compatible structures

$$\begin{aligned} \mathcal{Z}_{i,t} &= 1, \quad \forall t \in [i, i+\theta] \\ \mathcal{Z}_{i,j} &= \sum \left\{ \begin{array}{c} \mathcal{Z}_{i+1,j} \\ \sum_{k=i+\theta+1}^{j} e^{-\frac{\mathcal{E}_{bp}(i,k)}{RT}} \times \mathcal{Z}_{i+1,k-1} \times \mathcal{Z}_{k+1,j} \right. \end{aligned}$$

Validity of a partition function computation:

Completeness/Unambiguity of decomposition scheme

Correctness of Boltzmann factor Weight induced by backtrack = Product of derivations weights e^{-E/RT} → Weight products ⇔ Summing energy terms

$$e^{-E_{bp}(i,k)/RT} \times \mathcal{Z}_{i+1,k-1} \times \mathcal{Z}_{k+1,j} = \cdot \sum_{x} e^{-E(x)/RT} \cdot \sum_{y} e^{-E(y)/RT}$$
$$= \sum_{x,y} e^{-a/RT} \cdot e^{-E(x)/RT} \cdot e^{-E(y)/RT}$$
$$= \sum_{x,y} e^{-(E_{bp}(i,k)+E(x)+E(y))/RT}$$

Partition function = Weighted count over compatible structures

$$\begin{aligned} \mathcal{Z}_{i,t} &= 1, \quad \forall t \in [i, i+\theta] \\ \mathcal{Z}_{i,j} &= \sum \left\{ \begin{array}{l} \mathcal{Z}_{i+1,j} \\ \sum_{k=i+\theta+1}^{j} e^{-\frac{\mathcal{E}_{\text{bp}}(i,k)}{RT}} \times \mathcal{Z}_{i+1,k-1} \times \mathcal{Z}_{k+1,j} \end{array} \right. \end{aligned}$$

Validity of a partition function computation:

- Completeness/Unambiguity of decomposition scheme
- Correctness of Boltzmann factor
 Weight induced by backtrack = Product of derivations weights
 - $e^{-E/RT}
 ightarrow$ Weight products \Leftrightarrow Summing energy terms

$$e^{-E_{\mathsf{bp}}(i,k)/RT} \times \mathcal{Z}_{i+1,k-1} \times \mathcal{Z}_{k+1,j} = \sum_{x} e^{-E(x)/RT} \sum_{y} e^{-E(y)/RT}$$
$$= \sum_{x,y} e^{-a/RT} \cdot e^{-E(x)/RT} \cdot e^{-E(y)/RT}$$
$$= \sum_{x,y} e^{-(E_{\mathsf{bp}}(i,k)+E(x)+E(y))/RT}$$

Statistical sampling of RNA 2ary structures

MFE (\Leftrightarrow Max probability) may be heavily dominated by a set \mathcal{B} of structurally similar suboptimal structures.

 \Rightarrow Functional conformation probably closer to ${\cal B}$ than to MFE.

Proof-of-concept: [DCL05]

- Sample structures within Boltzmann probability
- Cluster structures
- Build and return consensus structure of the heaviest cluster

 \Rightarrow Relative improvement for specificity (+17.6%) and sensitivity (+21.74%, except group II introns)

Problem

How to sample from the Boltzmann ensemble?
Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- 2. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) \in \left\{ \begin{array}{c} -- \Rightarrow e^{\frac{-\mathcal{E}_{H}(i,j)}{RT}} + e^{\frac{-\mathcal{E}_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) \\ \Rightarrow e^{\frac{-(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1) \mathcal{Z}^{1}(k,j-1) \right) \end{array} \right\}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- 2. Subtract from *r* the contributions of Z'(i, j) until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{\frac{-\mathcal{E}_{H}(i,j)}{RT}} + e^{\frac{-\mathcal{E}_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{\frac{-\mathcal{E}_{BI}(i,i',j',j)}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{\frac{-(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1) \mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \end{cases}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- 2. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{\frac{-E_{H}(i,j)}{RT}} + e^{\frac{-E_{g}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{\frac{-E_{BI}(i,i',j',j',j)}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{\frac{-(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1)\mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \\ & & \text{I} \\ \end{cases}$$

$$A_{1} - A_{2} - B_{i} - B_{i+1} - \dots - B_{j-1} - B_{j} - C_{i} - C_{i+1} - \dots - C_{j-1} - C_{j} \end{cases}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{-\frac{E_{H}(i,j)}{RT}} + e^{-\frac{E_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{-\frac{E_{BJ}(i,i',j',j')}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{-\frac{(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1)\mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \\ & \downarrow \\ \mathbf{A}_{1} - \frac{A_{2}}{r} - \frac{B_{i}}{r} - \frac{B_{i+1}}{r} - \dots - \frac{B_{j-1}}{r} - \frac{B_{j}}{r} - \frac{C_{j}}{r} - \frac{C_{j+1}}{r} - \dots - \frac{C_{j-1}}{r} - \frac{C_{j}}{r} \end{cases}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{-\frac{E_{H}(i,j)}{RT}} + e^{-\frac{E_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{-\frac{E_{BI}(i,i',j',j)}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{-\frac{(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1) \mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \\ \downarrow & \downarrow \\ \mathbf{A}_{1} - \frac{A_{2}}{RT} - \frac{B_{j}}{RT} - \frac{B_{j+1}}{RT} - \dots - \frac{B_{j-1}}{RT} - \frac{B_{j}}{RT} - \frac{C_{j-1}}{RT} - \frac{C_{j-1}}{$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{-\frac{E_{H}(i,j)}{RT}} + e^{-\frac{E_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{-\frac{E_{B}(i,i',j',j')}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{-\frac{(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1)\mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \\ \\ \mathbf{A}_{1} - \mathbf{A}_{2} - \frac{B_{i}}{B_{i}} - \frac{B_{i+1}}{B_{i+1}} - \dots - \frac{B_{j-1}}{B_{j}} - \frac{B_{j}}{C_{i}} - \frac{C_{i+1}}{C_{i+1}} - \dots - \frac{C_{j-1}}{C_{j}} - \frac{C_{j}}{C_{j}} \\ \end{cases}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{-\frac{E_{H}(i,j)}{RT}} + e^{-\frac{E_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{-\frac{E_{B}(i,i',j',j')}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{-\frac{(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1)\mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \\ \end{bmatrix}$$

$$A_{1} - A_{2} - B_{i} - B_{i+1} - \dots - B_{j-1} - B_{j} - C_{i} - C_{i+1} - \dots - C_{j-1} - C_{j}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

Principle: Choose derivation with prob. prop. to its contribution to part. fun. Precomputation: Compute part. fun. versions of matrices $(\mathcal{Z}, \mathcal{Z}', \mathcal{Z}^1)$. Stochastic backtrack:

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{\frac{-E_{H}(i,j)}{RT}} + e^{\frac{-E_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{\frac{-E_{BI}(i,i',j',j)}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{\frac{-(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1) \mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \end{cases}$$

Correctness: Each $S \in S_{\omega}$ uniquely generated (DP scheme unambiguity) Therefore the probability of generated *S* is

$$p_{S} = \frac{\mathcal{B}(E_{1})}{\mathcal{B}(S_{W})} \cdot \frac{\mathcal{B}(E_{2})}{\mathcal{B}(E_{1})} \cdot \frac{\mathcal{B}(E_{3})}{\mathcal{B}(E_{2})} \cdots \frac{\mathcal{B}(\{S\})}{\mathcal{B}(E_{m})}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

Principle: Choose derivation with prob. prop. to its contribution to part. fun. Precomputation: Compute part. fun. versions of matrices $(\mathcal{Z}, \mathcal{Z}', \mathcal{Z}^1)$. Stochastic backtrack:

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{\frac{-E_{H}(i,j)}{RT}} + e^{\frac{-E_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{\frac{-E_{BI}(i,i',j',j)}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{\frac{-(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1) \mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \end{cases}$$

Correctness: Each $S \in S_{\omega}$ uniquely generated (DP scheme unambiguity) Therefore the probability of generated *S* is

$$p_{S} = \frac{1}{\mathcal{B}(\mathcal{S}_{W})} \cdot \frac{1}{1} \cdot \frac{1}{1} \dots \frac{\mathcal{B}(\{S\})}{1}$$

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

Principle: Choose derivation with prob. prop. to its contribution to part. fun. Precomputation: Compute part. fun. versions of matrices $(\mathcal{Z}, \mathcal{Z}', \mathcal{Z}^1)$. Stochastic backtrack:

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{\frac{-\mathcal{E}_{H}(i,j)}{RT}} + e^{\frac{-\mathcal{E}_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{\frac{-\mathcal{E}_{BI}(i,i',j',j)}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{\frac{-(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1) \mathcal{Z}^{1}(k,j-1) \right) & \mathbb{C} \end{cases}$$

Correctness: Each $S \in S_{\omega}$ uniquely generated (DP scheme unambiguity) Therefore the probability of generated S is

$$p_{\mathcal{S}} = rac{\mathcal{B}(\{\mathcal{S}\})}{\mathcal{B}(\mathcal{S}_w)} = rac{e^{-E_{\mathcal{S}}/RT}}{\mathcal{Z}} = P_{\mathcal{S},\omega}$$

Complexity

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

Stochastic backtrack:

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) \in \underbrace{=}_{--} \underbrace{- \underbrace{- e^{-E_{H}(i,j)}}_{RT} + e^{-\frac{E_{S}(i,j)}{RT}} \mathcal{Z}'(i+1,j-1)}_{(i+1,j-1)} (A)$$

$$\mathcal{Z}'(i,j) \in \underbrace{=}_{--} \underbrace{- \underbrace{(2,2)}_{RT}}_{--} \underbrace{- \underbrace{(2,2)}_{RT}}_{--} \underbrace{\mathcal{Z}'(i',j')}_{---} \mathcal{Z}'(i',j') (i',j') (i',j') (i',j')}_{---} (i',j') (i'$$

Average-case complexity in $\Theta(k \times n\sqrt{n})$ (homopolymer model) [Pon08]. Boustrophedon search $\Rightarrow O(k \times n \log n)$ worst-case [Pon08].

Complexity

Goal [DL03]: From sequence ω , draw *S* with prob. $e^{-E_S/RT}/Z$

Stochastic backtrack:

- 1. Draw uniform random number $r \in [0, \mathbb{Z}'(i, j))$
- **2**. Subtract from *r* the contributions of $\mathcal{Z}'(i, j)$ until r < 0
- 3. Recurse over associated regions/matrices

$$\mathcal{Z}'(i,j) = \sum \begin{cases} e^{-\frac{E_H(i,j)}{RT}} + e^{-\frac{E_S(i,j)}{RT}} \mathcal{Z}'(i+1,j-1) & \mathbb{A} \\ \sum \left(e^{-\frac{E_H(i,j)}{RT}} \mathcal{Z}'(i',j') \right) & \mathbb{B} \\ e^{-\frac{(a+c)}{RT}} \sum \left(\mathcal{Z}(i+1,k-1)\mathcal{Z}^1(k,j-1) \right) & \mathbb{C} \\ \downarrow & \downarrow \\ A_1 - A_2 - B_i - B_{i+1} - \dots - B_{j-1} - B_j - C_i - C_{i+1} - \dots - C_{j-1} - C_j \\ A \text{fter } \Theta(n) \text{ operations}_{r} \text{ recurse over region of length } n-1 \\ \Rightarrow \text{ Worst-case complexity in } \mathcal{O}(k \times n^2) \text{ for } k \text{ samples} \end{cases}$$

Average-case complexity in $\Theta(k \times n\sqrt{n})$ (homopolymer model) [Pon08]. Boustrophedon search $\Rightarrow O(k \times n \log n)$ worst-case [Pon08].

Outline

Physics-based structure prediction

Turner energy model MFold/Unafold

Boltzmann ensemble

Nussinov: Minimisation \Rightarrow Counting Computing the partition function Statistical sampling

Performances

Overall picture Family-level evaluation Evaluation issues

The specific case and issues of ML

Deep learning: Beauty and the beast ML performances as advertised by authors Surprising limitations Takeaways

Extended Alorithmics/DP techniques

Suboptimal structures Pseudoknots

Definition (Ab initio folding)

Starting from sequence, find conformation that minimizes free-energy.

Advantages:

- Mechanical nature allows the (in)validation of models
- Reasonable complexity *O*(n³)/*O*(n²) time/space
- Exhaustive nature

Definition (Comparative approach)

Limitations:

- Hard to include PKs
- Highly dependent on energy model
- No cooperativity
- Limited performances

Starting from homologous sequences, postulate common structure and find best possible tradeoff between folding & alignment.

Avantages :

- Better performances
- (Limited) cooperativity
- Self-improving

Limitations

- Easily unreasonable complexity
- Non exhaustive search
- Captures transient structures

Definition (Ab initio folding)

Starting from sequence, find conformation that minimizes free-energy.

Advantages:

- Mechanical nature allows the (in)validation of models
- Reasonable complexity *O*(n³)/*O*(n²) time/space
- Exhaustive nature

Definition (Comparative approach)

Limitations:

- Hard to include PKs
- Highly dependent on energy model
- No cooperativity
- Limited performances

Starting from homologous sequences, postulate common structure and find best possible tradeoff between folding & alignment.

Avantages :

- Better performances
- (Limited) cooperativity
- Self-improving

Limitations

- Easily unreasonable complexity
- Non exhaustive search
- Captures transient structures

Typical performances

Typical performances

Typical performances

Detailed performances of 2D folding algorithms

Performance Benchmark (by RNA class)

Biased benchmarks: precedent in comparative folding/alignment

Bralibase: Benchmark for comp. RNA folding [Gardner, Wilm & Washietl, NAR 2005]

[Löwes et al, Briefings in Bioinfo 2016]

Biased benchmarks: precedent in comparative folding/alignment

[Bremges et al, BMC Bioinfo, 2010]

[Löwes et al, Briefings in Bioinfo 2016]

Biased benchmarks: precedent in comparative folding/alignment

Outline

Physics-based structure prediction

Turner energy model MFold/Unafold

Boltzmann ensemble

Nussinov: Minimisation \Rightarrow Counting Computing the partition function Statistical sampling

Performances

Overall picture Family-level evaluation Evaluation issues

The specific case and issues of ML

Deep learning: Beauty and the beast ML performances as advertised by authors Surprising limitations Takeaways

Extended Alorithmics/DP techniques

Suboptimal structures Pseudoknots The elephant in the room – 2010s version

R

A personal take on predictive Bioinformatics

A personal take on predictive Bioinformatics

A personal take on predictive Bioinformatics

Method dev. as a modeling discipline:

Mechanism-driven model + Exact/deterministic algorithms → Performance as (in)validation of model

Machine Learning (ML): The beauty...

Machine Learning as a tool for scientific discovery

- Great promises
- Self-improving methods
- Generates/prioritizes hypotheses
- Available workforce (ubiquitous in curriculums)
- ► Highly promoted/funded by research institutions and glamorous journals...

Shut up and take my money

- ► Tricky evaluation (data leakage) → Extrapolation/generalization???
- Reproducibility issues (code/datasets availability, stability, retraining)
- Fishing expeditions/storytelling, selective reporting
- Educational deadend?
- Future(?) ecological disaster? Random blue checkmarks AI zealots on Twitter (grumble...)

- ► Tricky evaluation (data leakage) → Extrapolation/generalization???
- Reproducibility issues (code/datasets availability, stability, retraining)
- Fishing expeditions/storytelling, selective reporting
- Educational deadend?
- Future(?) ecological disaster? Random blue checkmarks AI zealots on Twitter (grumble...)

(a) Husky classified as wolf (b) Explanation [Ribeiro et al, KDD'16]

- ► Tricky evaluation (data leakage) → Extrapolation/generalization???
- Reproducibility issues (code/datasets availability, stability, retraining)
- Fishing expeditions/storytelling, selective reporting
- Educational deadend?
- Future(?) ecological disaster? Random blue checkmarks AI zealots on Twitter (grumble...)

Multiple (potential) pitfalls for ML in Bio*:

- ► Tricky evaluation (data leakage) → Extrapolation/generalization???
- Reproducibility issues (code/datasets availability, stability, retraining)
- Fishing expeditions/storytelling, selective reporting
- Educational deadend?
- Future(?) ecological disaster? Random blue checkmarks AI zealots on Twitter (grumble...)

Available upon request

aka iff I'm in a good mood, PhD/postdoc still In Iab, HDDs haven't burned, pharma hasn't expressed interest in data...

- ► Tricky evaluation (data leakage) → Extrapolation/generalization???
- Reproducibility issues (code/datasets availability, stability, retraining)
- Fishing expeditions/storytelling, selective reporting
- Educational deadend?
- Future(?) ecological disaster? Random blue checkmarks AI zealots on Twitter (grumble...)

- ► Tricky evaluation (data leakage) → Extrapolation/generalization???
- Reproducibility issues (code/datasets availability, stability, retraining)
- Fishing expeditions/storytelling, selective reporting
- Educational deadend?
- Future(?) ecological disaster? Random blue checkmarks AI zealots on Twitter (grumble...)

A crowded ML field for RNA 2D prediction

Method	Output	PKs?	Architecture	Availability
CONTRAfold	Pairwise contacts	No	CLLM	Code+weights+webserver
EternaFold	Pairwise contacts	No	CLLM	Code+weights+webserver
DMfold	DBN	Yes	bi-LSTM	Code only
RNA-state-inf	Binary paired/unpaired	N/A	bi-LSTM	Code only
SPOT-RNA2	Pairwise contacts	Yes	CNN	Code+weights+webserver
CROSS	Binary paired/unpaired	N/A	CNN-like	Webserver
RPRes	Binary paired/unpaired	N/A	bi-LSTM+CNN	Code only
2dRNA	Pairwise contacts	Yes	bi-LSTM+CNN	Webserver
2dRNA-LD	Pairwise contacts	Yes	bi-LSTM+CNN	Webserver
SPOT-RNA	Pairwise contacts	Yes	CNN+bi-LSTM	Code+weights+webserver
MXfold2	Pseudo-dG	No	CNN+bi-LSTM	Code+weights+webserver
CNNFold	Pairwise contacts	Yes	CNN(NxN input)	Code+weights
UFold	Pairwise contacts	Yes	CNN(NxN input)	Code+weights+webserver
CDPfold	DBN	No	CNN(N×Ninput)	Code
E2Efold	Pairwise contacts	Yes	Transformer+CNN	Code+weights
ATTfold	Pairwise contacts	Yes	Transformer+CNN	No

[Wu et al, Briefings in Bioinfo 2023]
Performances of 2D structure prediction

RNAStrand benchmark				
[Adronescu et al, BMC Bioinf 2008]				
Method	F ₁			
RNAfold 1.8.5 UNAfold 3.8 RNAstructure 5.7	0.737 0.725 0.744			

$$\mathsf{F}_1\text{-}\mathsf{score} = \frac{2\times\mathsf{PPV}\times\mathsf{Sens}}{\mathsf{PPV}+\mathsf{Sens}}$$

The TORNADO dataset

[Rivas et al, RNA 2012]

TrainSetA vs TestSetA: 95% sim. cutoff \rightarrow Learn k-mer to template association

(May happen even for extreme cutoffs)

TrainSetA vs TestSetB: Rewards learning structurally generalizable models

Performances of 2D structure prediction

RNAStrand benchmark			
[Adronescu et al, BMC	Bioinf 2008		
Method	F ₁		
RNAfold 1.8.5 UNAfold 3.8 RNAstructure 5.7	0.737 0.725 0.744		

TrainSetA/TestSetA

$$F_{1}\text{-score} = \frac{2 \times PPV \times Sens}{PPV + Sens}$$

Performances of 2D structure prediction

	0,60
1 Score	0.40
ш	0,20
	0.00
	CONTRACO REAL OR AND BROOK ON DUPSTICIOUS TO PARADO
	ML-based methods Physics-based methods
	[Sato <i>et al</i> , Nature Comm 2021]

0.00

$$F_1$$
-score = $\frac{2 \times PPV \times Sens}{PPV + Sens}$

RNAStrand benchmark [Adronescu et al, BMC Bioinf 2008]

Method	F ₁
RNAfold 1.8.5	0.737
UNAfold 3.8	0.725
RNAstructure 5.7	0.744

TrainSetA/TestSetA TrainSetA/TestSetB

The (nc)RNA datasphere

- 34M sequences, inc 22M presumably structured (RNACentral)
- 4000+ functional ncRNA families (RFAM)
- 250-300 non-redundant 3D models (PDB)

Existing methods trained on datasets:

- highly-redundant sequence-wise
- low-diversity structure-wise

TrainSetA/TestSetA TrainSetA/TestSetB RNAStralign family-based cross validation

[Sato et al, Nature Comm 2021]

Generalization to new families/structures remains problematic

Family-fold cross-validation on Archivell dataset [Sloma & Mathews, RNA 2016] 3974 RNAs of length 77-438 (large rRNAs split into smaller domains)

What if you had access to (unbounded) additional data?

Idea: Assess NN models' capacity to emulate RNAfold on random sequences

[Flamm et al, Frontiers in Bioinfo 2022]

Yann Ponty (CNRS & Polytechnique) · BIM STRUCT 2024/2025 · Lecture 2 · 33 / 47

What if you had access to (unbounded) additional data?

Idea: Assess NN models' capacity to emulate RNAfold on random sequences

RNA 3D structure: No AlphaFold moment at CASP15

Conclusions and musings

- Still a need for improved RNA prediction (possibly ML-based)
- ▶ Purely combinatorial methods still ± state-of-the-art for new families...
- Hybrid approaches à la MxFold2: Best of both worlds?
- Assessing intrinsic limits of architectures: RNAFold as surrogate model

Conclusions and musings

So what's special about RNA?

- Modular but combinatorial structure
- New folds being routinely discovered (+ can be designed)
- Relatively scarce 3D data
- Opportunity: Tons of probing data (ML)
- Potential of LLMs/transformers (incoming)
- Pseudoknots-ready algorithms

Conclusions and musings

RNA/Bioinfo community needs to enforce stricter standards for ML publications:

- Enforce datasets and source code availability [Szikszai et al, Bioinfo'22] found 4/8 recent DL methods non-functional
- Realistic retraining mandatory Precondition for self-improvement, benchmarking of novel methods
- Consider mechanistic and ML methods as largely incomparable
- Better datasets/benchmarks needed, but perhaps not sufficient
- Sequence-based leakage should be systematically investigated

Outline

Physics-based structure prediction

Turner energy model MFold/Unafold

Boltzmann ensemble

Nussinov: Minimisation \Rightarrow Counting Computing the partition function Statistical sampling

Performances

Overall picture Family-level evaluation Evaluation issues

The specific case and issues of ML

Deep learning: Beauty and the beast ML performances as advertised by authors Surprising limitations Takeaways

Extended Alorithmics/DP techniques

Suboptimal structures Pseudoknots

Prob.: Simplified energy model (no pseudoknots, only canonical BPs) \Rightarrow Native structure (functional) could be overthrown.

 \Rightarrow Investigate suboptimal structures (RNASubopt [WFHS99]), *i.e.* build all structures within Δ KCal.mol⁻¹ of MFE:

- Compute minimum free-energy matrices
- Backtrack on any contribution within Δ of MFE;
- Update Δ such that future backtracks create \geq 1 struct.
- Recursively generate subopts and combine (brute-force ou Sort)

Prob.: Simplified energy model (no pseudoknots, only canonical BPs) \Rightarrow Native structure (functional) could be overthrown.

 \Rightarrow Investigate suboptimal structures (RNASubopt [WFHS99]), *i.e.* build all structures within Δ KCal.mol⁻¹ of MFE:

- Compute minimum free-energy matrices
- Backtrack on any contribution within Δ of MFE;
- Update Δ such that future backtracks create \geq 1 struct.
- Recursively generate subopts and combine (brute-force ou Sort)

Prob.: Simplified energy model (no pseudoknots, only canonical BPs) \Rightarrow Native structure (functional) could be overthrown.

⇒ Investigate suboptimal structures (RNASubopt [WFHS99]), *i.e.* build all structures within Δ KCal.mol⁻¹ of MFE:

- Compute minimum free-energy matrices
- Backtrack on any contribution within Δ of MFE;
- Update Δ such that future backtracks create \geq 1 struct.
- Recursively generate subopts and combine (brute-force ou Sort)

Prob.: Simplified energy model (no pseudoknots, only canonical BPs) \Rightarrow Native structure (functional) could be overthrown.

 \Rightarrow Investigate suboptimal structures (RNASubopt [WFHS99]), *i.e.* build all structures within Δ KCal.mol⁻¹ of MFE:

- Compute minimum free-energy matrices
- Backtrack on any contribution within Δ of MFE;
- Update Δ such that future backtracks create \geq 1 struct.
- Recursively generate subopts and combine (brute-force ou Sort)

Prob.: Simplified energy model (no pseudoknots, only canonical BPs) \Rightarrow Native structure (functional) could be overthrown.

⇒ Investigate suboptimal structures (RNASubopt [WFHS99]), *i.e.* build all structures within Δ KCal.mol⁻¹ of MFE:

- Compute minimum free-energy matrices
- Backtrack on any contribution within Δ of MFE;
- Update Δ such that future backtracks create \geq 1 struct.
- Recursively generate subopts and combine (brute-force ou Sort)

Prob.: Simplified energy model (no pseudoknots, only canonical BPs) \Rightarrow Native structure (functional) could be overthrown.

⇒ Investigate suboptimal structures (RNASubopt [WFHS99]), *i.e.* build all structures within Δ KCal.mol⁻¹ of MFE:

- Compute minimum free-energy matrices
- Backtrack on any contribution within Δ of MFE;
- Update Δ such that future backtracks create \geq 1 struct.
- Recursively generate subopts and combine (brute-force ou Sort)

 $\Rightarrow \text{ Time complexity (Sort)} : \mathcal{O}(n^3 + n \cdot k \log(k))$ (k grows exponentially fast with Δ !)

Predicting pseudoknotted structures

Pseudoknots are essential to the folding and activity of multiple RNA families.

Their disregard within current folding algorithms stems both from **algorithmic** and **energetic** intricacies.

 $(Pseudoknots = Crossings \Rightarrow$ foldings delimited by base-pair can no longer be assumed to be independent)

Туре	Complexity	Reference
Secondary structures	$\mathcal{O}(n^3)$	[MSZT99]
L&P	$\mathcal{O}(n^5)$	[LP00]
D&P	$\mathcal{O}(n^5)$	[DP03]
A&U	$\mathcal{O}(n^5)$	[Aku00]
R&E	$\mathcal{O}(n^6)$	[RE99]
Unconstrained	NP-complete	[LP00]

Goal: Capture a category of simple, yet recurrent, pseudoknots.

Idea: When such a PK motif is rotated, one can deduce the MFE of a triplet (i, j, k) from the MFE of triplets directly below it.

Akutsu/Uemura Algorithm

Goal: Capture a category of simple, yet recurrent, pseudoknots.

Idea: When such a PK motif is rotated, one can deduce the MFE of a triplet (i, j, k) from the MFE of triplets directly below it.

Akutsu/Uemura Algorithm

Goal: Capture a category of simple, yet recurrent, pseudoknots.

Idea: When such a PK motif is rotated, one can deduce the MFE of a triplet (i, j, k) from the MFE of triplets directly below it.

Akutsu/Uemura: Dynamic programming

Exercice: Write DP equation for MFE computation, counting and partition function.

Structure including base pair (i, k):
Inside: Structures over [i + 1, k - 1]
Outside: Contexts of interval (i, k)
∀ interval [i, j], i < j ≤ k
Complete structure by generating

brother intervals ([k + 1, j]) and recurse over the father of [i, k].

 t^*

Structure including base pair (i, k): • Inside: Structures over [i + 1, k - 1] \blacktriangleright Outside: Contexts of interval (i, k)▶ \forall interval $[i, j], i < j \leq k$ Complete structure by generating

Structure including base pair (i, k):

- ▶ Inside: Structures over [i + 1, k 1]
- Outside: Contexts of interval (i, k)
 - $\blacktriangleright \forall interval [i, j], i < j \le k$
 - Complete structure by generating brother intervals ([k + 1, j]) and recurse over the father of [i, k].

 t^*

Structure including base pair (i, k):

- ▶ Inside: Structures over [i + 1, k 1]
- Outside: Contexts of interval (i, k)
 - $\blacktriangleright \forall interval [i, j], i < j \le k$
 - Complete structure by generating brother intervals ([k + 1, j]) and recurse over the father of [i, k].

Structure including base pair (i, k):

- ▶ Inside: Structures over [i + 1, k 1]
- Outside: Contexts of interval (i, k)
 - $\blacktriangleright \forall interval [i, j], i < j \le k$
 - Complete structure by generating brother intervals ([k + 1, j]) and recurse over the father of [i, k].

·· s*

 t^*

...

Structure including base pair (i, k):

- ▶ Inside: Structures over [i + 1, k 1]
- Outside: Contexts of interval (i, k)
 - $\blacktriangleright \forall interval [i, j], i < j \le k$
 - Complete structure by generating brother intervals ([k + 1, j]) and recurse over the father of [i, k].

Whenever some further technical conditions are satisfied, this decomposition is complete and unambiguous, and implies a *simple recurrence* for computing the base pair probability matrix in $\Theta(n^3)$. Alternatively: Duplicate sequence

What is a good dynamic programming scheme?

Correction of a (Ensemble) dynamic programming scheme:

Objective function correctly computed/inherited at local level

- + All the conformations can be obtained
- ⇒ Correct algorithm (Induction)

Enumerating search space helps but does not constitute a proof.

Need to show equivalence of DP schemes, *e.g.* use one to simulate the other and vice versa. (Generating functions may help)

What is a good dynamic programming scheme?

Correction of a (Ensemble) dynamic programming scheme:

Objective function correctly computed/inherited at local level

- + All the conformations can be obtained
- Correct algorithm (Induction)

$$C_{i,t} = 1, \quad \forall t \in [i, i+\theta]$$

$$C_{i,j} = \sum \begin{cases} C_{i+1,j} \\ \sum_{k=l+\theta+1}^{j} 1 \times C_{i+1,k-1} \times C_{k+1,j} \end{cases}$$

$$\Leftrightarrow$$
Homopolymer (All pairs allowed) + $\theta = 1$

$$\Rightarrow C_{1,0} = 1, 1, 1, 2, 4, 8, 17, 32, 82, 185, 423, \dots$$

$$\Rightarrow C'_{1,0} = 0, 11, 2, 4, 8, 17, 32, 82, 185, 423, \dots$$

Enumerating search space helps but does not constitute a proof.

Need to show equivalence of DP schemes, *e.g.* use one to simulate the other and vice versa. (Generating functions may help)

 $\times C^{1}_{k,i}$

423

fann Ponty (CNRS & Polytechnique) · BIM STRUCT 2024/2025 · Lecture 2 · 45 / 47

References I

Tatsuya Akutsu.

Dynamic programming algorithms for rna secondary structure prediction with pseudoknots. *Discrete Appl. Math.*, 104(1-3):45–62, 2000.

S. Cao and S-J Chen.

Predicting structured and stabilities for h-type pseudoknots with interhelix loop. *RNA*, 15:696–706, 2009.

🚡 K. Doshi, J. J. Cannone, C. Cobaugh, and R. R. Gutell.

Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for rna secondary structure prediction. BMC Bioinformatics, 5(1):105, 2004.

Y. Ding, C. Y. Chan, and C. E. Lawrence. RNA secondary structure prediction by centroids in a boltzmann weighted ensemble. *RNA*, 11:1157–1166, 2005.

Y. Ding and E. Lawrence.

A statistical sampling algorithm for RNA secondary structure prediction. *Nucleic Acids Research*, 31(24):7280–7301, 2003.

6/47 fann Ponty (CNRS & Polytechnique) - BIM STRUCT 2024/2025 - Lecture 2 -

References II

Robert M Dirks and Niles A Pierce.

A partition function algorithm for nucleic acid secondary structure including pseudoknots. *J Comput Chem*, 24(13):1664–1677, Oct 2003.

P. Gardner and R. Giegerich.

A comprehensive comparison of comparative rna structure prediction approaches. *BMC Bioinformatics*, 5(1):140, 2004.

I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and comparison of RNA secondary structures. *Monatshefte für Chemie / Chemical Monthly*, 125(2):167–188, 1994.

R. B. Lyngsøand C. N. S. Pedersen. RNA pseudoknot prediction in energy-based models. *Journal of Computational Biology*, 7(3-4):409–427, 2000.

D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence dependence of thermodynamic parameters improves prediction of rna secondary structure.

Journal of Molecular Biology, 288(5):911–940, May 1999.

BIM STRUCT 2024/2025 · Lecture 2 · 47 / 47 (ann Ponty (CNRS & Polytechnique)

References III

N. R. Markham and M. Zuker. Bioinformatics, chapter UNAFold, pages 3–31. Springer, 2008.

Y. Ponty.

Efficient sampling of RNA secondary structures from the boltzmann ensemble of low-energy: The boustrophedon method.

Journal of Mathematical Biology, 56(1-2):107–127, Jan 2008.

E. Rivas and S.R. Eddy.

A dynamic programming algorithm for RNA structure prediction including pseudoknots. *J Mol Biol*, 285:2053–2068, 1999.

S. Wuchty, W. Fontana, I.L. Hofacker, and P. Schuster. Complete suboptimal folding of RNA and the stability of secondary structures. *Biopolymers*, 49:145–164, 1999.