
PUBLISH/SUBSCRIBE OVER STREAMS

Yanlei Diao
Department of Computer Science

University of Massachusetts Amherst
yanlei@cs.umass.edu

Michael J. Franklin

Department of Electrical Engineering and Computer Science
University of California Berkeley

franklin@cs.berkeley.edu

SYNONYMS
Message-Oriented Middleware

DEFINITION
Publish/subscribe (pub/sub) is a many-to-many communication model that directs the flow of messages
from senders to receivers based on receivers’ data interests. In this model, publishers (i.e., senders)
generate messages without knowing their receivers; subscribers (who are potential receivers) express their
data interests, and are subsequently notified of the messages from a variety of publishers that match their
interests.

HISTORICAL BACKGROUND
Distributed information systems usually adopt a three-layer architecture: a presentation layer at the top, a
resource management layer at the bottom, and a middleware layer in between that integrates disparate
information systems. Traditional middleware infrastructures are tightly coupled. Publish/Subscribe [Oki
et al., 1993] was proposed to overcome many problems of tight coupling:
• With respect to communication, tightly coupled systems use static point-to-point connections (e.g.,

remote procedure call) between senders and receivers. In particular, a sender needs to know all its
receivers before sending a piece of data. Such communication does not scale to large, dynamic
systems where senders and receivers join and leave frequently. Pub/sub offers loose coupling of
senders and receivers by allowing them to exchange data without knowing the operational status or
even the existence of each other.

• With respect to content, tight coupling can occur in remote database access. To access a database, an
application needs to have precise knowledge of the database schema (i.e., its structure and internal
data types) and is at risk of breaking when the remote database schema changes. Extensible Markup
Language (XML)-based pub/sub has emerged as a solution for loose coupling at the content level.
Since XML is flexible, extensible, and self-describing, it is suitable for encoding data in a generic
format that senders and receivers agree upon, hence allowing them to exchange data without knowing
the data representation in individual systems.

In many pub/sub systems, message brokers serve as central exchange points for data sent between
systems. Figure 1 illustrates a basic context in which a broker operates. Publishers provide information
by creating streams of messages1 that each contain a header describing application-specific information
and a payload capturing the content of the message. Subscribers register their data interests with a
message broker in a subscription language that the broker supports. Inside the broker, arriving
subscriptions are stored as continuous queries that will be applied to all incoming messages. These

1 Besides “messages”, the words “events”, “tuples”, and “documents” are often used with similar meanings in
various contexts in the database literature.

queries remain effective until they are explicitly deleted. Incoming messages are processed on-the-fly
against all stored queries. For each message, the broker determines the set of queries matched by the
message. A query result is created for each matched query and delivered to its subscriber in a timely
fashion.

Figure 1: Overview of publish/subscribe

Figure 2 shows a design space for publish/subscribe over data streams. In this diagram, pub/sub systems
are first classified by the data model and the query language that these systems support. Roughly
speaking, there are three main categories.
• Subject-based: Publishers label each message with a subject from a pre-defined set (e.g., “stock

quote”) or hierarchy (e.g., “sports/golf”). Users subscribe to the messages in a particular subject.
These queries can also contain a filter on the data fields of the message header to refine the set of
relevant messages within a particular subject.

• Complex predicate-based: Some pub/sub systems model the message content (payload) as a set of
attribute-value pairs, and allow user queries to contain predicates connected using “and” and “or”
operators to specify constraints over values of the attributes. For example, a predicate-based query
applied to the stock quotes can be “Symbol=‘ABC’ and (Change > 1 or Volume > 50000)”.

• XML filtering and transformation: Recent pub/sub systems have started to exploit the richness of
XML-encoded messages, in particular, the hierarchical, flexible XML structure. User queries can be
written using an existing XML query language such as XQuery. The rich XML structure and use of
an XML query language enable potentially more accurate filtering of messages and further re-
structuring of messages for customized result delivery.

Figure 2: Design space of publish/subscriber over streams

Pub/sub systems can be further classified based on the style of query processing. In some systems, queries
are applied only to individual messages, e.g., filtering messages, which does not involve any interaction
across message boundaries. Such processing is referred to as stateless. Stateless processing is in contrast
to stream query processing that maintains state over a long stream of messages, hence referred to as
stateful processing. This distinction is illustrated for complex predicate-based systems in Figure 2.

Finally, pub/sub systems can be distinguished based on the distribution of the architecture, as also shown
in Figure 2. In a coarse-grained fashion, this design space considers centralized and distributed
processing. Distributed processing spreads the processing load for larger-scale pub/sub services;
accordingly, it requires a more sophisticated routing functionality.

SCIENTIFIC FUNDAMENTALS
As with stream processing, subscriptions, stored as continuous queries inside a broker, need to be
evaluated as data continuously arrives from other sources; that is, queries are evaluated every time when a
new data item is received. Besides stream processing, pub/sub raises several additional challenges:
• Scalability. A key distinguishing requirement of pub/sub is scalability, in particular, in query

population that pub/sub systems need to support. Such query populations can range from hundreds to
millions in applications such as personalized content delivery. Given such populations, a salient issue
is to efficiently search the huge set of queries to find those that can be matched by a message and to
construct complete query results for them.

• Robustness. A second requirement of message brokers is the ability to perform in highly-dynamic
environments where subscribers join and leave and their data interests change over time. Since
message brokers see a constantly changing collection of queries, they must react quickly to query
changes without adversely affecting the processing of incoming messages.

• Distribution. Due to the scale of message volume and query population, large-scale pub/sub may
require the use of a network of message brokers to distribute the query population and message
processing load. In this case, an additional issue is how to efficiently route a message from its
publishing site to the set of brokers hosting relevant queries for complete query processing.

Scope of this article. The rest of the article focuses on complex predicate-based pub/sub systems.
Pub/sub systems exploring XML filtering and transformation are described in detail in the entry “XML
Publish/Subscribe”.

Centralized, Stateless Publish/Subscribe
Le Subscribe [Fabret et al., 2001] and Xlyeme [Nguyen et al., 2001] are predicate-based message filtering
systems that use centralized processing. In these systems, a predicate is a comparison between an attribute
and a constant using relational operators such as ‘=’, ‘>’, and ‘<’. The main issue they address is how to
efficiently match an incoming event, in the form of attribute value pairs, with the predicates of a large
number of queries. The key idea is to index predicates as well as to cluster queries. In particular, Le
Subscribe uses multi-attribute hash indexes to evaluate several predicates in a query with a single
operation. In addition, it groups queries based on the number of contained predicates and the common
conjunction of equality predicates, so many queries can be (partly) evaluated using a single operation. It
further offers cost-based algorithms to find optimal clustering and to dynamically adjust it.

Centralized, Stateful Publish/Subscribe
NiagaraCQ [Chen et al., 2000] considers continuous queries with more complex predicates that can
compare attributes of an input message to constants or to attributes of another message. To efficiently
handle multiple queries, it groups query plans of continuous queries based on common expression
signatures: an expression signature presents the same syntax structure, but possibly different constant
values, in different queries. Consider queries that are interested in stock quotes of different symbols.
Traditional query processing involves repeated retrieval of the symbol attribute from input and evaluation
of different predicates on this attribute for different queries. The group plan employs a constant table to
store the constant values form different queries, and retrieves this attribute from the input once and then
performs an equality join of the retrieved value and the constant table to find all matching queries. For
robust processing, NiagaraCQ constructs group plans incrementally: Given a new query, it constructs the
query plan, and merges the query plan bottom up with a group plan with the same signature, extending the

group plan with the mismatched branch(es) if necessary. This process is incremental as the addition of the
new query plan does not affect existing queries.

Recently, there has been a significant amount of activity on handling continuous and time-varying tuple
streams, resulting in the development of multiple general-purpose stream management systems [Abadi et
al., 2003; Chandrasekaran et al, 2003; Motwani et al., 2003]. These systems support complex continuous
queries that join multiple streams and/or compute aggregate values over a period of time called a window
(hence, performing stateful processing). While this surge of research explores a broad set of issues such as
adaptivity and approximation, shared processing of window-based queries [Chandrasekaran et al, 2003;
Motwani et al., 2003; Krishnamurthy 2006] is of particular relevance to pub/sub. (The reader is referred
to the articles on stream processing for further details of these techniques.)

Several special-purpose pub/sub systems have been recently proposed to handle temporal correlations
among events in a stream. SASE [Wu et al., 2006] supports sequencing operators that integrate
parameterized predicates (i.e., predicates that compare different events), negation, and windowing. It
explores a new query processing abstraction that uses an automaton-based implementation for fast
sequence operations and relational-style post-processing for other tasks such as negation and windowing.
It also devises a set of optimizations in this automaton-based framework for efficiency and scalability.
Cayuga [Demers et al. 2006] offers an algebra for expressing event sequences that may address a finite
yet unbounded number of events with a similar property, and employs a more sophisticated automaton
model to support this algebra. Its implementation focuses on multi-query optimization including merging
states of automata for different queries and further indexing query predicates.

Distributed, Stateless Publish/Subscribe
In distributed pub/sub systems, messages are published and subscriptions are registered to different
brokers. A key issue is to efficiently route each message from its publishing site to the subset of brokers
hosting relevant queries for complete query processing. For complexity reasons, most distributed pub/sub
systems restrict themselves to stateless services.

ONYX [Diao et al., 2004] presents an overview of a pub/sub network exploring content-based routing. In
this paradigm, brokers are organized as an application-level overlay network with a particular topology.
When a new message enters the broker network, the root broker as well as each intermediate broker
routes the message to its neighbouring brokers based on the correspondence between the content of the
message and the subscriptions residing at and reachable from those brokers. Content-based routing is used
as a key mechanism to avoid the flooding of messages to all brokers in the network, hence reducing
bandwidth usage and broker processing load and rendering better scalability.

ONYX consists of two layers of functionality. The lower layer deals with the overlay network; in
particular, for each broker, it constructs a broadcast tree that is rooted at that broker and reaches all other
brokers in the network. On top of these broadcast trees, the higher layer performs content-based
processing by dealing with subscriptions and messages. Two issues determine the effectiveness of
content-based routing. The first is how to partition subscriptions and assign them to host brokers. Results
of ONYX show that content-based routing is most effective if the clustering of subscriptions results in
mutual exclusiveness in data interest among host brokers. The second issue is how to aggregate
subscriptions from their host brokers and place such aggregations as routing specifications in the
intermediate brokers for later directing the message flow. Different degrees of generalization are possible
depending on the precision-efficiency tradeoff suitable for each pub/sub system.

For content-based routing, Gryphon [Aguilera et al., 1999] and Siena [Carzaniga and Wolf, 2003] both
aggregate subscriptions into compact, precise in-network data structures and use efficient algorithms to
search these data structures to determine the routing of the messages to other brokers in the network.

XPORT [Papaemmanouil et al., 2006] focuses on the construction, maintenance, and optimization of an
overlay dissemination tree of the available message brokers in the system. Its tree-oriented optimization
framework consists of a generic aggregation model that allows system cost to be expressed through
various combinations of aggregation functions and local metrics, and distributed iterative optimization
protocols for cost-based optimization of the overlay structure.

Distributed, Stateful Publish/Subscribe
For stateful publish/subscribe, Chandramouli et al. [Chandramouli et al., 2006] adopt the following
model: Users define subscriptions as SQL views over a conceptual (possibly distributed) database and
messages are published as updates to the database; if a database update affects a subscription, the pub/sub
system sends a notification to the subscriber containing the change to the content of the subscription view.
The main idea of this work is to explore appropriate interfacing between the database and the pub/sub
network so that existing stateless pub/sub networks can be leveraged for efficient dissemination. To do so,
the key is to transform published messages into a semantic description of affected subscriptions
(performed at the database side) and subscriptions into a predicate over the semantic description
(evaluated in the stateless pub/sub network). Consider a selection-join subscription σp(σp-R R σp-S S).
If a new message applies an update ΔR to table R, its effect on the subscription, σp(σp-R ΔR σp-S S),
requires access to table S that is not in the original update message (hence, stateful processing). The
proposed solution reformulates each message ΔR into a series of messages containing the tuples in ΔR
 S at the database side; to utilize a stateless pub/sub network, it transforms the select-join subscription
into a simple condition that evaluates σp ∧ p-R ∧ p-S over reformulated messages.

KEY APPLICATIONS
Personalized content delivery. This class of applications provide personalized filtering and delivery of
news feeds, web feeds (RSS), stock tickers, sport tickers, etc. to large numbers of online users.

Online auction and online procurement. Through these applications, users can create their own feeds for
their favorite searches, for example, on eBay.

Enterprise information management. Pub/sub has been traditionally used to support application
integration, which integrates disparate, independently-developed applications into new services via the
loose coupling of senders and receivers based on receivers’ data interest.

System and network monitoring. Pub/sub has been recently used in system and network monitoring,
where large-scale complex systems generate reports categorizing various aspects of system performance
and resource utilization, and system administrators, end users, and visualization applications subscribe to
receive updates on particular aspects of those reports.

DATA SETS
Many data sources are available online, including RSS feeds (indicated by the orange button labeled with
“RSS” or “XML” in many web pages) and financial feeds (e.g., Yahoo! Finance).

CROSS REFERENCES
Stream processing, Continuous queries, XML, XML document, XPath/XQuery, XML publish/subscribe

RECOMMENDED READING
[Abadi et al., 2003] Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,

Stonebraker, M., Tatbul, N., and Zdonik, S. Aurora: A New Model and Architecture for Data Stream
Management. In VLDB Journal, 12(2), 120-139, August 2003.

[Aguilera et al., 1999] Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., and Chandra, T.D.
Matching Events in a Content-Based Subscription System. In Proc. of Principles of Distributed
Computing (PODC’99), Atlanta, GA, May 1999.

[Carzaniga and Wolf, 2003] Carzaniga, A., and Wolf, A.L. Forwarding in a Content-Based Network. In
SIGCOMM, 163-174, Karlsruhe, Germany, August 2003.

[Chandramouli et al., 2006] Chandramouli, B., Xie, J., and Yang, J. On the database/network interface in
large-scale publish/subscribe systems. In SIGMOD, 587-598, 2006.

[Chandrasekaran et al, 2003] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein,
J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M.A. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. In CIDR, Asilomar, CA, January 2003.

[Chen et al., 2000] Chen, J., Dewitt, D.J., Tian, F., and Wang, Y. NiagaraCQ: A scalable continuous
query system for Internet databases. In SIGMOD, 379-390, Dallas, Texas, May, 2000.

[Demers et al., 2006] Demers, A.J., Gehrke, J., Hong, M., Riedewald, M., and White, W.M. Towards
Expressive Publish/Subscribe Systems. In EDBT, 627-644, 2006.

[Diao et al., 2004] Diao, Y., Rizvi, S., and Franklin, M.J. Towards an Internet-Scale XML Dissemination
Service. In VLDB, 612-623, August 2004.

[Fabret et al., 2001] Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., and Shasha, D.
Filtering Algorithms and Implementation for Very Fast Publish/Subscribe Systems. In SIGMOD,
115-126, May 2001.

[Krishnamurthy 2006] Krishnamurthy, S. Shared Query Processing in Data Streaming Systems. Ph.D.
Dissertation, University of California, Berkeley.

[Motwani et al., 2003] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,
Olston, C., Rosenstein, J., and Varma, R. Query Processing, Resource Management, and
Approximation in a Data Stream Management System. In CIDR, Asilomar, CA, January 2003.

[Nguyen et al., 2001] Nguyen, B., Abiteboul, S., Cobena, G., and Preda, M. Monitoring XML data on the
Web. In SIGMOD, 437-448, Santa Barbara, May 2001.

[Oki et al., 1993] Oki, B., Pfleugl, M., Siegel, A., and Skeen, D. The Information Bus: An Architecture
for Extensible Distributed System. In SOSP, 58-68, December 1993.

[Papaemmanouil et al., 2006] Papaemmanouil, O., Ahmad, Y., Çetintemel, U., Jannotti, J., and Yildirim,
Y. Extensible optimization in overlay dissemination trees. In SIGMOD, 611-622, 2006.

[Wu et al., 2006] Wu, E., Diao, Y., and Rizvi S. High-performance complex event processing over
streams. In SIGMOD, 407-418, 2006.

