
EXAM COURSE 2-38-2 MPRI 2017

ALGORITHMS AND COMBINATORICS FOR GEOMETRIC GRAPHS

VINCENT PILAUD

The course and your personal notes are authorized. Electronic devices are forbidden.
Prepare two separated sheets for the two halves of the course.
The two problems are independent and can be treated in an arbitrary order. Clearly indicate

the number of the question in front of your answer. You can skip some questions if you are stuck.
However, it is recommended to treat a coherent part of the subject rather than sporadic questions.

The care in the redaction and presentation of your solution will be considered in the notation.

1. Boxicity of a graph

1.1. Interval graphs. We consider a finite set V and define
(
V
2

)
:= {{u, v} | u 6= v ∈ V }. Consider

a set I := {Iv | v ∈ V } where Iv := [xv, yv] is an interval of R. The interval graph of I is the

graph GI with vertex set V and edge set
{
{u, v} ∈

(
V
2

)
| Iu ∩ Iv 6= ∅

}
.

Q1. What is the interval graph of {[1, 4], [2, 6], [3, 8], [5, 9], [7, 10]}? Give a set of intervals with
interval graph G = (V,E) where V = {a, b, c, d, e} and E = {ab, ac, bc, cd, ce, de}.
Q2. Consider an interval graph GI = (V,E). Show that:

• all induced cycles in GI are triangles,
• there is a partial order ≺ on V whose comparability graph is the complement of GI ,

i.e. such that {u, v} is an edge in GI if and only if u and v are incomparable in ≺.

In fact, this is a characterization of interval graphs, but we skip the proof here.

1.2. Boxicity. Consider a set B := {Bv | v ∈ V } where Bv := [x1
v, y

1
v ] × · · · × [xd

v, y
d
v ] is a box

in Rd for some d ≥ 1. The box graph of B is the graph GB with vertex set V and edge
set
{
{u, v} ∈

(
V
2

)
| Bu ∩Bv 6= ∅

}
. See Figure 1 for an example. Given a graph on V , the boxicity

of G is the smallest possible dimension d such that there exists a set B = {Bv | v ∈ V } of boxes
whose box graph GB is G.

Q3. What is the boxicity of a complete graph?

Q4. Show that a cycle of length at least 4 has boxicity 2.

Q5. Consider the intersection G ∩ H = (V,E ∩ F ) of two graphs G = (V,E) and H = (V, F ).
Show that the boxicity of G ∩H is at most the sum of the boxicities of G and H.

Q6. What is the boxicity of an interval graph? Show that the boxicity of G = (V,E) is the minimal
number d of interval graphs GI1 = (V,E1), . . . , GId = (V,Ed) such that E = E1 ∩ · · · ∩ Ed.

Figure 1. A set B of rectangles (2-dimensional boxes) and the corresponding box graph GB.
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1.3. General upper bound. We now show an upper bound on the boxicity of any graph G.

Q7. According to Q 3, we can consider a graph G = (V,E) that is not complete. Let u, v be
two non-adjacent vertices of G and let H = G r {u, v} be the graph G where u and v where
deleted. Assume that H is the intersection of d interval graphs GJ 1 , . . . , GJ d . Define d + 1 sets
of intervals I1, . . . , Id+1 as follows:

• For all i ∈ [d], let Ii :=J i ∪ {Ju, Jv} where Ju and Jv are intervals that are large enough
to intersect all intervals in J 1 ∪ · · · ∪ J d.

• Let Id+1 := {Iw | w ∈ V } where

Iw :=



{−1} if w = u

{1} if w = v

{0} if (u,w) /∈ E and (v, w) /∈ E

[−1, 0] if (u,w) ∈ E but (v, w) /∈ E

[0, 1] if (u,w) /∈ E but (v, w) ∈ E

[−1, 1] if (u,w) ∈ E and (v, w) ∈ E.

Show that G is the intersection of the interval graphs GI1 , . . . , GId+1 .

Q8. Deduce from the previous question that a graph on n vertices has boxicity at most n/2.

Q9. Consider the graph Up on p = 2q vertices obtained by deleting a perfect matching M from
the complete graph K2q. Show that the boxicity of Up is at least q = p/2. (Hint: Assume that Up

is the intersection of d interval graphs GI1 , . . . , GId . Show that each edge of the matching M is
missing in at least one of the interval graphs GIk and that two edges of the matching M cannot
be missing in the same interval graph GIk .)

1.4. Schnyder woods and boxicity. Thomassen proved that planar graphs have boxicity at
most 3. The goal of this section is to prove this result for triangulations using Schnyder woods.

Consider a triangulation T = (V,E) endowed with a Schnyder wood (T 1, T 2, T 3). In other
words, T 1, T 2, T 3 are three spanning trees of T , which partition the edges of T (except the edges
of the outer face which are all contained in two of these trees), and which fulfill Schnyder’s local
conditions around each vertex. Note that in contrast to the general case seen in the course, only
the edges of the external face are bioriented since T is a triangulation. Consider a vertex v ∈ V .
We denote by Ri(v) the region of T bounded by the paths from v to the root of the trees T i−1

and T i+1, and we let ri(v) = |Ri(v)|. We define xi
v := ri(v) and yiv := ri(vi), where vi is the

parent of v in the tree T i. Note that when v is the root of T i, the vertex vi is not defined, but we
let yiv := ri(v)+1. Consider the box Bv := [x1

v, y
1
v ]×[x2

v, y
2
v ]×[x3

v, y
3
v ]. Finally, let B := {Bv | v ∈ V }.

We have represented an example in Figure 2.

1
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23

Figure 2. A triangulation with a Schnyder wood (left), the corresponding or-
thogonal surface (middle), and the corresponding box representation (right). The
three external boxes have been reduced to let the other ones apparent.
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Figure 3. The octahedral triangulation (left), and some framework to draw box
representations corresponding to two Schnyder woods on O (middle and right).

Q10. Consider the triangulation O of Figure 3 (left) (note that it is the graph of an octahedron).
Compute all possible Schnyder woods on O (Hint: starting from one Schnyder wood, all the other
are obtained by returning oriented cycles surrounding a face of O.) For each Schnyder wood of O,
compute the boxes Bv for all vertices v of O. Finally, draw these boxes as in Figure 2. You can
use the framework of Figure 3 (middle and right) to help your drawing (don’t forget to insert this
in your exam).

Q11. Consider two adjacent vertices u, v ∈ V , and assume that u is a child of v in T i. Show that

xi−1
v ≤ xi−1

u ≤ yi−1v yiu = xi
v xi+1

v ≤ xi+1
u ≤ yi+1

v

and conclude that {u, v} ∈ GB.

Q12. Consider now two non-adjacent vertices u, v ∈ V , let i be such that u ∈ Ri(v) and let ui

be the parent of u in T i. Show that yiu < xi
v when

• v lies on the path from u to the root of T i, or
• u does not lie on the paths from v to the root of the trees T i−1 and T i+1.

Deduce that if u and v are non-adjacent vertices in T , then Bu ∩Bv = ∅ so that {u, v} /∈ GB.

Q13. Conclude from the two previous questions that T = (V,E) is the box graph GB for the set
of boxes B := {Bv | v ∈ V }.

Q14. We now consider the planar graph of Figure 4 (left) with two marked vertices u, v. Com-
puting x3(u) and y3(v), show that the recipe given for triangulations does not directly work for
arbitrary 3-connected planar graphs. This issue is illustrated in Figure 4 where you can see that
the boxes corresponding to u and v are disjoint, while u and v should be adjacent.
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Figure 4. A planar graph with a Schnyder wood (left), the corresponding orthog-
onal surface (middle), and the corresponding incorrect box representation (right).
The three external boxes have been reduced to let the other ones apparent.
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2. Hamiltonicity of the permutahedron, the associahedron and the cube

A graph G = (V,E) is Hamiltonian if there exists a cycle in E that passes exactly once through
each vertex of V . The objective of this problem is to find Hamiltonian cycles in the graphs of the
permutahedron, the associahedron and the cube.

2.1. The cube. We start with the graph of the cube.

Q15. Draw an Hamiltonian cycle in the d-dimensional cube for d ∈ {2, 3, 4}. Show that the graph
of the d-dimensional cube is Hamiltonian for d ≥ 2. (Hint: By induction, construct a Hamiltonian
cycle from Hamiltonian cycles of the (d− 1)-dimensional cubes given by two opposite facets.)

Q16. You are in front of d interrupters and try to switch on a light. You know that there is a
single position of all interrupters that will switch the light on. You pay each time you switch a
single interrupter. Design a strategy to switch as few interrupters as possible and still be sure that
you found the position of all interrupters that switches the light on. How much will you pay?

2.2. The permutahedron. Recall that the graph of d-dimensional permutahedron is the graph
whose vertices are the permutations of [d + 1] and whose edges correspond to switching two
consecutive positions in a permutation.

Q17. Using the strategy of Figure 5, describe a Hamiltonian cycle in the d-dimensional permu-
tahedron.

(123) (132) (312) (321) (231) (213)

(1234) (1324) (3124) (3214) (2314) (2134)

(1243) (1342) (3142) (3241) (2341) (2143)

(1423) (1432) (3412) (3421) (2431) (2413)

(4123) (4132) (4312) (4321) (4231) (4213)

Figure 5. A Hamiltonian cycle in the graph of the permutahedron.

2.3. The associahedron. Recall that the graph of the d-dimensional associahedron is the graph
whose vertices are the triangulations of a labeled (d + 3)-gon and whose edges are flips between
them. To obtain a Hamiltonian cycle in the associahedron, we first organize all triangulations in
a tree as illustrated in Figure 6:

• a triangulation T of the (d + 3)-gon will appear at level d in this tree,
• the parent of T in the tree is the triangulation p(T ) obtained by contracting the triangle

containing the edge [d + 2, d + 3] of the polygon,
• conversely the children of T are the triangulations pi(T ) for all edges (i, d + 3) in T ,

where pi(T ) is obtained by inflating the edge (i, d + 3) of T into a triangle.
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Figure 6. The tree of triangulations.

Q18. Given a triangulation T , show that there is a path starting at p1(T ), passing through all
children pi(T ) for (i, d + 3) in T , and finishing at pd+2(T ).

Q19. Show that if T and T ′ are related by a flip, then their children p1(T ) and p1(T ′) are also
related by a flip (and similarly pd+2(T ) and pd+2(T ) are also related by a flip).

Q20. Consider the triangulation Xd of the (d + 3)-gon whose diagonals are all incident to the
vertex d+ 3, and the triangulation Yd obtained from Xd by flipping the diagonal [2, d+ 3]. Check
that p1(Xd) = Xd+1 and p2(Xd) = Yd+1.

Q21. Recall the recurrence relation on the number td of triangulations of the (d+3)-gon. Deduce
that if td is odd, then d is even.

Q22. Deduce by induction from the previous questions that there is a Hamiltonian cycle in the
d-dimensional associahedron where Xd and Yd are neighbors. (Hint: No difficulty when td is even.
When td is odd, d is even so that Xd has an even number of children while Yd has an odd number
of children.)
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