
Combinatoire des polytopes
Examen du 21/02/2020

Les notes de cours, les TDs (et leurs corrections), et vos notes personnelles sont autorisées. Les
appareils électroniques sont interdits (en particulier les téléphones portables). Il est demandé de répondre
sur des feuilles simples.

Les exercices de cet énoncé sont indépendants et peuvent être traités dans n’importe quel ordre. At-
tention à bien noter les numéros d’exercice et de questions devant vos réponses.

La précision des réponses, la qualité de la rédaction, et les efforts de présentation seront pris en compte
dans la notation.

Exercice 1 (p-sequences). For a polytope P , let pk(P ) be its number of k-gonal 2-faces for each k ≥ 3.

(1) Show that for a simple 3-polytope P , we have∑
k≥3

(6− k) · pk(P ) = 12.

(2) Show that every simple 3-polytope contains at least four faces each of which has at most five edges.

(3) Let C ⊂ R3 be the convex hull of the set of points (p3(P ), p4(P ), p5(P )) for all simple 3-polytopes P .
Show that C is a polyhedron and give its descriptions as intersection of halfspaces, and as polytope
and recession cone.

Solution.

(1) From Euler’s equation we have f0 − f1 + f2 = 2. Moreover, f2 =
∑

k≥3 pk and 2 f1 =
∑

k≥3 k pk.
And, by the simplicity of P , we also have 3 f0 = 2 f1. The combination of these equations gives the
desired result.

(2) From the formula, we have that 3(p3 + p4 + p5) ≥ 3 p3 + 2 p4 + p5 = 12 +
∑

k≥7(k − 6)pk ≥ 12. We
recover that p3 + p4 + p5 ≥ 4.

(3) Refining the previous answer, we know that 3 p3 + 2 p4 + p5 ≥ 12 and that pi ≥ 0. We thus know
that C is contained in the polyhedron

P = {(p3, p4, p5) | 3 p3 + 2 p4 + p5 ≥ 12, p3 ≥ 0, p4 ≥ 0 and p5 ≥ 0} .

This is an unbounded polyhedron with 4 facets and 3 vertices: (4, 0, 0), (0, 6, 0), and (0, 0, 12). It has
3 unbounded rays, in the directions (1, 0, 0), (0, 1, 0) and (0, 0, 1). Hence

P = conv({(4, 0, 0), (0, 6, 0), (0, 0, 12)}) + cone({(1, 0, 0), (0, 1, 0), (0, 0, 1)}).

We will show that C = P.

• To show that conv({(4, 0, 0), (0, 6, 0), (0, 0, 12)}) ⊂ C we observe that the vertices correspond to
the tetrahedron, the cube and the dodecahedron.

• To show that cone({(1, 0, 0), (0, 1, 0), (0, 0, 1)}) is in the recession cone of C, it suffices to show
that there are arbitrarily large numbers N such that (N, 0, 0), (0, N, 0), and (0, 0, N) belong
to C. Taking a prism over an n-gon, n ≥ 6, we obtain a simple 3-polytope with 2n vertices
and two n-gons and n squares, and hence the vector (0, n, 0) ∈ C for n ≥ 6. Truncating its
2n vertices, we recover a simple 3 polytope with 6n vertices and 2n-gons, 2n triangles and n
8-gons. Therefore, (2n, 0, 0) ∈ C for n ≥ 6. Now, take a twisted prism over an n-gon, which
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has two n-gons and 2n triangles. Make a connected sum with a prism over an n-gon on both
n-gonal faces. We get a 3-polytope with 2n vertices of degree 3 and 2n vertices of degree 5.
Its has 2n triangular faces, 2n square faces, and two n-gons. Now truncate the 2n vertices of
degree 5. The squares and triangles become hexagons, and we add 2n pentagons. The resulting
polytope is a simple 3-polytope with 12n vertices, two n-gons, 4n hexagons and 2n pentagons
(see the drawing for n = 6. Hence (2n, 0, 0) ∈ C for n ≥ 6.

Exercice 2 (Permutahedron). For n ≥ 1, the permutahedron Perm(n) is defined as the convex hull of
the points (σ(1), . . . , σ(n)) for all permutations σ ∈ Sn.

(1) Draw the permutahedra Perm(1), Perm(2) and Perm(3).

(2) What is the intrinsic dimension of Perm(n)? Justify.

(3) What is the number of vertices of Perm(n)? Justify.

(4) For ∅ 6= I ( [n], show that the inequality
∑

i∈I xi ≥ |I|(|I| + 1)/2 defines a facet FI of Perm(n)
whose combinatorial type is that of the Cartesian product Perm(|I|)× Perm(n− |I|).

An ordered partition of [n] is a partition [n] = I1 t · · · t Ik where the parts are ordered (but the
order among the elements inside each part is irrelevant). We write such a partition as I1|I2| . . . |Ik. For
instance, the ordered partitions 12|35|4 and 4|12|35 are distinct since they have the same parts but in
different order, while the ordered partitions 12|35|4 and 21|53|4 are the same.

(5) Show that, for an ordered partition π = I1|I2| . . . |Ik, the intersection of the facets FI1 , FI1∪I2 , . . . ,
FI1∪···∪Ik−1

defines a (n− k)-dimensional face Fπ of Perm(n). Describe the combinatorics of Fπ.

(6) Conversely, given a non-zero vector c = (c1, . . . , cn), describe (in terms of the coordinates of c) the
ordered partition π such that Fπ is the face of Perm(n) minimizing c.

(7) Describe the face lattice of Perm(n).

(8) Let k, k1, . . . , kp and n, n1, . . . , np be integers such that k = k1 + · · ·+ kp and n = k1n1 + · · ·+ kpnp.
What is the number of faces of Perm(n) with combinatorial type Perm(n1)

k1 × · · · × Perm(np)
kp?

Solution.

(1) Classical pictures. See Ziegler.

(2) The dimension of Perm(n) is n− 1. Indeed, all permutations are contained in the affine hyperplane∑
i∈[n] xi = n(n+1)/2 and the identity permutation together with the n−1 simple transpositions (i i+

1) give n affinely independent points of Perm(n).

(3) By symmetry, all permutations appear on the convex hull (one can also argue that they are all in the
affine hyperplane

∑
i∈[n] xi = n(n+1)/2 and at the same distance from the point ((n+1)/2, . . . , (n+

1)/2)). Therefore the number of vertices of Perm(n) is n!.
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(4) The inequality is clearly satisfied (since the entries at the positions given by I are at least the |I| first
integers), with equality if and only if σ−1(I) = [|I|]. In other words, all permutations in this face
are obtained from any one by permuting its coordinates in I and independently its coordinates in
[n]r I. This shows that this face is isomorphic to the Cartesian product Perm(|I|)× Perm(n− |I|),
and is thus of dimension |I| − 1 + n− |I| − 1 = n− 2, so that it is a facet of Perm(n).

(5) The facets FI1 , . . . , FI1∪···∪Ik−1
define a face Fπ. This face Fπ contains precisely the permutations

whose first |I1| elements are at the positions of I1, the next |I2| elements are at the positions of I2,
etc. In other words, it has the combinatorics of the Cartesian product Perm(|I1|)× · · · × Perm(|Ik|).
In particular, it is (n− k)-dimensional.

(6) Let π be the partition of [n] such that ci = cj if i and j lie in the same part of π and ci < cj if the
part of π containing i is after the part of π containing j. Then c is minimized by Fπ.

(7) According to the previous questions, the faces of Perm(n) are in bijection with the ordered partitions
of [n]. The inclusion of faces translates to the refinement of ordered partitions (meaning glueing
parts together). The face lattice of Perm(n) is thus isomorphic to the refinement poset of ordered
partitions of [n].

(8) To choose a face with combinatorial type Perm(n1)
k1×· · ·×Perm(np)

kp , we have to choose an ordered
partition of [n] with ki parts of size ni for all i ∈ [p]. We first choose where we place the bars (we
have k!/

∏p
i=1 ki! choices), then what numbers we put in the parts (we have n!/

∏p
i=1 ni!

ki choices).
This gives

k!n!∏p
i=1(ki!ni!

ki)

Exercice 3 (Minkowski summands). The Minkowski sum P +Q of two polytopes P,Q ∈ Rd is the set
P +Q = {p+ q | p ∈ P, q ∈ Q}. We say that Q is a Minkowski summand of P (written Q � P ) if there
is a polytope R such that P = Q+R.

(1) Characterize the condition Q � P when Q and P are 1-dimensional.

(2) Prove that if P � Q and Q � P , then P = Q+ t for some t ∈ Rd.

(3) For u ∈ Rdr0, let P u be the face of P maximized in direction u. Show that if Q � P then Qu � P u.

(4) Characterize the Minkowski summands of a polygon P ⊂ R2. To this end, we label its vertices
by p1, . . . , pn clockwise and we consider its edge directions vi = pi − pi−1 for 1 ≤ i ≤ n (with the
convention p0 = pn).

• Prove that any polygon with the exact same edge directions must be a translate of P .

• Characterize the values (λ1, . . . , λn) ∈ Rn≥0 such that there is a polygon Q ⊂ R2 with edge
directions λi · vi (we set λi = 0 if no multiple of vi appears as an edge direction of Q).

• Show that if Q � P , then its edge directions are of the form λi · vi for some 0 ≤ λi ≤ 1 .

• Show that Q � P if and only if its edge directions are of the form λi · vi for some 0 ≤ λi ≤ 1 .

(5) Prove that Q � P if and only if

(i) dimQu ≤ dimP u for all u ∈ Rd r 0, and

(ii) Qu � P u whenever dimP u = 1.

To prove the only if part

• Construct a map pi 7→ qi that associates a vertex qi ∈ Q to every vertex pi ∈ P .
• Define R = conv{ri = pi − qi}.
• Show that P = Q+R (by contradiction).
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(6) For a = (a1, . . . , an) ∈ Rn, let

Perm(a) = conv
{
(aσ(1), . . . , aσ(n))

∣∣ σ ∈ Sn

}
⊂ Rn.

Show that there is a λ > 0 such that λ · Perm(a) � Perm(n), where Perm(n) is the permutahedron
defined in the previous exercice.

Solution.

(1) If P = [a, b], and Q = [c, d], then Q � P if and only if |d− c| ≤ |b− a|.

(2) If P � Q and Q � P , then there are polytopes R, T such that Q = P + R and P = Q + T . We
conclude that P = P + (R+ T ). This implies that R+ T = {0}. Since the Minkowski sum does not
reduce the dimension, we conclude that R and T are points in Rd. That is, there is a t ∈ Rd such
that P = Q+ {t}.

(3) It follows from the fact that (Q+R)u = Qu +Ru.

(4) • The vertices of P are of the form pk = p0 +
∑

1≤i≤k vi. Any other polygon with the same edge
directions will have vertices p′k = p′0 +

∑
1≤i≤k vi, and hence will be a translate of P by p′0− p0.

• We need
∑

1≤i≤n λi · vi = 0. This condition is needed as this is the result of doing the full turn
around the boundary of Q. It is sufficient, as the convex hull of the points qk =

∑
1≤i≤k λi · vi

gives the desired polygon.

• This follows from Qu � P u combined with the fact that the length characterizes Minkowski
summands in R1.

• We need to provide R such that Q + R = P . We will take a polygon R with edge directions
(1− λi)vi. Since (Q+R)u = Qu +Ru, the edge directions of Q+R are λivi + (1− λi)vi = vi.
Hence, there is some t ∈ R2 such that Q+R = P + t. Setting R′ = R− t we get Q+R′ = P .

(5) The “if” direction follows directly from the previous observation. For the only if, we follow the
suggestion. To a vertex pi = P u we associate qi = Qu.

We will show that P = Q+ R. We know that P ⊆ Q+ R. Assume that P 6= Q+ R. That is, that
there is some vertex x of Q + R that does not belong to P . Then there is a separating hyperplane.
That is, some c ∈ Rd such that if maxp∈P 〈 c | p 〉 < 〈 c | x 〉. Let pi ∈ P c. Then x = qi + rj for
some j. We have 〈 c | pi 〉 < 〈 c | qi + rj 〉. Equivalently, 〈 c | pi − pj 〉 < 〈 c | qi − qj 〉. Now, let
pj = p0, p1, . . . , ps = pi be a path in the graph of P from pj to pi. Note that for 1 ≤ k ≤ s there is
some 0 ≤ λk ≤ 1 such that qk − qk−1 = λk(pk − pk−1) by the second condition.

Then,

〈 c | qi− qj 〉 =
∑

1≤k≤s
〈 c | qk − qk−1 〉 =

∑
1≤k≤s

λk〈 c | pk − pk−1 〉 ≤
∑

1≤k≤s
〈 c | pk − pk−1 〉 = 〈 c | pi− pj 〉.

A contradiction.

(6) By construction, Perm(a) is of dimension at most n− 1, as the sum of coordinates of the vertices is
constant. Moreover, see that

∑
i∈I xi ≥ minσ∈Sn(

∑
i∈I xσ(i)) defines a face of GI of Perm(a), which is

isomorphic to Perm(aI)×Perm(a[n]\I), and hence must be of dimension at most n− 2. Furthermore,
if Perm(n)c is associated to the ordened partition π = I1|I2| . . . |Ik, then Perm(a)c is isomorphic to
Perm(aI1) × · · · × Perm(aIk), and is hence of dimension at most n − k. Condition (i) is therefore
fulfilled for every direction. And condition (ii) is automatically true for some λ > 0 small enough.

Exercice 4 (One-point suspensions). Let V = (
(
p1
1

)
, . . . ,

(
pn
1

)
) ∈ R(d+1)×n be a vector configuration

arising as the homogenization of the n vertices of a d-polytope P . Let G = (g1, . . . , gn) ∈ R(n−d−1)×n be
its Gale dual vector configuration.
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(1) Let G′ = (g′0, g
′
1, . . . , g

′
n) be the vector configuration with g′0 =

g1
2 , g

′
1 =

g1
2 and g′i = gi for 2 ≤ i ≤ n.

Explain why G′ is the Gale dual of (the vector configuration arising as the homogenization of the
vertices of) a polytope P ′. What is the dimension of P ′?

(2) Describe the faces of P ′ (with respect to those of P ).

(3) Describe the geometric operation that sends P to P ′. It is called the one-point suspension of p1 in P .

(4) Does every polytope combinatorially equivalent to P ′ arise from a one-point suspension of a polytope
combinatorially equivalent to P?

(5) Show that P ′ has a vertex figure combinatorially equivalent to P .

(6) Argue why the realization space of P ′ is stably equivalent to the realization space of P . (Give only
the main arguments, without writing a full formal proof.)

Solution.

(1) The condition is that
∑

g∈G′ g
′ = 0. Since

∑
g∈G′ g

′ =
∑

g∈G g the result follows. The dimension is
(n+ 1)− (n− d− 1)− 1 = d+ 1.

(2) Let (p′0, p′1, . . . , p′n) be the vertices of P ′. conv{p′i : i ∈ I} forms a face of P ′ if and only if {g′i : i /∈ I}
form a positive dependence. Note that the positive dependences of G′ are recovered by those of G by
replacing each instance of g1 by g′0 + g′1, 2g′0 or 2g′1. We conclude that for each face conv{pi : i ∈ I}
of P not containing p1 (1 /∈ I), the sets conv{p′i : i ∈ I}, conv{p′i : i ∈ I ∪ {0}} and conv{p′i : i ∈
I ∪ {1}} are faces of P ′; and that for each face conv{pi : i ∈ I} of P containing p1 (1 ∈ I), the set
conv{p′i : i ∈ I ∪ {0, 1}} is a face of P ′, and these are all faces of P ′.

(3) One way to realize it is to embed P in the xd+1 plane of Rd+1 and replace p1 by p1 + ed+1 and
p1 − ed+1.

(4) Not necessarily. If P is a pentagon, and P ′ is its one point suspension, then we recover a simplicial
polytope with four coplanar points. There are realizations of this polytope without the coplanarity,
by perturbation.

(5) The operation of vertex figure is dual to removing a vector in the Gale dual, and we recover G.

(6) Taking the vertex figure gives a projection from the realization space of P ′ to that of P . This
projection of realization spaces can be explicitly constructed by selecting an affine basis of P and
projecting P ′ radially from p′0 to the hyperplane spanned by its neighbors correspnding to the affine
basis. The fibers of this map are non-empty because we can do the previous operation p1 ± ed+1 on
any realization of P . To see that they are polynomially defined polyhedra, note that every vertex p′i
must be on the ray emanating from p′0 through pi. With an affine transformation, we can assume
that p′0 lies at the origin of Rd+1, and we can parametrize the vertices of P ′ by the λi > 0 such that
p′i = λipi. The face lattice constraints can be written with determinantal inequalities which are linear
on the (inverses of the) λi’s and polynomial on the coordinates of the pi’s. Indeed, they is given by
inequalities of the type ∣∣∣∣λi1pi1 · · · λid+1

pid+1

1 · · · 1

∣∣∣∣ > 0,

which are equivalent to ∣∣∣∣∣pi1 · · · pid+1
1
λi1

· · · 1
λid+1

∣∣∣∣∣ > 0.
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