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Abstract. Provan and Billera introduced notions of (weak) decomposability

of simplicial complexes as a means of attempting to prove polynomial upper

bounds on the diameter of the facet-ridge graph of a simplicial polytope. Re-
cently, De Loera and Klee provided the first examples of simplicial polytopes

that are not weakly vertex-decomposable. These polytopes are polar to certain

simple transportation polytopes. In this paper, we refine their analysis to prove

that these d-dimensional polytopes are not even weakly O(
√
d)-decomposable.

As a consequence, (weak) decomposability cannot be used to prove a polyno-
mial version of the Hirsch Conjecture.

1. Introduction

The Hirsch Conjecture, which was originally proposed by Hirsch in a letter to
Dantzig in 1957, stated that the graph of a simple d-dimensional polytope with n
facets has diameter at most n−d. Over the past 55 years, the Hirsch Conjecture has
motivated a tremendous amount of research on diameters of polytopes. We do not
attempt to recount this work here, but instead we point out excellent surveys of De
Loera [DL11], Kim and Santos [KS10], and Todd [Tod02]. The most remarkable
result in this realm is Santos’s counterexample to the Hirsch Conjecture [San12]
and its recent improvement by Matschke, Santos, and Weibel [MSW12].

These counterexamples all have diameter (1 + ε)(n − d). It leaves open the
Polynomial Hirsch Conjecture, which states that the diameter of the graph of a
simple d-dimensional polytope with n facets is bounded by a polynomial func-
tion of n and d. This conjecture was the subject of a recent Polymath project
hosted by Kalai [Kal10]. The current best known upper bounds on diameter are
quasi-exponential in n and d [KK92] or linear in fixed dimension but exponential
in d [Bar74, Lar70]. Other conjectures for plausible upper bounds arise from the
analogy with continuous optimization [DTZ09] or from combinatorial abstractions
of the geometry [EHRR10].

In this paper, we work in the polar setting: we consider a simplicial d-dimensional
polytope P on n vertices and seek bounds on the diameter of the facet-ridge graph
of P , which has a node for each facet of P and an edge between two nodes if their
corresponding facets intersect along a ridge (a codimension-one face).

Provan and Billera [PB80] defined a notion of (weak) decomposability for an
arbitrary simplicial complex and showed that the facet-ridge graph of a (weakly)
k-decomposable simplicial complex has diameter bounded by a linear function of
the number of k-dimensional faces of ∆. Since the number of k-dimensional faces
in an arbitrary simplicial complex on n vertices is bounded by

(
n
k+1

)
, the diameter
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of a (weakly) k-decomposable simplicial complex is bounded by a polynomial of
degree k + 1 in its number n of vertices and its dimension d.

One approach to proving the Polynomial Hirsch Conjecture would be to show
that there is a fixed integer k such that all simplicial polytopes are (weakly) k-
decomposable. In this paper, we show that this approach will not work, according
to the following counterexample.

Theorem. Let a, b be positive integers. There is a simple 2 × (a + b + 1) trans-
portation polytope whose simplicial polar is not weakly k-decomposable for any k

satisfying
(
k+3

2

)2 ≤ min{a, b}.

The remainder of the paper is structured as follows. In Section 2, we give all
relevant definitions related to simplicial complexes, their diameters, and (weak) de-
composability. Further, we discuss the family of (simple) transportation polytopes
and their combinatorial properties. In Section 3, we define a certain family of sim-
ple 2×n transportation polytopes whose polars are not weakly k-decomposable for
any fixed integer k.

2. Background and definitions

2.1. Simplicial complexes, decomposability, and diameter bounds. A sim-
plicial complex ∆ on vertex set V is a collection of subsets τ ⊆ V (called faces)
such that if τ is a face of ∆ and σ ⊆ τ , then σ is also a face of ∆. The dimension of a
face τ ∈ ∆ is dim τ := |τ |−1, and the dimension of ∆ is dim ∆ := max {dim τ : τ ∈ ∆}.
We say that ∆ is pure if all of its facets (maximal faces under inclusion) have the
same dimension.

We will borrow terminology from matroid complexes to define the rank of a
subset S ⊆ V to be rank(S) := max {|τ | : τ ⊆ S, τ ∈ ∆}, and the corank of S to
be corank(S) := |S| − rank(S). Alternatively, the rank of S is one more than the
dimension of the restriction of ∆ to the vertices in S.

Let τ be a face of the simplicial complex ∆. The deletion of τ in ∆ is the
simplicial complex del∆(τ) := {σ ∈ ∆ : τ 6⊆ σ}. The link of τ in ∆ is the simplicial
complex lk∆(τ) := {σ ∈ ∆ : σ ∩ τ = ∅, σ ∪ τ ∈ ∆}.

Given a pure simplicial complex ∆ and facets σ, τ ∈ ∆, the distance from σ to τ
is the length of the shortest path σ = ρ0, ρ1, . . . , ρt = τ where the ρi are facets of ∆
and ρi intersects ρi+1 along a ridge (a codimension-one face) for all 0 ≤ i < t. The
diameter of a pure simplicial complex, denoted diam(∆), is the maximum distance
between any two facets in ∆.

One approach to establishing diameter bounds for pure simplicial complexes
is to study decompositions that generalize the more well-known property of a
shedding order in a natural way. Provan and Billera [PB80] defined a notion of
(weak) k-decomposability for pure simplicial complexes and showed that (weakly)
k-decomposable simplicial complexes satisfy natural diameter bounds.

Definition 2.1 ([PB80, Definition 2.1]). Let ∆ be a (d− 1)-dimensional simplicial
complex and let 0 ≤ k ≤ d− 1. We say that ∆ is k-decomposable if it is pure and
if either ∆ is a (d− 1)-simplex or there exists a face τ ∈ ∆ with dim(τ) ≤ k (called
a shedding face) such that

(i) the deletion del∆(τ) is (d− 1)-dimensional and k-decomposable, and
(ii) the link lk∆(τ) is (d− |τ | − 1)-dimensional and k-decomposable.
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Theorem 2.2 ([PB80, Theorem 2.10]). If ∆ is a k-decomposable (d−1)-dimensional
simplicial complex, then

diam(∆) ≤ fk(∆)−
(

d

k + 1

)
,

where fk(∆) denotes the number of k-dimensional faces in ∆.

Definition 2.3 ([PB80, Definition 4.2.1]). Let ∆ be a (d−1)-dimensional simplicial
complex and let 0 ≤ k ≤ d − 1. We say that ∆ is weakly k-decomposable if
it is pure and if either ∆ is a (d − 1)-simplex or there exists a face τ ∈ ∆ of
dimension dim(τ) ≤ k (called a shedding face) such that the deletion del∆(τ) is
(d− 1)-dimensional and weakly k-decomposable.

Theorem 2.4 ([PB80, Theorem 4.2.3]). If ∆ is a weakly k-decomposable (d− 1)-
dimensional simplicial complex, then

diam(∆) ≤ 2fk(∆).

In particular, any 0-decomposable complex (also called vertex-decomposable)
satisfies the Hirsch Conjecture while any weakly 0-decomposable complex (also
called weakly vertex-decomposable) has diameter bounded by a linear function of
its number of vertices. Klee and Kleinschmidt [KK87, Proposition 6.3] pointed out
that Lockeberg [Loc77] had constructed a 4-dimensional polytope on 12 vertices
that was not vertex-decomposable (but still satisfied the Hirsch bound), while the
non-Hirsch polytopes of Santos [San12] and Matschke, Santos, and Weibel [MSW12]
provide further examples of simplicial polytopes that are not vertex-decomposable.
In a recent paper [DLK12], De Loera and the second author provided the first
examples of simplicial polytopes that are not even weakly vertex-decomposable.
Their smallest counterexample is a 4-dimensional polytope on 10 vertices and 30
facets, which can be seen as the polar of the intersection of the 5-dimensional
cube [−1, 1]5 with the linear hyperplane of equation

∑
i xi = 0.

In the hopes of establishing a polynomial diameter bound, it is natural to ask
whether there is a constant k such that all simplicial polytopes are (weakly) k-
decomposable. We will answer this question in the negative by establishing that
for any k ≥ 0, there exist simplicial polytopes that are not weakly k-decomposable.
Our construction is motivated by the counterexamples introduced by De Loera and
Klee [DLK12], which arise as the polars of a certain family of simple transporta-
tion polytopes. The necessary background on transportation polytopes is briefly
presented below.

2.2. Transportation polytopes. Transportation polytopes are classical polytopes
from optimization. Here we recall their basic definitions and combinatorial proper-
ties and refer to classical surveys on the topic for more details and proofs [KW68,
YKK84].

Definition 2.5. Fix two integers m,n ≥ 1, and two vectors m ∈ Rm and n ∈ Rn.
The m × n transportation polytope P (m,n) is the collection of all non-negative
matrices X := (xµ,ν) ∈ Rm×n≥0 such that

∀µ ∈ [m],
∑
ν∈[n]

xµ,ν = mµ and ∀ν ∈ [n],
∑
µ∈[m]

xµ,ν = nν .

The vectors m and n are called the margins of P (m,n).
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Intuitively, a point in the transportation polytope P (m,n) is an assignment
of weights to be transported between m sources and n sinks on the edges of the
complete bipartite graph Km,n such that the total quantity that a source µ pro-
vides corresponds to its supply mµ while the total quantity that a sink ν receives
corresponds to its demand nν . The support of a point X := (xµ,ν) of P (m,n)
is the subgraph supp(X) := {(µ, ν) ∈ Km,n : xµ,ν > 0} of the complete bipartite
graph Km,n. The following theorem summarizes classical properties of transporta-
tion polytopes. See [KW68, YKK84] for proofs.

Theorem 2.6. The transportation polytope P (m,n), with margins m ∈ Rm and
n ∈ Rn, has the following properties.

Feasability: P (m,n) is non-empty if and only if
∑
µ∈[m] mµ =

∑
ν∈[n] nν .

Dimension: The dimension of P (m,n) is (m − 1)(n − 1), provided it is
nonempty.

Non-degeneracy: P (m,n) is nondegenerate (hence simple) if and only if
there are no proper subsets ∅ ( M ( [m] and ∅ ( N ( [n] such that∑
µ∈M mµ =

∑
ν∈N nν . The support of the points of P (m,n) are then

connected and spanning.

Vertices: A point of P (m,n) is a vertex of P (m,n) if and only if its support
is a forest (i.e. contains no cycle). In particular, if P (m,n) is nondegen-
erate, a point of P (m,n) is a vertex if and only if its support is a spanning
tree of Km,n.

Facets: All facets of P (m,n) are of the form Fµ,ν := {X ∈ P (m,n) : xµ,ν = 0}
for some µ ∈ [m] and ν ∈ [n]. Moreover, if mn > 4, then the set Fµ,ν is a
facet if and only if mµ + nν <

∑
µ′∈[m] mµ′ =

∑
ν′∈[n] nν′ .

Optimizing transportation costs naturally gives rise to linear optimization prob-
lems on transportation polytopes, and thus leads to the question to evaluate the
diameter of transportation polytopes. Although this question has been largely
studied in the literature, the Hirsch Conjecture for transportation polytopes is still
open. On the one hand, Brightwell, van den Heuvel, and Stougie [BvdHS06] showed
that the diameter of any m×n transportation polytope is at most 8(m+n−1), i.e.
eight times the Hirsch bound. On the other hand, the precise Hirsch bound was
only proven for 2×n transportation polytopes by Kim [Kim10, Section 3.5] and for
the family of signature polytopes, defined as follows by Balinski and Rispoli [BR93].

Definition 2.7 ([BR93]). Fix a vector d ∈ Rm such that
∑
µ∈[m] dµ = m+ n− 1.

Let T (d) denote the set of all spanning trees of the complete bipartite graph Km,n

where each vertex µ ∈ [m] has degree dµ. Anm×n transportation polytope P (m,n)
is a d-signature polytope if any tree of T (d) is the support of a vertex of P (m,n).

Controlling the feasible trees of signature polytopes, Balinski and Rispoli [BR93]
prove that these polytopes satisfy the Monotone Hirsch Conjecture. In particu-
lar, for any vector d ∈ Rm such that

∑
µ∈[m] dµ = m + n − 1, observe that the

m × n transportation polytope P (m,n) with margins m :=md− (m+ 1)11 ∈ Rm
and n :=m11 ∈ Rn is a signature polytope and thus satisfies the Monotone Hirsch
Conjecture. These particular examples of signature polytopes were previously stud-
ied by Balinski [Bal74].
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3. Simplicial polytopes that are not weakly k-decomposable

In this section, we study a certain family of simple 2×n transportation polytopes
whose polars are not weakly k-decomposable for sufficiently large n.

Definition 3.1. Fix integers a, b ≥ 1 and define ∆(a, b) to be the boundary complex
of the polar polytope to the 2× (a+ b+ 1) transportation polytope P (m,n) with
margins

m := (2a+ 1, 2b+ 1) ∈ R2 and n := (2, 2, . . . , 2) ∈ Ra+b+1.

According to Theorem 2.6, P (m,n) is a simple polytope of dimension a + b
whose facets are precisely the sets Fµ,ν := {X ∈ P (m,n) : xµ,ν = 0}, for µ ∈ [2]
and ν ∈ [a + b + 1]. For simplicity, we decompose the vertex set of ∆(a, b) into
sets U := {u1, . . . , ua+b+1} and V := {v1, . . . , va+b+1} where uν is the polar vertex
to the facet F1,ν and vν is the polar vertex to the facet F2,ν . That is to say, the
vertices of U correspond to the coordinates of the top row of the 2×n contingency
table defining P (m,n) and the vertices of V correspond to the coordinates of the
bottom row. Theorem 2.6 yields the following description of the facets of ∆(a, b).

Lemma 3.2. The facets of ∆(a, b) are precisely the sets A ∪ B where A ⊆ V ,
B ⊆ U , |A| = a, |B| = b, and A ∪ B contains at most one element from each pair
{uν , vν}.

Proof. Consider a facet F of ∆(a, b). Let X := (xµ,ν) be the vertex of P (a, b) polar
to F , let A :=F ∩ V , and let B :=F ∩ U . If vν ∈ A, then x2,ν = 0, and thus
x1,ν = 2. Consequently, 2a + 1 =

∑
ν x1,ν ≥ 2|A|. Similarly 2b + 1 ≥ 2|B|. Since

|A| + |B| = a + b, we obtain that |A| = a and |B| = b. Finally, F cannot contain
both uν and vν since X cannot have x1,ν = x2,ν = 0.

Conversely, let A ⊆ V and B ⊆ U be such that |A| = a, |B| = b, and A ∪ B
contains at most one element from each pair {uν , vν}. Let B̄ := {ν : uν ∈ B} and
Ā := {ν : vν ∈ A}. Then Ā and B̄ are disjoint subsets of [a + b + 1] and their
complement [a+ b+ 1] r (Ā ∪ B̄) has a unique element ν̄. Define X := (xµ,ν) by

x1,ν :=


1 if ν = ν̄

2 if ν ∈ Ā
0 if ν ∈ B̄

and x2,ν :=


1 if ν = ν̄

0 if ν ∈ Ā
2 if ν ∈ B̄

.

The point X is a vertex of P (m,n) since it is a point of P (m,n) whose support is
a spanning tree. Moreover, its polar facet in ∆(a, b) is A ∪B. �

Remark 3.3. We can alternatively describe the transportation polytope P (m,n) of
Definition 3.1 as the intersection P of the (a+b+1)-dimensional cube C := [0, 2]a+b+1

with the hyperplane H of equation
∑
i xi = 2a+ 1. The 2(a+ b+ 1) facets of P are

supported by the hyperplanes supporting the facets of the cube C. The (a+b+1)!
a!b!

vertices of P are the intersections of the hyperplane H with the edges of the cube C
at distance 2a from the origin. Equivalently, P is the Minkowski sum of the hy-
persimplices 4a + 4a+1, where the hypersimplex 4a is the intersection of the
cube [0, 1]a+b+1 with the hyperplane

∑
i xi = a.

According to the above-mentioned results on 2 × n transportation polytopes
[Kim10, Section 3.5] and on signature polytopes [Bal74, BR93], the transportation
polytope P (m,n) satisfies the (Monotone) Hirsch Conjecture. In contrast, the
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results of [DLK12, Theorem 3.1] imply that the boundary complex ∆(a, b) of the
polar of P (m,n) is not weakly vertex-decomposable when a, b ≥ 2. We now refine
the analysis of the weak decompositions of ∆(a, b) to derive the following theorem.

Theorem 3.4. If
(
k+3

2

)2 ≤ min(a, b), then the simplicial complex ∆(a, b) of Defi-
nition 3.1 is not weakly k-decomposable.

The following immediate consequence of Theorem 3.4 shows that there is no
hope of using (weak) k-decomposability as a means of proving the Polynomial
Hirsch Conjecture.

Corollary 3.5. There exist d-dimensional simplicial polytopes whose boundary
complexes are not (weakly) O(

√
d)-decomposable.

To prove Theorem 3.4, we will suppose by way of contradiction that ∆(a, b) is
weakly k-decomposable with shedding sequence τ1, τ2, . . . , τt. We set ∆0 := ∆(a, b)
and ∆i := del∆i−1(τi), for i ≥ 1. Each ∆i is a pure simplicial complex of dimension
a+b−1 and ∆t consists of a single (a+b−1)-simplex. Our goal now is to understand
how shedding each of the faces τi affects certain subsets of vertices of ∆(a, b). With
this motivation, we define a family of functions

ϕi :

(
U

≤ b+ 1

)
∪
(

V

≤ a+ 1

)
→ N,

by setting ϕi(S) to be the corank of the set of vertices S in the complex ∆i, i.e.

ϕi(S) := |S| −max {|τ | : τ ⊆ S, τ ∈ ∆i} .

Here we use the notation
(
W
≤w
)

to denote the collection of subsets of the set W of

size at most w. We will need the following properties of the functions ϕi.

Lemma 3.6. The family of functions ϕi satisfy the following properties:

(1) ϕ0(S) ≤ 1 for all S ∈
(

U
≤b+1

)
∪
(

V
≤a+1

)
.

(2) There exists a set S such that ϕt(S) ≥ 2.
(3) If τi ∩ U 6= ∅ and τi ∩ V 6= ∅, then ϕi(S) = ϕi−1(S) for all S.

(4) If τi ⊆ U , then ϕi(S) = ϕi−1(S) for all S ∈
(

V
≤a+1

)
.

(5) ϕi(S) ≤ 1 if and only if there is some v ∈ S such that S r v ∈ ∆i.

Proof. Since each b-element subset of U and each a-element subset of V spans a
face of ∆0 = ∆(a, b), it follows that ϕ0(S) ≤ 1 for all S ∈

(
U
≤b+1

)
∪
(

V
≤a+1

)
. This

proves part (1).
For part (2), suppose ∆t consists of a simplex on vertex set A ∪B with A ⊆ V ,

B ⊆ U , |A| = a, and |B| = b. Note that |U r B| = a + 1, and let S be a subset

of U r B of size min{a + 1, b + 1} so that S ∈
(

U
≤b+1

)
. Since no vertex of U r B

belongs to ∆t, it follows that ϕt(S) = |S| − 0 ≥ min{a+ 1, b+ 1} ≥ 2.

For part (3), assume that τi∩U 6= ∅ and τi∩V 6= ∅ and let S ∈
(

U
≤b+1

)
∪
(

V
≤a+1

)
be

an arbitrary set. We will show that {τ : τ ⊆ S, τ ∈ ∆i} = {τ : τ ⊆ S, τ ∈ ∆i−1}.
Since ∆i is a subcomplex of ∆i−1, we only need to show that the former set contains
the latter. Let τ ⊆ S be a face of ∆i−1. Since τi contains vertices from both U
and V and τ is a subset of either U or V , τ does not contain τi. Thus τ is a face
of ∆i as well.

The proof of part (4) is identical to that of part (3). By symmetry, if τi ⊆ V ,

then φi(S) = φi−1(S) for all S ∈
(

U
≤b+1

)
.
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Finally, part (5) follows from the fact that we have ϕi(S) ≤ 1 if and only if
max {|τ | : τ ⊆ S, τ ∈ ∆i} ≥ |S| − 1. �

The following lemma will be essential to the proof of Theorem 3.4.

Lemma 3.7. Let X be a collection of sets, each of which has size at most k + 1,
and suppose

⋂
X∈X X = ∅. Then there is a sub-collection Y ⊆ X such that⋂

X∈Y
X = ∅ and

∣∣∣⋃
X∈Y

X
∣∣∣ ≤ (k + 3

2

)2

.

Proof. Let Y be a minimal collection of sets of X such that
⋂
X∈Y X = ∅ (i.e. any

proper sub-collection of sets in Y has a non-empty intersection).
For each X ∈ Y, there is an element f(X) ∈

⋂
Y ∈Yr{X} Y by our assumption

that Y is minimal. Furthermore, f(X) /∈ X, since otherwise
⋂
Y ∈Y Y 6= ∅. Hence

the elements {f(X) : X ∈ Y} are all distinct. This means any X ∈ Y contains each
of the elements f(Y ) with Y ∈ Y r {X} and at most k + 2 − |Y| other elements.
Thus∣∣∣⋃

X∈Y
X
∣∣∣ ≤ |Y|+ |Y| (k + 2− |Y|) = |Y| (k + 3− |Y|) ≤

(
k + 3

2

)2

,

since the quadratic function y 7→ y(α− y) is maximized when y = α
2 . �

Remark 3.8. Observe that the bound in the previous lemma is tight. Consider all
bk+1

2 c-element subsets of a (bk+1
2 c+1)-element set. Add to each of these sets dk+1

2 e
new elements (all additional elements are distinct). The intersection of the result-
ing bk+1

2 c + 1 sets is empty, but the intersection of any proper sub-collection is

non-empty. Moreover, their union has cardinality (bk+1
2 c+ 1)(dk+1

2 e+ 1).

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. By Lemmas 3.6(1) and 3.6(2), we can consider the smallest
value i ∈ [t] for which there exists some S with ϕi(S) ≥ 2. By Lemma 3.6(3),
the corresponding shedding face τi is a subset of either U or V . Without loss of
generality, we may assume that τi ⊆ U .

Let X denote the collection of shedding faces τ ∈ {τ1, . . . , τi} such that τ ⊆ S.
Observe that

⋂
τ∈X τ = ∅. Indeed, otherwise if there is an element u ∈

⋂
τ∈X τ ,

then S r u does not contain any set τ ∈ X . This would mean that S r u ∈ ∆i

and hence ϕi(S) ≤ 1 by Lemma 3.6(5). According to Lemma 3.7, there exists a
sub-collection Y ⊆ X of shedding faces such that⋂

τ∈Y
τ = ∅ and

∣∣∣⋃
τ∈Y

τ
∣∣∣ ≤ (k + 3

2

)2

≤ b.

Replacing S by
⋃
τ∈Y τ , we can thus assume that ϕi(S) ≥ 2 and |S| ≤ b.

Since |S| ≤ b, we can choose a subset T ⊆ V of a+1 vertices of ∆(a, b) such that
S ∪T contains at most one element from each pair {uj , vj}. By our choice of i and
Lemma 3.6(4), ϕi(T ) = ϕi−1(T ) ≤ 1. Thus there is a subset A ⊆ T with |A| = a
such that A ∈ ∆i.

We claim that A is not contained in any face of size a + b in ∆i, which will
contradict our assumption that ∆i is pure of dimension a + b − 1. Suppose that
there is a subset B ⊆ U with |B| = b such that A∪B is a facet of ∆i. Then B ∩ S
is a face of ∆i and |B ∩ S| ≥ |S| − 1, meaning ϕi(S) ≤ 1, which contradicts our
choice of S. �
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