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RELEVANT EDGES

Triangulations
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= maximal crossing-free pointed set of edges
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TRIANGLES — PSEUDOTRIANGLES - STARS

Triangulations Pseudotriangulations Multitriangulations

r

triangulation = maximal crossing-free set of edges
= decomposition into triangles

pseudotriangulation = maximal crossing-free pointed set of edges
= decomposition into pseudotriangles

k-triangulation = maximal (k 4 1)-crossing-free set of edges
= decomposition into k-stars

VP & F. Santos, Multitriangulations as complexes of star polygons, 20009.
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DECOMPOSITIONS OF SURFACES
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flip = exchange an internal edge with the common bisector of the two adjacent cells
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Triangulations Pseudotriangulations Multitriangulations

flip = exchange an internal edge with the common bisector of the two adjacent cells




FLIPS ON SURFACES

fundamental group of the flip graph G,, . — mapping class group of the surface S, .




THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations

= A

associahedron <«—  crossing-free sets of internal edges
pseudotriangulations polytope <—  pointed crossing-free sets of internal edges
multiassociahedron <—  (k + 1)-crossing-free sets of k-internal edges



VP & M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2012.
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VP & M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2012.



MULTIPSEUDOTRIANGULATIONS
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VP & M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2012.



SORTING NETWORKS

— DO Co

Triangulations

L =1 O

___________________________

Pseudotriangulations Multitriangulations

8 ’ %"::O::'::O::'::O::'::Oi'

7 4 V

6

5 7 U

4

3 3 T

2 523 g

L}, 1f_::o:i_::o:i_::ozi_I:o::

k=2



D
OR
3W,

SU

i UEXES
P
V)
©
@
T




SUBWORD COMPLEX

(W, S) a finite Coxeter system, Q) = q1¢2 - - - ¢, a word on .S, p an element of W.

Subword complex S(Q, p) = simplicial complex of subsets of positions of ) whose
complement contains a reduced expression of p.

A. Knutson & E. Miller, Subword complexes in Coxeter groups, 2004.

ababa—ababa——ababa

W= 6; ababa ababa
S={(12),23)}={a,b} -

Q = ababa ababa s ababa
p = aba = bab

ababa  ababa

The subword complex is either a sphere
ababa

(when the Demazure product of Q is p) or a ball.

QUESTION. Are all spherical subword complexes polytopal?




TYPE A: PRIMITIVE SORTING NETWORKS

b ¢ a ¢ b a b ¢ a

Classical situation of type A: 4 4
e Coxeter group W = 6,44 3 : 4 i 3
e simple system S = {7, | 7 € [n]}, 1 5! 7

where 7, = (1 i+ 1) 2 2
eword Q =qq2---¢,0on S 3 0 9
1 1

e p element of W

The subword complex can be interpreted
with a primitive sorting network:

e N formed by n+ 1 levels
and m commutators

o facets of S(Q,p) <+—
pseudoline arrangements on A/




FLIPS

flip = exchange a contact with the corresponding crossing
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C. Ceballos, JP. Labbé & C. Stump, Subword complexes, cluster complexes, & gener. multiassoc., 2011.

AN

VP & C. Stump, Brick polytopes of spherical subword complexes, 2015.



ROOT FUNCTION

For a facet I of S(Q), p) and a position k € [m|, define the root r(I, k) = Qpu_1j\1(ay,),
where Q17,7 is the product of all reflections ¢g; for j from 1 to £ — 1 but not in /.

The root function of the facet I is r(I,-): [m| — &

The root configuration of [ is R(I) ={r(I,i) |1 € I}



ROOT FUNCTION & FLIPS

PROPOSITION. The root function encodes flips in subword complexes:
1. The map r(I,-) is a bijection from the complement of I to inv(p).

2.1f I and J are two adjacent facets of S(Q,p) with I ~~i = J . j, then j is the
unique position in the complement of I such that r(1,7) = +r(7, j).

3. In the situation of 2, the root function of J is obtained from that of I by

k) siriy(r(L, k) if min(i, j) < k < max(1, j),
r(J, k) =
r(I,k) otherwise.

C. Ceballos, JP. Labbé & C. Stump, Subword complexes, cluster complexes, & gener. multiassoc., 2011.




S. Fomin & A. Zelevinsky, Cluster Algebras |, I, III, IV, 2002 — 2007.

C. Hohlweg, C. Lange & H. Thomas, Permutahedra and generalized associahedra, 2011.

C. Ceballos, JP. Labbé & C. Stump, Subword complexes, cluster complexes, & gener. multiassoc., 2011.
VP & C. Stump, Brick polytopes of spherical subword complexes, 2015.

C. Hohlweg, Permutahedra and associahedra, 2013.



CLUSTER ALGEBRAS

cluster algebra = commutative ring generated by distinguished cluster variables grouped
into overlapping clusters

clusters computed by a mutation process :

cluster seed = algebraic data {z1,...,x,}, combinatorical data B (matrix or quiver)
cluster mutation = ({x1,..., 2k, ..., 2n}, B) «—— ({z1,. .., 2%, ..., T, 1i(B))
Ty - Ty = H 2k 4 H x; ik
2, b;.>0 7, b;.<0
f . . .
—bz'j if k € {Z,]}
(1e(B)),, = § bij + bl - by i k ¢ {i, 5} and by by; > 0
\ bi; otherwise

cluster complex = simplicial complex w/ vertices = cluster variables & facets = clusters

S. Fomin & A. Zelevinsky, Cluster Algebras I, II, lII, 1V, 2002 — 2007.



CLUSTER ALGEBRAS

THEOREM. (Laurent phenomenon)
All cluster variables are Laurent polynomials in the variables of the initial cluster seed.
S. Fomin & A. Zelevinsky, Cluster algebras |: Fundations, 2002.

THEOREM. (Classification)
Finite type cluster algebras are classified by the Cartan-Killing classification for crystal-
lographic root systems.

S. Fomin & A. Zelevinsky, Cluster algebras Il: Finite type classification, 2003.

In fact, for a root system @, there is a bijection

cluster variables «+— O 1 =0T U-A

F(xy,...,2,)
Yy = dq d < ” 5:d1@1+°"+dnan
xl . e e xnn
cluster — c-cluster

cluster complex <+— c-cluster complex




FINITE CLUSTER COMPLEXES ARE SUBWORD COMPLEXES

New approach to the combinatorics and geometry of the cluster complex:

THEOREM. The subword complex S(cw,(c)) is isomorphic to the cluster complex.

C. Ceballos, JP. Labbé & C. Stump, Subword complexes, cluster complexes, & gener. multiassoc., 2011.

cluster variables +— P 1 =dTU-A <y position in cw,(c)
F(xy,..., x i if = —ay
Yy = (dj dnn) +— [p=diog+---+doy, —— o ‘ .
Xy Ty j it 8=r(n],7)
cluster > c-cluster > facet of S(cw,(c))
cluster complex  <+— c-cluster complex <— subword complex S(cw,(c))




TYPE D,, AS PSEUDOTRIANGULATIONS

Ty = ac + bd ry = ac + bd ry = ac + bdd’ (zc)y = ac + be

C. Ceballos & VP, Cluster algebras of type D: pseudotriangulations approach, 2015".



C. Ceballos & VP, Cluster algebras of type D: pseudotriangulations approach, 2015 .
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VP & F. Santos, The brick polytope of a sorting network, 2012.
VP & C. Stump, Brick polytopes of spherical subword complexes, 2015.
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BRICK POLYTOPE

—

N a sorting network with n + 1 levels

A pseudoline arrangement supported by A©  +——  brick vector B(A) € R
B(A); = number of bricks of A/ below the jth pseudoline of A

Brick polytope B(N') = conv {B(A) | A pseudoline arrangement supported by N}



BRICK POLYTOPE

{479} (3,7,3,5) {467} 3726

{279} 3,6,3,6) {267} (3,6,2,7)
{349} (1,7,5,5) B({2,5,6})=(2,6,2,8)

B({3,4,51)=(1,7,3,7) B({2.3,5})=(1,6,3.8)



WEIGHT FUNCTION, BRICK VECTOR & BRICK POLYTOPE

) a finite Coxeter system, QQ = ¢1¢2- - - ¢, @ word on S, w, longest element of V.

(W, 5
S(Q)

S(Q, w,) spherical subword complex.

To a facet I of S(QQ) and a position k € [m], associate a weight w(/, k) = Q_1)\r(wy,),
where Q,_;)\7 is the product of all reflections ¢; for j from 1 to k¥ — 1 but not in I.

The brick vector of [ is the vector B(I) =}, ., w(I, k).
The brick polytope is the convex polytope B(Q) = conv {B(I) | I facet of S(Q)}.

[,

5

6

In type A, w(I, k) = characteristic vector of the pseudolines passing above the kth brick.

B(I) =

/N

number of bricks below the jth pseudoline of I);cj,1



BRICK VECTORS AND FLIPS

If A and A’ are two pseudoline arrangements supported by N and related by a flip between
their ith and jth pseudolines, then B(A) — B(A") € N (e; — €;).

THEOREM. The cone of the brick polytope B(Q) at the brick vector B(I) is generated
by —R(7), for any facet I of S(Q).




BRICK POLYTOPE

The brick polytope is the convex polytope B(Q) = conv {B(I) | I facet of S(Q)}.

THEOREM. The polar of the brick polytope B(Q) realizes the subword complex S(Q)
<= Q is such that R(]) is linearly independent, for I facet of S(Q).

THEOREM. If Q is root-independent, the cone of the brick polytope B(Q) at the brick
vector B(]) is generated by —R(7), for any facet I of S(Q).

THEOREM. If Q) is root-independent, the Coxeter fan refines the normal fan of the brick
polytope. More precisely,

normal cone of B(7) in B(Q) = U w( fundamental cone).

weW
R(I)Cw(dT)




NORMAL FAN

THEOREM. The Coxeter fan refines the normal fan of the brick polytope.




GENERALIZED ASSOCIAHEDRA

THEOREM. The brick polytope B(cw,(c)) realizes the subword complex S(cw,(c)).

THEOREM. The brick polytope B(cw,(c)) is a translate of the known realizations of the
generalized associahedron.

F. Chapoton, S. Fomin & A. Zelevinsky, Polytopal realizations of generalized associahedra, 2002.
C. Hohlweg, C. Lange & H. Thomas, Permutahedra and generalized associahedra, 2011.
S. Stella, Polyhedral models for generalized associahedra via Coxeter elements, 2013.

C. Hohlweg, Permutahedra and associahedra, 2013.







GENERALIZED ASSOCIAHEDRA
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