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PERMUTAHEDRA & ASSOCIAHEDRA

P.—Santos—Ziegler ('23)



LATTICES: WEAK ORDER & TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]

ordered by paths of simple transpositions ordered by paths of right rotations
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LATTICES: WEAK ORDER & TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

lattice congruence = equivalence relation = which respects meets and joins

r=2'andy=vy = asAy=2'Ay andzVy=2'Vy
quotient lattice = lattice on classes with X <Y «—= daxe X, yeY z <y




FANS: BRAID FAN & SYLVESTER FAN

polyhedral cone = positive span of a finite set of vectors

= intersection of a finite set of linear half-spaces
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FANS: BRAID FAN & SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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FANS: BRAID FAN & SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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braid fan = sylvester fan :f
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quotient fan = C(T) is obtained by glueing C(o) for all linear extensions o of T’




POLYTOPES: PERMUTAHEDRON & ASSOCIAHEDRON

polytope = convex hull of a finite set of points
= bounded intersection of a finite set of affine half-spaces

face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations /

>
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POLYTOPES: PERMUTAHEDRON & ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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where H; = {:13 c R" ’ D s T > (MQH)} Loday ('04)
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POLYTOPES: PERMUTAHEDRON & ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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POLYTOPES: PERMUTAHEDRON & ASSOCIAHEDRON
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LATTICES — FANS — POLYTOPES

permutahedron Perm(n) associahedron Asso(n)

— braid fan —> Sylvester fan
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face It of polytope P
normal cone of I' = positive span of the outer normal vectors of the facets containing I
normal fan of P = { normal cone of I' | IF' face of P }




LATTICES — FANS — POLYTOPES

permutahedron Perm(n)

— braid fan

—> weak order on permutations
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associahedron Asso(n)

— Sylvester fan

— Tamari lattice on binary trees




HOPF ALGEBRAS: MALVENUTO-REUTENAUER & LODAY-RONCO

product = linear map - : V® V — V = a tool to combine two elements (glue)
coproduct = linear map A : V — V ® V = a tool to decompose an element (scisors)
Hopf algebra = (V) -, AA) such that A(a - b) = A(a) - A(b)

Two operations on permutations:
shuffle 12 101231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312}

convol. 12 x 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}

Malvenuto—Reutenauer D Loday—Ronco
vector space ( IF, | o permutation of any size)  ( Py | T binary tree of any size)
product F, F,= > F.= > T, Pr-Ps= > Pr
Tepllo p\o<7<p/o R\S<t<R/S
coproduct AF.)= > F,F, APr)= > (]] Pgr)®Ps
TEPXO leRF!ﬂS i€k
cuto

Hopf subalgebra = define P, = > " IF, over all permutations 7 in the BST fiber of T




OPEN PROBLEM: COMPUTING SHORTEST ROTATION PATHS

REM. The diameter of the permutahedron Perm(n) is (g)

The simple transposition distance between two permutations o, 7 of [n] is the number

of inversions in o7 1.

THM. The diameter of the associahedron Asso(n) is precisely 2n — 6 when n > 10.
Sleator-Tarjan—Thurston ('88) — Dehornoy ('10) — Pournin ('14)

QU. Is it polynomial to determine the rotation distance between two binary trees?
Hanke—Ottmann—Schuierer ('96)

The flip distance problem is NP-complete on

e triangulations of polygons with holes
e triangulations of planar point sets Lubiw—Pathak ('12) — Aichholzer-Mulzer—Pilz ("12)



QUOTIENTOPES

Reading ('05)
P.—Santos ('19)
Padrol-P.—Ritter ('23)



QUOTIENT FAN

lattice congruence = equivalence relation on L compatible with meets and joins:
r=2"andy=¢ impliesx Ay=2'Ay andxVy=2'Vy

quotient fan /= = chambers are obtained by ’S»\
glueing the chambers C(o) of the permutations
o in the same congruence class of =

Cs
S

{T
// Reading ('05)




QUOTIENT FANS & QUOTIENTOPES

quotient fan F- = chambers are obtained by
glueing the chambers of the permutations o in // \\

the same congruence class of = ....
quotientope = polytope with normal fan JF— MM
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QUOTIENT FANS & QUOTIENTOPES

quotient fan F- = chambers are obtained by
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QUOTIENT FANS & QUOTIENTOPES

quotient fan F- = chambers are obtained by
glueing the chambers of the permutations o in // \\

the same congruence class of = ..Q.
quotientope = polytope with normal fan F— l/%WR
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insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)


OPEN PROBLEM: QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in R”

base region B = distinguished region of R" \\. H

inversion set of a region C' = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of R" ~\. H ordered by inclusion of inversion sets

THM. If PR(#H, B) is a lattice, and = is a congruence of PR(#, B), the cones obtained
by glueing the regions of R” \\. ‘H in the same congruence class form a complete fan F-

Reading ('05)

QU. s the quotient fan F= always polytopal?




DEFORMED PERMUTAHEDRA

Edmonds ('70)
Postnikov ('09)



DEFORMED PERMUTAHEDRA

deformation of a polytope IP = polytope @ such that

e () is obtained from IP by moving its vertices such that edge directions are preserved
e () is obtained from IP by translating its inequalities without passing through a vertex

e the normal fan of P refines the normal fan of Q)
e () is a weak Minkowski summand of IP, i.e. thereis R and A > 0 such that A\IP = Q+R

ROBWIOOD

deformed permutahedron = polymatroid = generalized permutahedron
[Edmonds ('70)] [Postnikov ('09)]
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Media File (video/quicktime)


REMOVAHEDRA VS. DEFORMED PERMUTAHEDRA

deformation of IP = obtained by translating inequalities in the facet description of IP

removahedron of IP = obtained by removing inequalities in the facet description of IP

outsidahedra insidahedra
removahedra deformed permutahedra
permutrees quotientopes

ROBWIOOD




outsidahedra_permutreehedra_penche_framed_ultraFast_bothWays_reversed_cropped.mov
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insidahedra_permutreehedra_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)


DEFORMATION CONE

deformation of a polytope IP = polytope @) such that AIP = Q+ R for some R and A > 0

deformation cone of IP = all deformations of P (under dilations and Minkowski sums)
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submodular cone

= deformation cone of Perm(3)



OPEN PROBLEM: RAYS OF THE DEFORMATION CONE

THM. The deformation cone of the permutahedron Perm(n) is (isomorphic to) the set of
submodular functions h : 2"l — R satisfying h(@) = h([n]) = 0 and the submodular

inequalities h(I) + h(J) > h(INJ)+h(IUJ) forall I,J C [n].

THM. The facets correspond to submodular inequalities where |\ J| = |J N I]| = 1.

QU. Describe (or count) the rays of the submodular cone. Edmonds ('70)




MULTIPLIHEDRA & HOCHSCHILD POLY TOPES

P.—Polyakova ('237)



LATTICES: PAINTED TREES & LIGHTED SHADES
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LATTICES: PAINTED TREES & LIGHTED SHADES
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LATTICES: PAINTED TREES & LIGHTED SHADES
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LATTICES: PAINTED TREES & LIGHTED SHADES

m-painted n-tree = binary tree with m-lighted n-shade = partition of [n]

n nodes and m levels with m levels
Chapoton-P. ('227) P.—Polyakova ('237)



LATTICES: PAINTED TREES & LIGHTED SHADES
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LATTICES: PAINTED TREES & LIGHTED SHADES
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LATTICES: PAINTED TREES & LIGHTED SHADES

Tamari lattice boolean lattice
Tamari ('51)



POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

2
2
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(m, n)-multiplihedron (m, n)-Hochschild polytope

= shuffle of Perm(m) and Asso(n) = removahedron of IMul(m,n)
= Perm(m) x Asso(n) + Z ez,emﬂ

Chapoton—P. (22+) P.—Polyakova ('237)



POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

m = 2
n =2

(m, n)-multiplihedron (m, n)-Hochschild polytope
— (m, n)-multiplihedron lattice — (m, n)-Hochschild lattice

Chapoton—P. ('227) P.—Polyakova ('237)



POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

(m, n)-multiplihedron (m, n)-Hochschild polytope
—> (m, n)-multiplihedron lattice —> (m, n)-Hochschild lattice
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POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

(m, n)-multiplihedron (m, n)-Hochschild polytope

—> (m, n)-multiplihedron lattice —> (m, n)-Hochschild lattice
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OPEN PROBLEM: SEMIQUOTIENTOPES

lattice congruence = equivalence relation on L compatible with meets and joins:

r=2andy=v¢ implieszAy=2'ANy andzVy=2'Vy

quotient fan - = chambers are obtained by /S\
glueing the chambers C(o) of the permutations
o in the same congruence class of =

Reading ('05)
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quotientope = polytope with normal fan F-
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QU. Extends to meet semilattice congruences? /
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