Automatic exploration of the natural variability of RNA non-canonical geometric patterns with a parameterized sampling technique

Théo Boury^{1,2,3}, Yann Ponty², Vladimir Reinharz³

1, Computer Science Department, Ecole Normale Superieure de Lyon, France 2, Laboratoire d'Informatique de l'Ecole Polytechnique (CNRS/LIX; UMR 7161), Institut Polytechnique de Paris, France

3, Department of Computer Science, Université du Québec à Montréal, Canada

About the RNA molecule: interest and formalism

The FuzzTree method

Results and perspectives

The RiboNucleic Acid (RNA) molecule... a simple intermediate ?

 RNA is a molecule of interest in itself

RNA "functions"

A few RNA "functions"?

A few RNA "functions"?

Targeting system for DNA Editing CHIPPI means Biote anemis. DF Massania. Leber competita Anemis and the anemis anemis anemis anemis anemis anemis anemis ane

Regulation of gene expression

RNAI therapies (FDA approved) Primary hyperoxaluria lype 1 (PH1), Hereditary transityretin amyioidosis (ATTRv), Acute hepatic porphyria (AHP)

Encyclopaedia Britannica, Inc. 2013

Some RNA "functions"

Hendel et al. 2015; Agrotix & Ketteler, 2015

Sensor of metabolites Riboswitches

Regulation of gene expression

RNAI therapies (FDA approved) Primary hyperoxaluria lype 1 (PH1), Hereditary transityretin amyioidosis (ATTRv), Acute hepatic porphyria (AHP)

Encyclopaedia Britannica, Inc. 2013

Some RNA "functions"

Targeting system for DNA Editing CRISPR theraples Sickle-cell anemia, β-thalassamia, Leber congenital amaurosis (LCA), cancers...

Hendel et al. 2015; Agrotix & Ketteler, 2015

Sensor of metabolites

Regulation of gene expression

RNAI therapies (FDA approved) Primary hyperoxaluria type 1 (PH1), Hereditary transthyretin amyloidosis (ATTRv), Acute hepatic porphyria (AHP)

Encyclopaedia Britannica, Inc. 2013

4

A lot of RNA "functions"!

Targeting system for DNA Editing CRISPR therapies Slokie-cel anemia, β-thalassamia, Leber congenital amaurosis (LCA), cancers...

Hendel et al. 2015; Agrotix & Ketteler, 2015

Sensor of metabolites

[NGuyen et al, 2021]

Non-coding mutations IncRNAs, mIRNAs, structure-associated (RiboSnitches) B-Ihalassemia, duchenne muscular dystrophy, Cystic tbrosis, Rell syndrome...

RNAI therapies (FDA approved) Primary hyperoxaluria lype 1 (PH1), Hereditary transityretin amyioidosis (ATTRv), Acute hepatic porphyria (AHP)

Encyclopaedia Britannica, inc. 2013

A lot of RNA "functions"!

Targeting system for DNA Editing CRISPR theraples Stokie-cell anemia, β-thalassamia, Leber congenital amaurosis (LCA), cancers...

Hendel et al. 2015; Agrotix & Ketteler, 2015

Sensor of metabolites Biboswitches

[NGuyen et al, 2021]

Non-coding mutations IncRNAs, mIRNAs, structure-associated (RiboSnitches) B-Ihalassemia, duchenne muscular dystrophy, Cystic tbrosts, Relt syndrome...

Genomic material for Human pathogens

Regulation of gene expression

RNAI therapies (FDA approved) Primary hyperoxaluria type 1 (PH1), Hereditary transthyretin amyloidosis (ATTRv), Acute hepatic porphyria (AHP)

Encyclopaedia Britannica, Inc. 2013

A lot of RNA "functions"!

Targeting system for DNA Editing CRISPR therapies Slokie-cel anemia, β-thalassamia, Leber congenital amaurosis (LCA), cancers...

Hendel et al. 2015; Agrotix & Ketteler, 2015

Sensor of metabolites Biboswitches

Quantitative expression

Cancer diagnosis/prognosis/relapse...

[NGuyen et al, 2021]

NO 24 - 500 8 165 (H = 50)

Transcriptomic signatures

A 103A Discovery classed

Non-coding mutations IncRNAs, mIRNAs, structure-associated (RiboSnitches) B-Ihalassemia, duchenne muscular dystrophy, Cystic tbrosts, Relt syndrome...

Regulation of gene expression

RNAI therapies (FDA approved) Primary hyperoxaluria type 1 (PH1), Hereditary transthyretin amyioldosis (ATTRv), Acute hepatic porphyria (AHP)

Encyclopaedia Britannica, Inc. 2013

Encodes proteins mRNA Vaccines COVID-19, Malaria (Zika, CMV, Cancers?)

Genomic material for Human pathogens

How many functional RNAs are there?

The 3D RNA structure

The 3D RNA structure

Different level of abstraction for RNA

Where is Waldo?

Motif

RNA 4V9F

Where is Waldo?

Where is Waldo?

Non canonical annotations (Leontis-Westhof) to the rescue!

Figure adapted from Almakarem et al, 2011

Where is Waldo (again)?

3D homology...

...Is not always obvious even with the non-canonical structure

Achieved result

New method : FuzzTree

- Sample RNA subgraphs in a neighborhood of *G*_{*P*}.
- Used neighborhoods: isostericity, missing bonds and gaps.
- Complexity: XP in G_P treewidth.
- Other state-of-the-art methods: only exact matches.

About the RNA molecule: interest and formalism

The FuzzTree method

Results and perspectives

Problem formalism

Input: Pattern graph $G_P = (V_P, E_P = B_P \sqcup \overline{B}_P)$ (\prec -Hamiltonian), target graph $G_T = (V_T, E_T = B_T \sqcup \overline{B}_T)$ and neighborhood thresholds $(T^L, T^E, T^G, D_{edge}, D_{gap})$ **Output:** Mapping $M: V_P \to V_T$ such that: 1. $\forall (u, v) \in V_P^2, u \prec v \Rightarrow M(u) \prec M(v)$ (monotonicity) 2. $\sum_{(u,v)\in\overline{B}_{P}}$ ISO $(L(u,v), L(M(u), M(v))) \leq T^{L}$ (label compatibility) (few missing edges) 3. $\sum_{(\mu,\nu)\in\overline{B}_{P}} 1 - \mathbb{1}_{(M(\mu),M(\nu))\in\overline{B}_{T}} \leq T^{E}$ 4. $\forall (u, v) \in \overline{B}_P, (M(u), M(v)) \notin \overline{B}_T, \text{GEO}(M(u), M(v)) \leq D_{\text{edge}}$ (edge distance limit) 5. $\sum_{(p_0,\ldots,p_k)\in P, k\geq 3} \operatorname{GEO}(p_0,p_k) \leqslant T^G$ (path size limitation) 6. $\forall (u, v) \in B_P, \exists (p_0, p_1, p_2, ..., p_k) \in P$ such that (no missing backbone path) $\blacktriangleright p_0 = M(u), p_k = M(v)$ • GEO $(p_0, p_k) \leq D_{gap}$

or $\ensuremath{\varnothing}$ if no such mapping exists.

Corresponding NP-complete Problem

Our problem specializes in Hamiltonian Subgraph Isomorphism Problem, known to be NP-complete:

Input: Pattern graph (\prec –Hamiltonian) $G_P = (V_P, E_P)$; Target graph $G_T = (V_T, E_T)$

Output: Mapping $M: V_P \rightarrow V_T$ such that

$$\blacktriangleright \quad \forall (u, v) \in E_P, (M(u), M(v)) \in E_T$$
 (no missing edge)

or \varnothing if no such mapping exists.

State of the art methods for Subgraph Isomorphism Problem

1976 Exact method: Ullmann's method

- 1995 Exact method: Color-Coding
- 2004 Heuristic: VF2
- 2018 Heuristic improvements: VF2++ and VF3
- 2021 Fuzzy method: VeRNAI

Parametrized complexity: Complexity uses a parameter p that depicts "property" of the input. Two classes of complexity:

Fixed-Parameter Tractable FPT: $O(f(p)n^{O(1)})$

Slicewise polynomial XP: $O(f(p)n^{g(p)})$

A sampling method: why and how?

Why sampling?

- Serve to obtain only a subset of all mappings in the RNA.
- ► To filter automatically mappings that are "too far" from *G*_{*P*}.

How to sample?

Definition 2.1 (Multidimensional Boltzmann distribution): Given a motif G_P , the probability \mathbb{P} to sample a (mapped) graph M in an RNA depends on its (pseudo-)energy E:

$$\mathbb{P}(M) = \frac{e^{-E(M)}}{\mathcal{Z}} \text{ where } \mathcal{Z} = \sum_{M'} e^{-E(M')}$$
(1)

Features of a mapping M are taken into account through an additive (pseudo-)energy function:

$$E(M) = \sum_{(u,v)\in E_P} w_L \times d^L(u,v,M) + w_E \times d^E(u,v,M) + w_G \times d^G(u,v,M)$$

Where w_L , w_E , w_G are real positive valued weights.

- Exact mapping corresponds to E(M) = 0.
- $E(M) \neq 0$ and $E(M) << \infty$ corresponds to fuzzy matches.

The label compatibility feature d^L

Definition 2.2 (Label compatibility feature d^L):

 $d^{L}(u, v, M) = ISO(Label(u, v), Label(M(u), M(v)))$

 Isostericity ISO¹ compares both the 12 canonical and non-canonical base pairing families.

¹Stombaugh et al, 2009, Nucleic Acids Research

The bond missing feature d^E

Definition 2.3 (Bond missing missing feature d^E): $d^E(u, v, M) = \begin{cases}
0 & \text{if } (u, v) \in B_P \cap (M(u), M(v)) \in B_T \\
& \text{or } (u, v) \in \overline{B}_P \cap (M(u), M(v)) \in \overline{B}_T \\
1 & \text{if } (u, v) \in \overline{B}_P \cap (M(u), M(v)) \notin \overline{B}_T \\
& \text{and GEO}(M(u), M(v)) \leqslant D_{\text{edge}} \\
& \infty & \text{otherwise}
\end{cases}$ Fake backbones creation for gaps

Gap feature d^G

Definition 2.4 (Gap difference d^G): $d^G(u, v, M) = \begin{cases} \text{GEO}(M(u), M(v)) & \text{if } (M(u), M(v)) \text{ is} \\ & \text{a "Fake Edge" in } E_T \\ 0 & \text{otherwise} \end{cases}$

Sampling into a Boltzmann distribution

We sample (given a pseudo-energy) instead of simply searching an optimal.

Tree decomposition and tree width

Given a graph C = (V, E), a tree decomposition of G is a tree T composed of bags $B_1...B_t$ such as: ²

1.
$$V \subset \bigcup_{i=1}^{t} B_i$$

2. $\forall (X_i, X_j) \in E, \exists i \in \llbracket 1, t \rrbracket, (X_i \in B_k) \cap (X_j \in B_k)$
3. $\forall X_i \in V, \{B_k \mid X_i \in B_k\}$ is a subtree of T .

²Bodlaender et al, 2008

Dynamic programming on tree decomp. is automatized with Infrared ³

³Hua-Ting et al, 2022, RNA Folding - Methods and Protocols

Complexity

► Complexity:

- Partition function computation: $O(kn^{\phi+1})$
- Sampling: O(knt)

With:

- *n*: number of nodes in the RNA G_T
- k: number of nodes in the motif G_P
- ϕ : treewidth of G_P
- t: number of samples

About the RNA molecule: interest and formalism

The FuzzTree method

Results and perspectives

Validation dataset

The Kink-Turn family dataset:

- A biological family that contains 72 known motifs over more than 25 different RNAs.
- Kink-Turns are clustered in 18 different families according to atomic cristallography.⁴

⁴Petrov et al, 2013, RNA

Typical treewidth of Kink-Turn motifs

Number of Kink-Turn instances	Treewidth
50	2
21	3

• Complexity:

$$O\left(knt + kn^{\phi+1}\right)$$

- \blacktriangleright k, number of nodes in G_P .
- ▶ *n*, number of nodes in G_T .
- ϕ , treewidth of G_P .
- ► *t*, number of samples.

Kink-Turn Cartography

Retrieve the Kink-Turn family by requesting a single motif

We requested motif IL_5TBW_059 inside all RNA containing Kink-Turns.

• Thresholds on neighborhoods: $T^L = 20$, $T^E = 4$ and $T^G = 20$.

• Used metrics: Sensitivity $=\frac{TP}{P}$ and Specificity $=\frac{TN}{N}$

What about found motifs that are not labeled as Kink-Turns ?

Some of our motifs angles in green are in the range of the Kink-Turn angles in red.

Suggestions of new motifs using our methods

Case study: A Kink-Turn that we missed

Case study: Kink-Turn that we missed but that we can hope to cover with multiple mappings

Conclusion and future work

- We proposed an exact sampling solution for the Fuzzy Monotonous Subgraph Isomorphism Problem.
- Complexity is rooted in the treewidth of the requested motif:

$$O\left(knt + kn^{\phi+1}
ight)$$

We used isostericity, missing bonds and gaps to catch a wide variety of RNA motifs as observed on the Kink-Turn.

Future work:

- ▶ Further evaluate the efficiency of FuzzTree on diverse RNA modules
- Possibility to introduce new metrics without additional work
- Discover unknown RNA motifs unlisted until now thanks to our neighborhoods

Acknowledgements

Fonds de recherche Santé Québec 🏘 🕸

FuzzTree

Isostericity computation

Average IsoDiscrepancies between geometric families

Zirben al, 2009