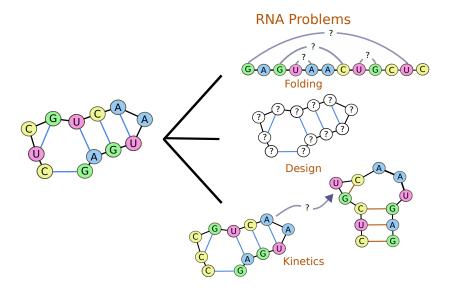
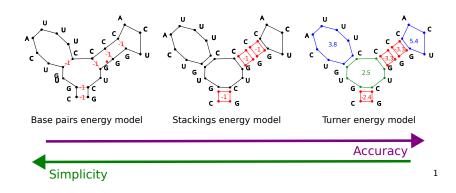
Searching for exact solutions for the inverse folding problem using graphs and parameterization.

Théo Boury¹, Laurent Bulteau², Yann Ponty¹

- 1, Laboratoire d'Informatique de l'Ecole Polytechnique (CNRS/LIX; UMR 7161), Institut Polytechnique de Paris, France
- 2, Laboratoire d'Informatique Gaspard Monge (CNRS/LIGM; UMR 8049), Université Gustave Eiffel, France

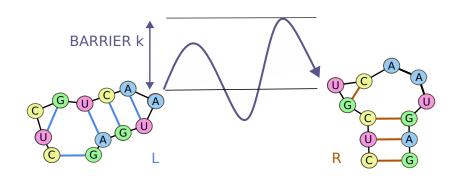

A vague definition of design

Rational design targets a desired biological function


Criteria typically split:

- ► Positive design (≈ Affinity)
- ▶ Negative design (\approx Specificity)

The RNA molecule: 2D abstraction and problems


Difficulties of this problem depend heavily on the underlying energy model

▶ Stacking model: a reasonable compromise and starting point

¹Adapted from Ronny Lorenz's PhD

Design along a kinetics reconfiguration pathway

► Compatible over the pathway

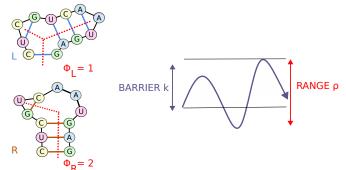
The energy barrier problem

Problem 1 (RNA Energy-Barrier):

Input: Sequence ω ; Secondary structures L and R; Energy barrier $k \in \mathbb{N}^+$

Output: True if there exists a sequence $S_0 \cdots S_\ell$ of secondary structures such that

- $ightharpoonup S_0 = L \text{ and } S_\ell = R;$
- $\blacktriangleright \ E_{\mathcal{M}}(\omega, S_i) E_{\mathcal{M}}(\omega, L) \leq k, \forall i \in [0, \ell];$
- $\blacktriangleright |S_i \triangle S_{i+1}| = 1, \forall i \in [0, \ell-1].$


False otherwise.

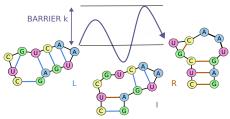
- ► · · · An NP-hard problem² (even in base pairs model)!
- ► Heuristically solved: solely an upper bound³

²Manuch et al, Nature Computing, 2009

³Dotu et al, NAR, 2010

Solving exactly the energy barrier problem

We proposed in the base pairs model:


[Boury, Bulteau, Marchand, Ponty, 2023]

- ▶ XP in Range $(O(n^{2\rho}\sqrt{n}m)$ -time (m = |E|), $O(n^2)$ -space)
- ightharpoonup XP in Arboricity $\Phi = \min(\Phi_B, \Phi_R)$ ($O(n^{\phi+1})$ -time, $O(n^{\phi})$ -space)

Open question 1:

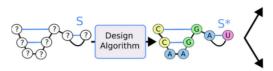
► Extension to a stacking model?

Design along a "direct" pathway

Definition (Direct pathway): A pathway $S_0 \cdots S_\ell$ is dais to be direct iff it contains only base pairs from L and R.

- ► Barrier does not depend on sequence
- Positive design always possible for two structures [Flamm et al, GCB, 2003]
- \Rightarrow Random generation of RNAs achieving barrier less than k from L to R (if possible) can be performed in linear time

Open question 2:


► Indirect pathways?

Inverse folding (positive/negative structural design)



Positive Design (in P)

- Optimally stable structure
- Base pairs chosen from {{A,U},{C,G},{G,U}}

Negative Design: NP-hard [Bonnet et al, JCB 2020] $\forall S, \neq S^*, E(S,) > E(S^*)$

Formal definition

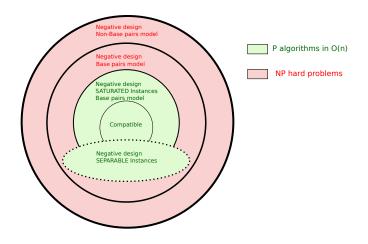
Definition (Design predicates assuming energy model \mathcal{M}): Given a target RNA secondary structure S^* and a length n, a sequence $\omega \in \{A, C, G, U\}^n$ can be called a design iff it respects some of the following predicates:

1. Compatible

$$\{\omega.(i),\omega.(j)\} \in \{\{A,U\},\{G,U\},\{G,C\}\} \,\forall (i,j) \in S$$

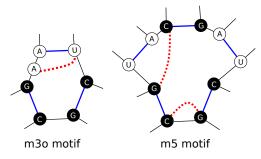
2. Positive Design

$$E_{\mathcal{M}}(\omega', S^*) \geqslant E_{\mathcal{M}}(\omega, S^*), \forall \omega' \neq \omega$$


3. Negative Design

$$E_{\mathcal{M}}(\omega, S) > E_{\mathcal{M}}(\omega, S^*), \forall S \neq S^*$$

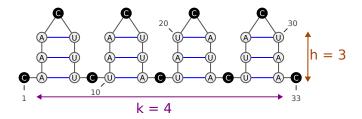
▶ In unweighted models: compatible → positive design


Halès et al⁴: what it brought to the table

How to find exact solutions that satisfies the negative design?

⁴Halès et al, Algorithmica, 2017

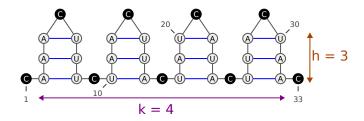
Obvious limits


Limits

- ▶ m3o and m5 motifs do not yield a negative design
- ▶ · · · A direct consequence of the base pairs model!

Open question 3: Can we remove this restriction on the number of helices using a stacking energy model?

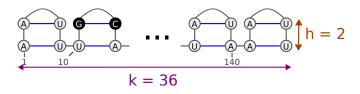
Possibility of the design with more helices


We work now using the stacking model:

Open question 3: Can we remove this restriction on the number of helices using a stacking energy model?

Possibility of the design with more helices

We work now using the stacking model:

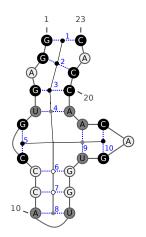


Open question 3: Can we remove this restriction on the number of helices using a stacking energy model? **Yes!**

Theorem (Helices of large enough size \to Designable]): Given a saturated multiloop S of k helices of size h, with unpaired positions between and at extremities of each helix, if $log_2(k) < h$ then the structure is designable.

Open question 5: Motif generalization: removing terminal and inbetween nodes?

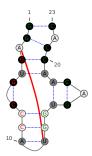
· · · but we just push back the base pairs bounds



Theorem (Helices of small enough size \rightarrow Non designable): Given a saturated multiloop S of k helices of size h, if $h < log_6(k)$ then the structure is non-designable.

The existence of such a bound means that there is more than a polynomial number of designs that we miss.⁵

⁵Consequence of Hua Ting's PhD


Halès et al approach⁶

- ▶ Base pairs are assigned greedily in a DFS manner
- ▶ Obtained sequence is a design but not necessarily negative!

⁶Halès et al, Algorithmica, 2017

The separability condition

Let ω be a sequence compatible with S with A on unpaired regions

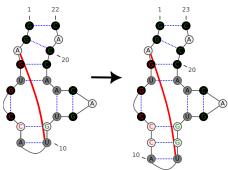
Definition (Separability condition): ω is separated iff any alternative BP $(i,j) \notin S$ segregates different numbers of C and G.

Open question 6:

► Separability over a stacking energy model?

What about instances that are not separable?

One can solve the problem on a modified separable instance:


Definition (Disrupted design):

The sequence ω is a disrupted design at distance p iff we can add p nucleotides to ω and p/2 base pairs over them forming S' such as ω' is a design over S'.

We denote the smaller possible perturbation p_{min} .

- Linear algorithm achieving a disrupted design at distance $p \le n$ (Halès et al)
- ► At most 1 added BP by helix

Disrupted design proposition

Another algorithm for disrupted negative design:

- ightharpoonup XP algorithm finding a disrupted design at distance p_{min}
- Through step-by-step exploration of the possible disruptions

Open question 7:

▶ Find p_{min} value in polynomial complexity?

Sampling

Definition (Sampling): Given a set of design predicates P,we say that ω is a uniform design sample if ω satisfies P and $\mathbb{P}(\omega) = \frac{1}{|\{\omega'|\omega' \text{ satisfies }P\}|}$

Perspectives for sampling:

- Algorithms to sample given multiple structures is polynomial.
- Algorithms to sample given a sequence and some pairs constraints is FPT in treewidth. ^{7 8}

Open question 8: What about negative design, in particular, how to enumerate exhaustively the alternatives?

⁷Hammer et al, BMC Bioinformatics, 2019

⁸Yao et al, RNA Folding - Methods and Protocols, 2022

Final word · · ·

As one may notice... I have a lot of "open" questions · · · ... but I am also "open" to discussions!

Thanks to...

Yann Ponty

Laurent Bulteau

Sarah Berkemer Jean-Marc Steyaert Sebastian Will

And to the other members of the AMIRio team: Alan Azede Bertrand Marchand Nan Pan Taher Yacoub