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Abstract. Ancient DNA (aDNA) sequences, that correspond to DNA extracted post-mortem
from fossils or ancient skeletons, have become critical to understand the evolutionary histo-
ries of species and are necessary complements to modern DNA sequences. However, DNA
drastically degrades through time resulting in aDNA of poorer quality than modern DNA.
Thus, the robustness of modern DNA techniques should be tested before being applied to
aDNA. Alternatively, novel methods have been designed specifically for aDNA and require
to be tested in various degraded conditions. Such challenges makes the simulation of aDNA
sequences of high interest. Few simulators exist to degrade sequences but, the most famous
one, named Gargammel [6], is time-consuming and is hard to parameterize.
We developed a method able to simulate aDNA sequences corresponding to a given string
of an undamaged DNA sequence. It is, to our knowledge, the first method that generates
aDNA sequences based on language models. The method is based on an encoder transformer
trained on couples of undamaged and aDNA. The relevance of the simulated data is checked
through base pairs comparisons with the sequences obtained with Gargammel. In the future,
such a method could become a good alternative to Gargammel with faster simulation time.
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1 Motivations

DNA studies have led to the possibility to infer the past evolutionary histories of species and
populations. These include the size of the population, migration rates, selection pressures,
and, more generally, any property that impacts the distribution through time of the ancestors
of a sample of individuals. Such studies are well complemented with the use of DNA obtained
from fossils, called aDNA, that carry direct information on past periods.
Nonetheless, due to the degradations, mostly deamination and contamination, aDNA se-
quences are heavily fragmented with a significant number of missing data and several wrongly
called genotypes. Combined with the scarcity of aDNA data, it led to a real need for simu-
lated aDNA sequences that, in addition, allow evaluation in a controlled environment.
A sequence-to-sequence aDNA simulator, able to damage sequences, already exists called
Gargammel [6], based on physics and statistics. Gargammel is integrated into a more com-
plete pipeline, already used to test the robustness of neural networks [3], that includes
sequencing post-processing steps (trimming, mapping, calling). Nonetheless, its parameter-
ization and computational time are prohibitive when large datasets are necessary. We pro-
pose an alternative: a sequence-to-sequence simulator based on transformers. Our learning
steps are done from undamaged DNA sequences and their aDNA “translations”. Our aDNA
”translations” are obtained using Gargammel itself and the full post-processing pipeline,
which circumvent the scarcity of aDNA data and allow us to focus on the approximation of
Gargammel. As ”translations” are only used for training purposes, a user does not require
Gargammel when using our tool on their input sequences.
In addition, note that generation with transformers has already been achieved, but almost ex-
clusively with a focus on natural languages. In parallel, a couple of encoder-only transformers
were pre-trained on the DNA language mainly for classification purposes. Our current work
aims to fill this gap as, for now, only a one-month-old preprint tackles DNA generation. [8]
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Fig. 1. (A) Adapted DNABERT pre-trained model. We add special tokens in input couples:
CLS token, a placeholder for classification logit, and SEP token between KU and KA. (B)
Alignement between Gargammel sequences (top) and generated sequences (bottom). We observe high
identity in nucleotides. In general, missing data are in close proportions in both sequences,
but we observe unwanted gaps in the top sequence, preventing a proper study of these miss-
ing data. It should be addressed through Needleman and Wunsch algorithm modifications. (C)
The two generation algorithms from iteration k to iteration k + 1. In both cases, a random mask is filled
(left). With generation using the MPT+CT model, we use a K-Top table (right)

2 Method

Our method relies on BERT [4], a large language model including attention-based transform-
ers. .We used specifically DNABERT [5], an encoder BERT pre-trained on modern DNA
sequences from the reference human genome, originally designed for classification purposes.
Our data are couples of undamaged and aDNA sequences (sU , sA). We used msprime [1]
to simulate a simple demographic scenario of constant population size for a 25Mbp haploid
chromosome and sampled one 100-generation-old individual (sU ) and one reference individ-
ual from the present time. Because msprime only produces undamaged data, sA, the ancient
(damaged) version of sU , is generated using the full pipeline that wraps Gargammel. Both
sequences are 25 million long including nucleotides (A, C, G, T). Only sU contains miss-
ing data. We tokenized (sU , sA) couples into overlapping 6-mers sequences (KU ,KA) with
additional special tokens (CLS, SEP, MASK) as depicted in part (A) of Fig. 1. Because
DNABERT only supports input of size below 512, we slice sU and sA in around 100000
chunks each, before building couples. Missing data symbols in sA are removed, considered
as gaps, leading to KU and KA of different sizes, as allowed by the architecture.
We fine-tuned the model using up to two tasks:
– A Mask Prediction task (MPT): to understand the ‘language” of our DNA simulations

and, in particular, of aDNA. The MPT is done by replacing contiguous positions of size
6 in the whole sequence (or exclusively in KA) by MASK tokens up to 15 percent.

– A (binary) classification task (CT): to be able to predict if a couple (sU , sA) is such that
sA is the ‘translation” (i.e. ancient damaged version) of sU .

For both fine-tuning tasks, the loss is based on cross-entropy, and when combining MPT
and CT, we add up their losses. We propose two alternative approaches for generation: one
using the pre-trained DNABERT model, fine-tuned on MPT only (MPT model), and one
using the same model but fine-tuned on both CT and MPT (MPT+CT model). Our first
generation algorithm uses the MPT model in a fashion similar to bert-gen [7]. Given sU and
given a maximal sequence size n, we build a tokenized input of the form:
I = CLS.KU .SEP.MASKn−|KU |−2. The masked part on the right (repeated MASK tokens)
represents the unknown tokenized ancient sequence KA that we want to generate. Masks are
filled iteratively based on the predicted word probabilities (logits) at masked positions, as
illustrated in part (C) of Figure 1.
Our second generation algorithm uses the MPT+CT model, allowing awareness of wrong
translations that are still plausible DNA sequences: we store a K −Top of the most relevant
sequences, which we update iteratively by keeping only the generated sequences with the
highest classification scores for class 1 (correct translation). Those sequences serve as starting
points for the next generation step as represented in part (C) of Fig 1.



3 Results

With n = |(sA, sU )|, and K, the size of the K-Top table, we have a time complexity O(n3)
for the first generation algorithm and O(n3K) for the second. In practice, computations can
be done in batches, allowing to generate multiple sequences sA simultaneously or to process
at once the K-Top table. In comparison, complexity is in O(n× c× f) for Gargammel with
c, the desired coverage (no more than 30X) and with f , the number of fragments sampled by
Gargammel to ensure a base pairs compositions. f can lead to a large overhead in practice.
It makes our complexity of interest, especially with no stochasticity involved.
We have studied precisely 30 aDNA chunks generated with our MPT model. Using Needle-
man andWunsch algorithm in its Blast implementation [2], we align them with their Gargam-
mel counterparts. An alignment example is available in part (B) of Figure 1. In these align-
ments, we observed that the nucleotides, excluding the gaps and missing ones, are identical
for around 74 percent. It emphasizes our capacity to mimic Gargammel properly. Addi-
tionally, the generated sequences are not direct copies of Gargammel, but the quality and
properties of such alternatives should still be assessed.
With the MPT + CT model, the generation algorithm gave no better results than the one
with only the MPT model for now, even with different labeling of data: classification is too
easy when sA parts of “negative” examples come from different genomic regions of the same
individual and too hard when they come from the same regions but from different individuals.
Future research should explore alternative classification tasks of in-between difficulties.

4 Discussion/Conclusion

We have introduced a new method to simulate aDNA sequences. The method is based on
a fine-tuning of an encoder transformer trained on couples of undamaged aDNA and their
ancient damaged counterpart followed by a generation algorithm based on the mask pre-
diction capability of this encoder. Complexity, in its simpler version, is in O(n3) with n
the length of entry couples, and the use of batches can speed up computations in prac-
tice. It is, to the best of our knowledge, the first method using DNA language models for
aDNA generation. We have generated sequences that look plausible through comparisons
with Gargammel. Nonetheless, future work should focus on ways to assess the quality of
the generated aDNA. For now, note that Gargammel is more versatile as it can generate
any level of damage/coverage while we currently need to fine-tune our model for different
levels. In the future, it would be of interest to enable conditional generation (conditioned on
continuous level of coverage and damages) so that only one training would be necessary. One
limitation is that entries should contain below 512 nucleotides: longer sequences are divided
into smaller chunks, which in return might prevent the model from capturing long-range cor-
relations. Possible solutions could include increasing the size of the network and integrating
linear (instead of quadratic) attention mechanisms. Fortunately, such modifications go in the
sense of the recent progress in transformers, even for DNA, and could improve the quality
of our results and lower complexity without requiring any change in our method.
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