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Reachability Analysis for Neural Network Verification

Robustness and input/output properties:

I Need to be proved for (possibly large) sets of network inputs
I Can be specified as preconditions/postconditions expressed in linear arithmetic

Qualitative verification: property proven true or unknown 1



Quantitative Neural Network Verification
Motivation

I Provide additional information on property satisfaction compared to SAT/UNKNOWN
I Exploit knowledge of probabilistic information on inputs

I can be probabilistic but imprecisely known, e.g.:
I Gaussian variableN (µ, σ2)with uncertain mean µ ∈ [µ, µ] and variance σ2 ∈ [σ2, σ2]
I Uniform variable U(a, b)with uncertain range (a and b uncertain)

I example: noise due to sensor V + εwith V ∈ [a, b] , ε a random variable

With respect to most closely related work: Quantitative verification for neural networks using
Probstars, Tran, H.D., Choi, S., Okamoto, H., Hoxha, B., Fainekos, G., Prokhorov, D., HSCC 2023

I inputs are arbitrary distributions (extending the Gaussian distribution hypothesis)

I our approach gives fully guaranteed probability bounds
2



Problem Statement: propagating imprecise probabilities
Problem (Probability bounds analysis)
Given a ReLU network f and a constrained probabilistic input set

X = {X ∈ Rh0 | CX ≤ d ∧ F(x) ≤ P(X ≤ x) ≤ F(x), ∀x}

where F and F are two cumulative distribution functions, compute a constrained
probabilistic output setY guaranteed to contain {f(X), X ∈ X}.
For X ∈ Rn, we note P(X ≤ x) := P(X1 ≤ x1 ∧ X2 ≤ x2 . . . ∧ Xn ≤ xn)

Problem (Quantitative property verification)
Given a ReLU network f , a constrained probabilistic input setX and a linear safety property
Hy ≤ w, bound the probability of the network output vector y satisfying this property.
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Feedforward ReLU neural network
Each layer consists in a linear transform followed by a non linear activation function:

We focus on the classical ReLU activation function
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Toy illustrating example: 2-layers ReLU network

A1 = A2 =

[
1 −1
1 1.

]
, b1 = b2 =

[
0.0
0.0

]
.

x1 = σ(A1x0 + b1) = σ(x01 − x02 , x01 + x02)

x2 = A2x1 + b2

x01

x02

[−2, 2]

[−1, 1]

1
−1
1
1

x11

x12

ReLU

ReLU

x21

x22

x21 ≤ −2?

x22 ≥ 2?

1
−1
1
1

Property:

I Qualitative: if x0 =
[
x01 x02

]>
∈ [−2, 2]× [−1, 1], does output satisfy x21 ≤ −2 ∧ x22 ≥ 2?

I Quantitative:

I P
(
x21 ≤ −2 ∧ x22 ≥ 2

∣∣ x01 ∈ U(−2, 2) ∧ x02 ∈ U(−1, 1)
)
?

I P
(
x21 ≤ −2 ∧ x22 ≥ 2

∣∣ x01 ∈ N (0, [0.5, 0.66]) ∧ x02 ∈ N ([0, 1], 0.33)
)
?
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Outline

I Imprecise probabilities: P-boxes and Dempster-Shafer Interval Structures (DSI)
I Representations of sets of probability distributions
I Generalize both probabilistic and non deterministic (interval) computations

I ReLU neural network analysis by DSI
I Mitigating the wrapping e�ect of intervals using zonotopes

I Probabilistic Zonotopes
I Zonotopic Dempster-Shafer Structures (DSZ)

I Evaluation
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Imprecise probabilities: P-boxes and
Dempster-Shafer structures



Representation of imprecise probabilities: P-box

Definition (P-box for a real-valued random variable X)

Given two (lower and upper) CDF (Cumulative Distribution Functions) F and F fromR to
R+ s.t. ∀x ∈ R, F(x) ≤ F(x), the p-box [F, F] represents the set of probability
distributions for X s.t.

∀x ∈ R, F(x) ≤ P(X ≤ x) ≤ F(x).

I Ferson S, Kreinovich V, Ginzburg L, Myers D, Sentz K, Constructing probability boxes and Dempster–Shafer structures.
Tech. Rep. SAND2002-4015, 2003

I Williamson and Downs, Probabilistic Arithmetic I: Numerical Methods for Calculating Convolutions and Dependency
Bounds, Journal of Approximate Reasoning, 1990
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P-box examples (Julia library ProbabilityBoundsAnalysis.jl)l

Sets of probability distributions on X (CDF form) such that ∀x, F−(x) ≤ P(X ≤ x) ≤ F+(x):

normal(0,1) makepbox(interval(-1,1)) normal(interval(0,1),1)
Generalize probabilistic and non deterministic (interval) information 8



Dempster-Shafer Interval structures (DSI)

A discrete version of P-boxes:

I Focal elements t ∈ T (sets of values, here Intervals) with probabilityw : T → R+

t ∈ T [-1,0.25] [-0.5,0.5] [0.25,1] [0.5,1] [0.5,2] [1,2]
w(t) 0.1 0.2 0.3 0.1 0.1 0.2

I Represents the set of probability distributions P on X such that:

∀x ∈ [−1,−0.5], P(X ≤ x) ≤ 0.1 ,

∀x ∈ [−0.5, 0.25], P(X ≤ x) ≤ 0.1+ 0.2 ,

∀x ∈ [0.25, 0.5], 0.1 ≤ P(X ≤ x) ≤ 0.1+ 0.2+ 0.3 ,

etc.
−1 −0.5 0.25 0.5 1 2

1

∑
t∈T,t⊆S

w(t) ≤ P(S) ≤
∑

t∈T,t∩S 6=∅

w(t)
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From P-boxes to Dempster-Shafer Interval structures
Given a P-box (F, F)

I Take lower and upper approximation by stair functions

I Deduce focal elements (intervals) and weights
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From P-boxes to Dempster-Shafer Interval structures
Given a P-box (F, F)

I Take lower and upper approximation by stair functions

I Deduce focal elements (intervals) and weights
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Arithmetic on DSI structures
DSI structures can be propagated through arithmetic operations:

I 2 cases: independent inputs / unknown dependency
I relying on interval arithmetic / Frechet inequalities
I conservative approximations
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ReLU
Lemma (ReLU of a DSI)
Given X represented by the DSI {〈xi,wi〉 , i ∈ [1, n]}, then the CDF of Y = σ(X) = max(0, X)

is included in the DSI {〈yi,wi〉 , i ∈ [1, n]}with yi = [max(0, xi),max(0, xi)].

12



ReLU neural network analysis by DSI

Input: d0 a h0-dimensional vector of DSI
1: for k = 0 to L− 1 do
2: for l = 1 to hk+1 do
3: dk+1l ← σ(

∑hk
j=1 a

k
ljd

k
j + bkl ) . A�ine transform and ReLU - Dependency graph

useful for choosing the right DSI operations (indep. or unknown dep.) in a�ine
transforms

4: end for
5: end for
6: return (dL,cdf(HdL,w)) . Vector of DSI for the output layer and probability bounds for
property Hz ≤ w
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Illustration on the toy example

Input x0 =
[
x01 x02

]>
∈ [−2, 2]× [−1, 1]with Uniform law on inputs
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Illustration on the toy example

Input x0 =
[
x01 x02

]>
∈ [−2, 2]× [−1, 1]with Uniform law on inputs

Finer discretization refines the approximation but the ranges are unchanged
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Illustration on the toy example

Input x0 =
[
x01 x02

]>
∈ [−2, 2]× [−1, 1]with Normal law on inputs
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Illustration on the toy example

Unknown dependency on inputs vs independent inputs

P(z1 ≤ −2) ∈ [0, 0.05] P(z2 ≥ 2) ∈ [0, 0.59] P(z1 ≤ −2) ∈ [0, 0.01] P(z2 ≥ 2) ∈ [0, 0.2]
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Wrapping e�ect: example of the first a�ine layer

x1

x2

[−2, 2]

[−1, 1]

x3

x4

1
−1
1
1

Initial domain:

− 2 ≤ x1 ≤ 2
− 1 ≤ x2 ≤ 1

x1

x2

Exact domain:

x3 = x1 − x2
x4 = x1 + x2
x1, x2 ∈ [−1, 1]

Using Intervals/Boxes:

− 3 ≤ x3 ≤ 3
− 3 ≤ x4 ≤ 3
x1, x2 ∈ [−1, 1]

x3

x4

The optimal a�ine transformers for boxes are not exact. Zonotope transformers are ! 18



Mitigating the wrapping e�ect:
Probabilistic zonotopes and
Dempster-Shafer Zonotopic Structures
(DSZ)



Zonotopes and neural network reachability analysis
Definition (Zonotope)

An n-dimensional zonotopeZ with center c ∈ Rn and a vector Γ =
[
g1 . . . gp

]
∈ Rn,p of p

generators gj ∈ Rn for j = 1, . . . , p is defined asZ = 〈c, Γ〉 = {c + Γε | ‖ε‖∞ ≤ 1}.

Zonotopes are closed under a�ine transformations: for A ∈ Rm,n and b ∈ Rm we define
AZ + b = 〈Ac + b, AΓ〉 as the m-dimensional resulting zonotope.
RELU transformer: conservative approximation

x̂

ŷ

lx ux

ux
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Two solutions for zonotopic probabilistic NN analysis
Probabilistic zonotopes (or probabilistic a�ine forms)

I Zonotopic network analysis starting from the support of input distribution

I Probabilistic interpretation: noise symbols are DSI instead of intervals
I inspired from [Adje et al 2013] A. Adjé, O. Bouissou, J. Goubault-Larrecq, E. Goubault, S. Putot: Static

Analysis of Programs with Imprecise Probabilistic Inputs. VSTTE 2013: 22-47

Dempster-Shafer Zonotopic structures (DSZ)

I Dempster-Shafer structures with zonotopic focal elements

I A refinement of probabilistic zonotopes, which fully exploits the DSI input
discretization in the NN analysis

I Currently restricted to independent inputs
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NN analysis by DSZ (independent inputs)
Input: d0 a h0-dimensional vector of DSI
1: d0Z =

{
〈Z0i1...ih0 ,w

0
1,i1 . . .w

0
h0,ih0
〉, (i1, . . . , ih0) ∈ [1, n]h0

}
← dsi-to-dsz(d0)

2: for k = 0 to L− 1 do
3: for (i1, i2, . . . , ih0) ∈ [1, n]h0 do
4: Zk+1i1...ih0

← σ(AkZki1...ih0 + bk) . Independent zonotopic analyzes (can be done in
parallel)

5: end for
6: end for
7: dLZ =

{
〈ZLi1...ih0 ,w

0
1,i1 . . .w

0
h0,ih0
〉, (i1, . . . , ih0) ∈ [1, n]h0

}
8: dL ← dsz-to-dsi(dLZ)

9: return (dL,cdf((HdLZ ,w)) . Property bounds computed by direct evaluation of the CDF
on the zonotopic focal elements
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Evaluation



Implementation and Evaluation

FM
Artifact
Evaluation

Available

Julia implementation

I available from https://github.com/sputot/DSZAnalysis or
https://doi.org/10.5281/zenodo.12519084.

I uses the LazySets and the NeuralVerification package for zonotopic NN analysis

I uses the ProbabilityBoundsAnalysis package for P-boxes / DSI analysis

Examples and evaluation

I Toy example - corrected Table 1 in the paper (thanks to the RE reviewers !)

I ACAS Xu airplanes collision avoidance example

I Rocket lander example
22
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Comparing DSI, Prob. Zonotopes and DSZ: toy example

Table 1: Probability bounds for the toy example, independent inputs.

Law DSI Prob. Zono. DSZ
(#FE) P(x21 ≤ −2) P(x22 ≥ 2) time P(x21 ≤ −2)P(x22 ≥ 2) time P(x21 ≤ −2) P(x22 ≥ 2) time

U(2) [0, 0.5] [0, 1] < e−3 [0, 0.5] [0, 1] < e−3 [0, 0.25] [0, 0.5] < e−3

U(10) [0, 0.2] [0, 0.7] e−3 [0, 0.3] [0, 0.8] e−3 [0, 0.03] [0.2, 0.3] < e−3

U(102) [0, 0.07] [0.05, 0.52] 0.022 [0, 0.26] [0, 0.76] 0.013 [0, 0.0014] [0.25, 0.26] 0.026
U(103) [0, 0.063] [0.062, 0.502] 2.4 [0, 0.251] [0, 0.751] 1.2 [0, 3.e−6] [0.25, 0.251] 3

N(10) [0, 0.017] [0, 0.277] e−3 [0, 0.1] [0, 1] e−3 [0, 0.01] [0, 0.1] < e−3

N(102) [0, 0.004] [0, 0.186] 0.022 [0, 0.07] [0, 0.94] 0.013 [0, 4.e−4] [0.06, 0.07] 0.026
N(103) [0, 0.004] [0.003, 0.182] 2.4 [0, 0.067] [0, 0.934] 1.2 [6e−5, 1.1e−4][0.066, 0.067] 3

I For independent inputs, DSZ always more precise.
I In the paper, detailed calculation for the 3 approaches in the case of 2 focal elements.
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Comparisons to the state of the art

[Tran et al 23] Quantitative Verification for Neural Networks using ProbStars, Tran et al, HSCC 2023

Examples

I ACAS Xu airplanes collision avoidance

I Rocket lander

Inputs and configuration

I Bounded (vector) inputs in [lb,ub], components follow independent Gaussian
distributions with µ = (ub + lb)/2 and σ = (ub−m)/3

I Timings and results given for [Tran et al 23] are from their paper:
I parallelized (between 1 and 8 cores) and on a slightly stronger computer than ours
I we reproduced a few analyzes: approx 7 to 10 times slower than their results with 1 core,

approx 1.5 to 3.5 with 4 and 8 cores 24



ACAS Xu: collision avoidance systems for civil aircra�s (FAA)

I Produces aicra� advisory (clear-of-conflict, weak right, weak le�, strong right, etc.)
I Array of 45 DNNs by discretizing τ and aprev ; each has 5 inputs (ρ, θ, ψ, vown and vint)
and 5 outputs (score for each advisory).

I Fully connected ReLU feeedforward networks with 5 inputs, 6 hidden layers, 5 outputs

Properties:
P2 : y1 > y2 ∧ y1 > y3 ∧ y1 > y4 ∧ y1 > y5
P3/P4 : y1 < y2 ∧ y1 < y3 ∧ y1 < y4 ∧ y1 < y5

Reluplex : An E�icient SMT Solver for Verifying Deep Neural Networks, Katz et al, CAV 2017. 25



Comparing DSZ and ProbStars Prob. bounds on ACAS Xu

I (Manual) Input discretization: [5, 80, 50, 6, 5] for P2, [5, 20, 1, 6, 5] for P3 and P4

Prop Net DSZ Probstar pf = e−5 Probstar pf = 0
P time P time P time

2 1-6 [0, 0.01999] 46.4 [2.8e-06,0.05283] 206.7 1.87224e-05 1424
2 2-2 [0.00423 0.0809] 47.9 [0.0195,0.094] 299.0 0.0353886 2102.5
2 2-9 [0, 0.0774684] 51.0 [0.000255,0.107] 504.5 0.000997678 4561.2
2 3-1 [0.0165, 0.08787] 43.8 [0.0305, 0.07263] 202.7 0.044535 1086.4
2 3-6 [0.0167, 0.1111] 52.4 [0.02078,0.1069] 452.0 0.0335763 5224.4
2 3-7 [6e-05, 0.1361] 43.7 [0.002319,0.075] 331.1 0.00404731 2598
2 4-1 [1e-05, 0.05353] 40.9 [0.00104,0.07162] 305.3 0.00231247 1870.7
2 4-7 [0.0129, 0.1056] 44.4 [0.02078,0.1081] 418.9 0.04095 3407.8
2 5-3 [0, 0.03939] 40.0 [1.59e-09,0.0326] 139.7 1.81747e-09 418.8
3 1-7 [1, 1] 0.25 [0.9801,0.9804] 4.7 0.976871 3.6
4 1-9 [1, 1] 0.2 [0.9796,0.98] 3.6 0.989244 3.6
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Comparing DSZ and ProbStars Prob. bounds on ACAS Xu

I (Manual) Input discretization: [5, 80, 50, 6, 5] for P2, [5, 20, 1, 6, 5] for P3 and P4
I Basic (sensitivity-based) discretization refinement algorithm:

I for P2 and net 1-6, the algorithm (from [1,1,1,1,1]) with as stopping criterion the width of
the probability interval lower than 0.05 takes 112 seconds and leads to [5, 81, 38, 5, 5]
and a probability in [0, 0.0276]

Prop Net DSZ Probstar pf = e−5 Probstar pf = 0
P time P time P time

2 1-6 [0, 0.01999] 46.4 [2.8e-06,0.05283] 206.7 1.87224e-05 1424
2 2-2 [0.00423 0.0809] 47.9 [0.0195,0.094] 299.0 0.0353886 2102.5
2 2-9 [0, 0.0774684] 51.0 [0.000255,0.107] 504.5 0.000997678 4561.2
2 3-1 [0.0165, 0.08787] 43.8 [0.0305, 0.07263] 202.7 0.044535 1086.4
2 3-6 [0.0167, 0.1111] 52.4 [0.02078,0.1069] 452.0 0.0335763 5224.4
2 3-7 [6e-05, 0.1361] 43.7 [0.002319,0.075] 331.1 0.00404731 2598
2 4-1 [1e-05, 0.05353] 40.9 [0.00104,0.07162] 305.3 0.00231247 1870.7
2 4-7 [0.0129, 0.1056] 44.4 [0.02078,0.1081] 418.9 0.04095 3407.8
2 5-3 [0, 0.03939] 40.0 [1.59e-09,0.0326] 139.7 1.81747e-09 418.8
3 1-7 [1, 1] 0.25 [0.9801,0.9804] 4.7 0.976871 3.6
4 1-9 [1, 1] 0.2 [0.9796,0.98] 3.6 0.989244 3.6
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Rocket lander

I feedforward neural networks with 9 inputs,
3 outputs, and 5 hidden layers with 20 ReLU
neurons per layer

I P1: when−20◦ ≤ θ ≤ −6◦, ω < 0 , φ′ ≤ 0,
F′S ≤ 0, the output action should be φ < 0
or FS < 0: the agent should prevent the
rocket from tilting to the right. (P2 similar)

Neural Network Repair with Reachability Analysis. Yang et al, FORMATS 2022
Quantitative Verification for Neural Networks using ProbStars, Tran et al, HSCC 2023
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Comparing DSZ and ProbStars Prob. bounds: rocket lander

I Input discretization: [7, 12, 10, 17, 9, 7, 1, 1, 2, 1, 1]

Prop Net DSZ Probstar pf = 1e− 5 Probstar pf = 0
P time P time P time

1 0 [0, 0.03387] 77.8 [4.15e-09, 0.06748] 1158.6 7.978e-08 5903.7
2 0 [0, 0.01352] 83.7 [0,0.1053] 2216 0 13132.7
1 1 [0, 0.01985] 80.5 [0,0.0536] 1229.7 8.68e-08 5163.9
2 1 [0, 0.00055] 69.1 [0, 0.0161751] 448.5 0 1495.6
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Conclusion and Future Work

I DSI/DSZ for ReLU networks generalize state of the art of NN probabilistic verification
I more e�icient than state of the art but still scalability issues
I e�iciency given by the input layer discretization size

I Future work:
I Distributions with unbounded support (handled for DSI, extension to DSZmore of a

technical/implementation issue)
I Other initial abstractions/discretizations

I avoid ine�icient initial staircase / DSI discretization step
I handle multivariate input distributions (li� independence hypothesis for DSZ)

We are looking for a motivated PhD student !
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