

A Zonotopic Dempster-Shafer Approach to the Quantitative Verification of Neural Networks

Eric Goubault and Sylvie Putot

FM 2024, September 9-13, Milan, Italy

Reachability Analysis for Neural Network Verification

Robustness and input/output properties:

- Need to be proved for (possibly large) sets of network inputs
- Can be specified as preconditions/postconditions expressed in linear arithmetic

Qualitative verification: property proven true or unknown

Quantitative Neural Network Verification

Motivation

- Provide additional information on property satisfaction compared to SAT/UNKNOWN
- Exploit knowledge of probabilistic information on inputs
 - can be probabilistic but imprecisely known, e.g.:
 - ▶ Gaussian variable $\mathcal{N}(\mu, \sigma^2)$ with uncertain mean $\mu \in [\underline{\mu}, \overline{\mu}]$ and variance $\sigma^2 \in [\underline{\sigma^2}, \overline{\sigma^2}]$
 - Uniform variable $\mathcal{U}(a, b)$ with uncertain range (a and b uncertain)
 - example: noise due to sensor $V + \varepsilon$ with $V \in [a, b]$, ε a random variable

With respect to most closely related work: Quantitative verification for neural networks using Probstars, Tran, H.D., Choi, S., Okamoto, H., Hoxha, B., Fainekos, G., Prokhorov, D., HSCC 2023

- inputs are arbitrary distributions (extending the Gaussian distribution hypothesis)
- our approach gives fully guaranteed probability bounds

Problem Statement: propagating imprecise probabilities

Problem (Probability bounds analysis)

Given a ReLU network f and a constrained probabilistic input set

$$\mathcal{X} = \{X \in \mathbb{R}^{h_0} \mid CX \leq d \land \underline{F}(x) \leq \boldsymbol{P}(X \leq x) \leq \overline{F}(x), \forall x\}$$

where \underline{F} and \overline{F} are two cumulative distribution functions, compute a constrained probabilistic output set \mathcal{Y} guaranteed to contain $\{f(X), X \in \mathcal{X}\}$. For $X \in \mathbb{R}^n$, we note $\mathbf{P}(X \le x) := \mathbf{P}(X_1 \le x_1 \land X_2 \le x_2 \ldots \land X_n \le x_n)$

Problem (Quantitative property verification)

Given a ReLU network f, a constrained probabilistic input set \mathcal{X} and a linear safety property $Hy \leq w$, bound the probability of the network output vector y satisfying this property.

Feedforward ReLU neural network

Each layer consists in a linear transform followed by a non linear activation function:

Toy illustrating example: 2-layers ReLU network

$$A_{1} = A_{2} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, b_{1} = b_{2} = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}, \qquad \underbrace{[-2, 2]}_{x_{1}^{0} - 1} \xrightarrow{x_{1}^{0} - 1} \xrightarrow{\text{ReLU}} \underbrace{x_{1}^{1}}_{x_{1}^{1} - 1} \xrightarrow{x_{1}^{2}}_{x_{2}^{2}}$$

$$x^{1} = \sigma(A_{1}x^{0} + b_{1}) = \sigma(x_{1}^{0} - x_{2}^{0}, x_{1}^{0} + x_{2}^{0}) \xrightarrow{[-1, 1]}_{x_{2}^{0} - 1} \xrightarrow{x_{1}^{0} - 1} \xrightarrow{\text{ReLU}} \underbrace{x_{1}^{1}}_{x_{2}^{1} - 1} \xrightarrow{x_{1}^{2} \ge 2?}_{x_{2}^{2}}$$

$$x^{2} = A_{2}x^{1} + b_{2}$$

Property:

• Qualitative: if
$$x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^\top \in [-2, 2] \times [-1, 1]$$
, does output satisfy $x_1^2 \le -2 \land x_2^2 \ge 2$?

Quantitative:

▶
$$P(x_1^2 \le -2 \land x_2^2 \ge 2 \mid x_1^0 \in \mathcal{U}(-2, 2) \land x_2^0 \in \mathcal{U}(-1, 1))$$
?
▶ $P(x_1^2 \le -2 \land x_2^2 \ge 2 \mid x_1^0 \in \mathcal{N}(0, [0.5, 0.66]) \land x_2^0 \in \mathcal{N}([0, 1], 0.33))$?

Outline

- ► Imprecise probabilities: P-boxes and Dempster-Shafer Interval Structures (DSI)
 - Representations of sets of probability distributions
 - Generalize both probabilistic and non deterministic (interval) computations
- ReLU neural network analysis by DSI
- Mitigating the wrapping effect of intervals using zonotopes
 - Probabilistic Zonotopes
 - Zonotopic Dempster-Shafer Structures (DSZ)
- Evaluation

Imprecise probabilities: P-boxes and Dempster-Shafer structures

Representation of imprecise probabilities: P-box

Definition (P-box for a real-valued random variable X)

Given two (lower and upper) CDF (Cumulative Distribution Functions) \underline{F} and \overline{F} from \mathbb{R} to \mathbb{R}^+ s.t. $\forall x \in \mathbb{R}, \underline{F}(x) \leq \overline{F}(x)$, the p-box $[\underline{F}, \overline{F}]$ represents the set of probability distributions for X s.t.

$$\forall x \in \mathbb{R}, \underline{F}(x) \leq \mathbf{P}(X \leq x) \leq \overline{F}(x).$$

- Ferson S, Kreinovich V, Ginzburg L, Myers D, Sentz K, Constructing probability boxes and Dempster–Shafer structures. Tech. Rep. SAND2002-4015, 2003
- Williamson and Downs, Probabilistic Arithmetic I: Numerical Methods for Calculating Convolutions and Dependency Bounds, Journal of Approximate Reasoning, 1990

P-box examples (Julia library ProbabilityBoundsAnalysis.jl)l

Sets of probability distributions on X (CDF form) such that $\forall x, F^{-}(x) \leq P(X \leq x) \leq F^{+}(x)$:

Dempster-Shafer Interval structures (DSI)

A discrete version of P-boxes:

 $\forall x$ $\forall x$ $\forall x$ etc.

Focal elements $t \in T$ (sets of values, here intervals) with probability $w : T \to \mathbb{R}^+$

$t \in T$	[-1,0.25]	[-0.5,0.5]	[0.25,1]	[0.5,1]	[0.5,2]	[1,2]
w(t)	0.1	0.2	0.3	0.1	0.1	0.2

Represents the set of probability distributions P on X such that:

$$\begin{array}{c} \in [-1, -0.5], \ P(X \le x) \le 0.1, \\ \in [-0.5, 0.25], \ P(X \le x) \le 0.1 + 0.2, \\ \in [0.25, 0.5], \ 0.1 \le P(X \le x) \le 0.1 + 0.2 + 0.3, \\ & \\ & \\ \sum_{t \in T, t \subseteq S} w(t) \le P(S) \le \sum_{t \in T, t \subseteq S \ne \emptyset} v(t) \end{array}$$

From P-boxes to Dempster-Shafer Interval structures

Given a P-box $(\underline{F}, \overline{F})$

- Take lower and upper approximation by stair functions
- Deduce focal elements (intervals) and weights

From P-boxes to Dempster-Shafer Interval structures

Given a P-box $(\underline{F}, \overline{F})$

- Take lower and upper approximation by stair functions
- Deduce focal elements (intervals) and weights

Arithmetic on DSI structures

DSI structures can be propagated through arithmetic operations:

- 2 cases: independent inputs / unknown dependency
- relying on interval arithmetic / Frechet inequalities
- conservative approximations

ReLU

Lemma (ReLU of a DSI)

Given X represented by the DSI { $\langle \mathbf{x}_i, w_i \rangle$, $i \in [1, n]$ }, then the CDF of $Y = \sigma(X) = \max(0, X)$ is included in the DSI { $\langle \mathbf{y}_i, w_i \rangle$, $i \in [1, n]$ } with $y_i = [\max(0, x_i), \max(0, \overline{x_i})]$.

ReLU neural network analysis by DSI

Input: d^0 a h_0 -dimensional vector of DSI

- 1: **for** k = 0 to L 1 **do**
- 2: **for** l = 1 to h_{k+1} **do**

3: $d_l^{k+1} \leftarrow \sigma(\sum_{j=1}^{h_k} a_{lj}^k d_j^k + b_l^k) >$ Affine transform and ReLU - Dependency graph useful for choosing the right DSI operations (indep. or unknown dep.) in affine transforms

- 4: end for
- 5: end for
- 6: return $(d^{L}, cdf(Hd^{L}, w))$ \triangleright Vector of DSI for the output layer and probability bounds for property $Hz \le w$

Input $x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^\top \in [-2, 2] \times [-1, 1]$ with Uniform law on inputs

Input $x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^\top \in [-2, 2] \times [-1, 1]$ with Uniform law on inputs

Finer discretization refines the approximation but the ranges are unchanged

Input $x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^\top \in [-2, 2] \times [-1, 1]$ with Normal law on inputs

Unknown dependency on inputs vs independent inputs

 $P(z_1 \le -2) \in [0, 0.05]$ $P(z_2 \ge 2) \in [0, 0.59]$ $P(z_1 \le -2) \in [0, 0.01]$ $P(z_2 \ge 2) \in [0, 0.2]$

Wrapping effect: example of the first affine layer

Initial domain:

$$-2 \le x_1 \le 2$$
$$-1 \le x_2 \le 1$$

Exact domain:

Using Intervals/Boxes:

 $\begin{array}{ll} x_3 = x_1 - x_2 & -3 \leq x_3 \leq 3 \\ x_4 = x_1 + x_2 & -3 \leq x_4 \leq 3 \\ x_1, x_2 \in [-1, 1] & x_1, x_2 \in [-1, 1] \end{array}$

The optimal affine transformers for boxes are not exact. Zonotope transformers are !

Mitigating the wrapping effect: Probabilistic zonotopes and Dempster-Shafer Zonotopic Structures (DSZ)

Zonotopes and neural network reachability analysis

Definition (Zonotope)

An n-dimensional zonotope \mathcal{Z} with center $c \in \mathbb{R}^n$ and a vector $\Gamma = [g_1 \dots g_p] \in \mathbb{R}^{n,p}$ of p generators $g_j \in \mathbb{R}^n$ for $j = 1, \dots, p$ is defined as $\mathcal{Z} = \langle c, \Gamma \rangle = \{c + \Gamma \varepsilon \mid \|\varepsilon\|_{\infty} \leq 1\}.$

Zonotopes are closed under affine transformations: for $A \in \mathbb{R}^{m,n}$ and $b \in \mathbb{R}^m$ we define $A\mathcal{Z} + b = \langle Ac + b, A\Gamma \rangle$ as the m-dimensional resulting zonotope.

RELU transformer: conservative approximation

Two solutions for zonotopic probabilistic NN analysis

Probabilistic zonotopes (or probabilistic affine forms)

- Zonotopic network analysis starting from the support of input distribution
- Probabilistic interpretation: noise symbols are DSI instead of intervals
- inspired from [Adje et al 2013] A. Adjé, O. Bouissou, J. Goubault-Larrecq, E. Goubault, S. Putot: Static Analysis of Programs with Imprecise Probabilistic Inputs. VSTTE 2013: 22-47

Dempster-Shafer Zonotopic structures (DSZ)

- Dempster-Shafer structures with zonotopic focal elements
- A refinement of probabilistic zonotopes, which fully exploits the DSI input discretization in the NN analysis
- Currently restricted to independent inputs

NN analysis by DSZ (independent inputs)

Input: $d^0 a h_0$ -dimensional vector of DSI 1: $d^0_{\mathcal{Z}} = \left\{ \langle \mathcal{Z}^0_{i_1...i_{h_0}}, w^0_{1,i_1} \dots w^0_{h_0,i_{h_0}} \rangle, (i_1, \dots, i_{h_0}) \in [1, n]^{h_0} \right\} \leftarrow \text{dsi-to-dsz}(d^0)$ 2: for k = 0 to L - 1 do 3: for $(i_1, i_2, \dots, i_{h_0}) \in [1, n]^{h_0}$ do 4: $\mathcal{Z}^{k+1}_{i_1...i_{h_0}} \leftarrow \sigma(A^k \mathcal{Z}^k_{i_1...i_{h_0}} + b^k) \triangleright \text{Independent zonotopic analyzes (can be done in parallel)}$

- 5: end for
- 6: **end for**

7:
$$d_{\mathcal{Z}}^{L} = \left\{ \langle \mathcal{Z}_{i_{1}\dots i_{h_{0}}}^{L}, w_{1,i_{1}}^{0}\dots w_{h_{0},i_{h_{0}}}^{0} \rangle, (i_{1},\dots,i_{h_{0}}) \in [1,n]^{h_{0}} \right\}$$
8:
$$d^{L} \leftarrow \mathsf{dsz-to-dsi}(d_{\mathcal{Z}}^{L})$$

9: **return** $(d^{L}, cdf((Hd^{L}_{Z}, w)) \triangleright$ Property bounds computed by direct evaluation of the CDF on the zonotopic focal elements

Evaluation

Implementation and Evaluation

Julia implementation

- available from https://github.com/sputot/DSZAnalysis or https://doi.org/10.5281/zenodo.12519084.
- uses the LazySets and the NeuralVerification package for zonotopic NN analysis
- uses the ProbabilityBoundsAnalysis package for P-boxes / DSI analysis

Examples and evaluation

- Toy example corrected Table 1 in the paper (thanks to the RE reviewers !)
- ACAS Xu airplanes collision avoidance example
- Rocket lander example

Comparing DSI, Prob. Zonotopes and DSZ: toy example

Table 1: Probability bounds for the toy example, independent inputs.

Law (#FE)	DSI $P(x_1^2 \le -2)$	$P(x_2^2 \ge 2)$	time	Prob. Zono $P(x_1^2 \le -2)$) $P(x_2^2 \ge 2)$	time	$\frac{DSZ}{P(x_1^2 \le -2)}$	$P(x_2^2 \ge 2)$	time
U(2)	[0, 0.5]	[0, 1]	$< e^{-3}$	[0, 0.5]	[0, 1]	< e ⁻³	[0, 0.25]	[0, 0.5]	$< e^{-3} < e^{-3} < e^{-3} = 0.026 = 3$
U(10)	[0, 0.2]	[0, 0.7]	e^{-3}	[0, 0.3]	[0, 0.8]	e ⁻³	[0, 0.03]	[0.2, 0.3]	
U(102)	[0, 0.07]	[0.05, 0.52]	0.022	[0, 0.26]	[0, 0.76]	0.013	[0, 0.0014]	[0.25, 0.26]	
U(10 ³)	[0, 0.063]	[0.062, 0.502]	2.4	[0, 0.251]	[0, 0.751]	1.2	[0, 3. <i>e</i> ⁻⁶]	[0.25, 0.251]	
N(10)	[0, 0.017]	[0, 0.277]	e ⁻³	[0, 0.1]	[0, 1]	e ⁻³	[0, 0.01]	[0, 0.1]	< e ⁻³
N(10 ²)	[0, 0.004]	[0, 0.186]	0.022	[0, 0.07]	[0, 0.94]	0.013	[0, 4.e ⁻⁴]	[0.06, 0.07]	0.026
N(10 ³)	[0, 0.004]	[0.003, 0.182]	2.4	[0, 0.067]	[0, 0.934]	1.2	[6e ⁻⁵ , 1.1e ⁻⁴	¹][0.066, 0.067]	3

► For independent inputs, DSZ always more precise.

▶ In the paper, detailed calculation for the 3 approaches in the case of 2 focal elements.

Comparisons to the state of the art

[Tran et al 23] Quantitative Verification for Neural Networks using ProbStars, Tran et al, HSCC 2023

Examples

- ACAS Xu airplanes collision avoidance
- Rocket lander

Inputs and configuration

- ► Bounded (vector) inputs in [lb,ub], components follow independent Gaussian distributions with $\mu = (ub + lb)/2$ and $\sigma = (ub m)/3$
- Timings and results given for [Tran et al 23] are from their paper:
 - parallelized (between 1 and 8 cores) and on a slightly stronger computer than ours
 - we reproduced a few analyzes: approx 7 to 10 times slower than their results with 1 core, approx 1.5 to 3.5 with 4 and 8 cores

ACAS Xu: collision avoidance systems for civil aircrafts (FAA)

- Produces aicraft advisory (clear-of-conflict, weak right, weak left, strong right, etc.)
- Array of 45 DNNs by discretizing τ and a_{prev} ; each has 5 inputs (ρ , θ , ψ , v_{own} and v_{int}) and 5 outputs (score for each advisory).
- Fully connected ReLU feeedforward networks with 5 inputs, 6 hidden layers, 5 outputs

Reluplex : An Efficient SMT Solver for Verifying Deep Neural Networks, Katz et al, CAV 2017.

Comparing DSZ and ProbStars Prob. bounds on ACAS Xu

(Manual) Input discretization: [5, 80, 50, 6, 5] for P₂, [5, 20, 1, 6, 5] for P₃ and P₄

Prop	Net	DSZ		Probstar $p_f = e^{-5}$		Probstar $p_f = 0$	
		Р	time	Р	time	Р	time
2	1-6	[0, 0.01999]	46.4	[2.8e-06,0.05283]	206.7	1.87224e-05	1424
2	2-2	[0.00423 0.0809]	47.9	[0.0195,0.094]	299.0	0.0353886	2102.5
2	2-9	[0,0.0774684]	51.0	[0.000255,0.107]	504.5	0.000997678	4561.2
2	3-1	[0.0165, 0.08787]	43.8	[0.0305, 0.07263]	202.7	0.044535	1086.4
2	3-6	[0.0167, 0.1111]	52.4	[0.02078,0.1069]	452.0	0.0335763	5224.4
2	3-7	[6e-05, 0.1361]	43.7	[0.002319,0.075]	331.1	0.00404731	2598
2	4-1	[1e-05, 0.05353]	40.9	[0.00104,0.07162]	305.3	0.00231247	1870.7
2	4-7	[0.0129, 0.1056]	44.4	[0.02078,0.1081]	418.9	0.04095	3407.8
2	5-3	[0, 0.03939]	40.0	[1.59e-09,0.0326]	139.7	1.81747e-09	418.8
3	1-7	[1, 1]	0.25	[0.9801,0.9804]	4.7	0.976871	3.6
4	1-9	[1, 1]	0.2	[0.9796,0.98]	3.6	0.989244	3.6

Comparing DSZ and ProbStars Prob. bounds on ACAS Xu

- (Manual) Input discretization: [5, 80, 50, 6, 5] for P₂, [5, 20, 1, 6, 5] for P₃ and P₄
- Basic (sensitivity-based) discretization refinement algorithm:
 - for P₂ and net 1-6, the algorithm (from [1,1,1,1]) with as stopping criterion the width of the probability interval lower than 0.05 takes 112 seconds and leads to [5, 81, 38, 5, 5] and a probability in [0, 0.0276]

Prop	Net	DSZ		Probstar $p_f = e^{-5}$		Probstar $p_f = 0$	
		Р	time	Р	time	Р	time
2	1-6	[0, 0.01999]	46.4	[2.8e-06,0.05283]	206.7	1.87224e-05	1424
2	2-2	[0.00423 0.0809]	47.9	[0.0195,0.094]	299.0	0.0353886	2102.5
2	2-9	[0,0.0774684]	51.0	[0.000255,0.107]	504.5	0.000997678	4561.2
2	3-1	[0.0165, 0.08787]	43.8	[0.0305, 0.07263]	202.7	0.044535	1086.4
2	3-6	[0.0167, 0.1111]	52.4	[0.02078,0.1069]	452.0	0.0335763	5224.4
2	3-7	[6e-05, 0.1361]	43.7	[0.002319,0.075]	331.1	0.00404731	2598
2	4-1	[1e-05, 0.05353]	40.9	[0.00104,0.07162]	305.3	0.00231247	1870.7
2	4-7	[0 0129 0 1056]	44 A	[0 02078 0 1081]	418 9	0 04095	3407.8

26

Rocket lander

- feedforward neural networks with 9 inputs, 3 outputs, and 5 hidden layers with 20 ReLU neurons per layer
- P₁: when -20° ≤ θ ≤ -6°, ω < 0, φ' ≤ 0, F'_S ≤ 0, the output action should be φ < 0 or F_S < 0: the agent should prevent the rocket from tilting to the right. (P₂ similar)

Neural Network Repair with Reachability Analysis. Yang et al, FORMATS 2022 Quantitative Verification for Neural Networks using ProbStars, Tran et al, HSCC 2023

Comparing DSZ and ProbStars Prob. bounds: rocket lander

Input discretization: [7, 12, 10, 17, 9, 7, 1, 1, 2, 1, 1]

Prop	Net	DSZ		Probstar $p_f = 1e - 5$		Probstar $p_f = 0$	
		Р	time	Р	time	Р	time
1	0	[0, 0.03387]	77.8	[4.15e-09, 0.06748]	1158.6	7.978e-08	5903.7
2	0	[0, 0.01352]	83.7	[0,0.1053]	2216	0	13132.7
1	1	[0,0.01985]	80.5	[0,0.0536]	1229.7	8.68e-08	5163.9
2	1	[0,0.00055]	69.1	[0, 0.0161751]	448.5	0	1495.6

Conclusion and Future Work

DSI/DSZ for ReLU networks generalize state of the art of NN probabilistic verification

- more efficient than state of the art but still scalability issues
- efficiency given by the input layer discretization size
- Future work:
 - Distributions with unbounded support (handled for DSI, extension to DSZ more of a technical/implementation issue)
 - Other initial abstractions/discretizations
 - avoid inefficient initial staircase / DSI discretization step
 - handle multivariate input distributions (lift independence hypothesis for DSZ)

We are looking for a motivated PhD student !