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Abstract 

We present a new simulation tool for efficient extraction 
of 3D capacitance matrix in interconnect structures embedded 
in a multilayered dielectric environment. We use a fictitious 
domain method, which replaces the initial problem on a 
complex geometry by a problem on a simple shape domain 
embedding the initial domain, and is consequently ideally 
suited for the treatment of complex geometries. Numerical 
results confirm that this method is more efficient, both in CPU 

time and memory, than a finite elements or a boundary 
elements method. 

Introduction 

The capacitance are calculated from the distribution of 
charge density on the surfaces of the conductors. Classically, 
two approaches are used to determine the charge density. 

The problem can be formulated as a volume partial 
differential equation on the potential, which can be solved 
using finite difference or finite element methods. The charges 
are then got by the normal derivative of the potential on the 
surfaces. The resultant matrix is sparse but large because the 
whole dielectric volume is discretized. Non-homogeneous 
media and arbitrary conductor shapes can be handled. 
However, mesh generation is a critical point. 

Alternatively, an integral equation formulation can be 
used, leading to a smaller system, since only the surfaces are 
discretized. The solution of this system gives directly the 
surface charges. But this system is dense and the handling of 
multidielectric media is not natural, and very time and 
memory consuming. 

The method we propose combines advantages of volume 
methods and integral equations methods. The meshing of a 
complex 3D domain is avoided by the use of two meshes, a 
regular 3D grid on a simple shape domain embedding the 
initial domain, and a surface mesh of the conductors. 
Multilayered media are taken into account at no extra cost, 
and the formulation leads to a sparse system. Moreover, 
thanks to the regularity of the volume grid, fast solvers can be 
used for the solution of this system and little storage is 
required. 

In the first paragraph, we introduce the so-called fictitious 
domain method with Lagrange multipliers for the problem 
formulation. It is based on (l), and has been introduced in the 
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context of interconnect structures in (2). Then in the second 
paragraph, we discuss the approximation of the potential and 
charge in finite dimensional spaces, and the solution of the 
resulting system : in (l), the variable of interest is the 
potential, whereas here we improved the method to get a good 
accuracy on the charge too. Numerical results then confirm 
both the gain of accuracy on the charge compared to a 
standard approximation of the fictitious domain formulation, 
and the efficiency of the algorithm obtained, compared to a 
finite elements or a boundary elements method. 

The Fictitious Domain Formulation 

The main idea of fictitious domain methods is to replace 
the problem on a domain of complex geometry by another one 
on a simple shape domain, the fictitious domain (Fig. l),  thus 
allowing the use of a regular grid of that domain and of fast 
solvers. Here the potential computation is artificially extended 
inside the conductors, and the boundary condition is taken 
into account via the introduction of a Lagrange multiplier 2 
defined on the surface mesh, that can be interpreted as the 
surface charge. Considering the boundary conditions on the 
conductors surfaces as equality constraints, the problem can 
be reformulated as the saddle-point problem associated to a 
constrained minimization problem. This leads to a coupled 
system, which unknowns are the potential on the fictitious 
domain, and the charge on the conductors suifaces. 

, . , 1 

Initial Problem Fictitious Domain Method 
Fig. I : Principle of Fictitious Domain Methods 

Let o the dielectric space between the conductors, of 
permittivity E ,  and y the union of the conductor surfaces. 
We note R the set constituted by the dielectric regions and 
the conductors, and the boundary of the fictitious domain 
R (Fig. 2). The potential U in w is the solution of 

V ( E V U )  = 0 in w ( a  1 
( b  1 

+boundary conditions on r ( c )  
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( U , V ) ,  where U is its dccomposition on t h e e ,  -finite 
clcmcnls basis, and V on the functions aK, . 
The charge 2 is approached by A ,  using /<,-finite elements 
on a mesh of the surface y . With o u r  choicc for the functions 
@K; (see Fig. 4), and in the case when the surfaces of  

conductors are parallel to the grid, the discrete formulation cif 
system (Q) allows us to express V as a function of U and 
A .  The vectors U and A are then the solution of 

AU - BA = 0 
BTU + CA = g { 

The same formulation has been programmed even when 
the conductors surfaces are not parallel to the grid mesh. It i,; 
known that a saddle-point problem must satisfy a condition 
known as the inf-sup condition (5) to ensure the existence of it 

solution. In (6) they prove that with the standard 
approximation of the potential by Ql -finite elements, and of 
the charge by Po-finite elements, the convergence of the: 
method requires that the grid must not be too coarse compared 
to the surface mesh. However, numerical results show thai. 
with our approximation, this condition can be relaxed, and. 
accurate results are obtained even for coarse grids, whether 01' 
not the conductor surfaces are parallel to the grid mesh (see 
e.g. Fig. 5 in 2D). 

This system can be rewritten as a symmetric definite 
positive system in A ,  

and solved by the conjugate gradient algorithm. 
Thanks to the regularity of the 3D mesh, the matrix A 
doesn't need to be stored, and its inversion is computed with a 
fast solver using FFT. We remark that a fast Poisson solver 
(4) takes advantage of the regularity of the equation and grid 
only in 2 directions. This allows us to adapt the solver to the 
case of dielectric layers without extra cost. Moreover, C is 
diagonal and B sparse ( =  20rn elements stored, with rn the 
number of nodes on the surface mesh). Indeed B represents 
the coupling between the surface mesh and the grid. 

( B ~ A - ' B  + CIA = g , 

I 1 

Fig. 2: Notations 

The potential can also be seen as the restriction to w of the 
solution ii of the extended minimization problem 

1 
min -IndVvI2dx , where v defined in R verifies (P.c). 

v - g 2  
I Y -  

We introduce the Lagrangian associated to that problem by 
1 

UV,P)  =#pv12dX- @ v  - &?)dY. 

Then the extended potential is the first term of the saddle- 
point ( i i ,A)  E X x M solution of 

~ Q ~ V i i V v d u = ~  A v d y  Q V E X  
Y 

p ( I - g ) d y = O  Q ~ E  M 

where X and M are proper spaces of functions. 

region 0 ,  and the charge is equal to A on the surface y . 
The potential is the restriction of U' to the dielectric 

Discretization and Solution 

In comparison with the standard approximation, the 
originality of our approach consists in decomposing the 
potential ii on the fictitious domain C2 by 

where uI' is the regular part, which we approach using Q1- 

finite elements on a regular grid of parallelepipeds, and U"' is 
the irregular part, due to the jump of the normal derivative of 
the potential on the conductor surfaces y .  This part is 
approached using non regular functions @K, , defined on 

parallelepipeds Ki that have a non-zero intersection with y 
(see Fig. 3-4). The Dotential is thus amroached bv a vector 

U' = U r  + u n r ,  

Fig.3 : 2D test case (on which we show the accuracy of the 
method in Fig.5) 

Fig. 4 : 2D example of the shape function @,yi on a rectangle : zero at the 

nodes of the rectangle, with a jump of normal derivative on the surface j' . 
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Results 

We first show on a 2D test case (Fig. 3) the accuracy of 
our approximation compared to the classical approximation 
that approaches only the regular part of the potential, then 
compare on complex 3D structures the efficiency of the 
method with other methods. 

Our improvement of the approximation leads to a 
significant gain in accuracy of the charge when the volume 
grid is coarse (Fig. 5). This is important as the CPU time (and 
memory) depends almost linearly on the number of nodes on 
the volume grid, while it is not very sensitive to the surface 
mesh refinement (Fig. 6). In this example, an accuracy of 1% 
is obtained with our approximation for only 200 grid points 
and 0.05 CPU seconds, while the same accuracy requires 10' 
points and 2 seconds with the standard approximation. 
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Fig. 5 : Comparison of the standadmodified approximations on the 2D test 
problem of Fig. 3 
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Fig. 6 : CPU time for both approximations on the 2D test problem of Fig. 3 

Then we present complex structures, with several levels of 
metallization and dielectrics (cel-3 - Fig. 7, cel-1 - that looks 
like ce1-3 but smaller), and one (cel-2 - Fig. 8) that has 
particularities (length very large compared to the width and 
height of lines, influence of the ground plane much stronger 
than mutual influence of conductors) that make the 
computation difficult. We show on the example of the 
structure ce1-3 that the volume mesh doesn't have to be very 
refined compared to the conductor shapes : in Fig. 9 is 
represented the volume mesh used for the computations. For 
the surface mesh, we used the intersection of the conductor 
surfaces and the volume grid. The results for these three 
structures (Table 1, Fig. 10) confirm the efficiency of the 
method compared to finite elements (SILVACO's Clever) or 
boundary elements methods NIT'S FastcaD). 

Fig. 7: cel-3 (last example of Table 1 )  

Fig. 8 : cel-2. Note that the lengths are very large compared to the width 
or height of a line. 

I I. 

I 4 
Fig. 9 : Horizontal cut of structure cel-3. The points are the nodes of the 

volume grid used for computation, the conductors are represented. 
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Fig. I O  : CPU time and Memory used by the 3 methods on the 3D structure cel-l . 

Table 1 : Comparisons of the fictitious domain method with a finite elements method (SILVACO's Clever) and'a boundary elements method (MIT's 
Fastcap) on 3D structures (Fig. 7 and 8), for same precision criterium of 5%. The values compared are the largest capacitance for cel-l and ce1-3, and th: 
mutual capacitance between the two electrodes for ce1-2. Note also that we used an homogeneous dielectric for Fastcap simulations, therefore its CPU anti 
memory results are optimistic, and we can't fully compare the values. 

1 Clever I Fastcap I Fictitious Dom. I Measurements I eel-1 I Values (F) I ~ 5 e . I ~  1.41e"4 I 

I 1x7 I 151 I 4 5  I I 

~ 

20pm x 2Opm Time (sec) 31 1 58 10 
3 levels, 2 dielectrics Memory (MB) 62 27 7 

125pm x150pm Time (sec) I507 17 12 
2 levels, 4 dielectrics Memory (MB) 387 18 5.5 
ce1-3 Values (F) 2.64e-I6 2.43e-Ih 
35pm x 30pm Time (sec) 1389 500 40 
5 levels, 3 dielectrics Memory (MB) 339 443 23 

ce1-2 Values (F) 4.67e-" 7.8e.l' 
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