
A Few Lessons Learned in Reinforcement Learning for
Quadcopter Attitude Control

Nicola Bernini
Uber ATCP, Paris, France

Mikhail Bessa
Uber ATCP, Paris, France

Rémi Delmas
Uber ATCP, Paris, France

Arthur Gold
Uber ATCP, Paris, France

Paris, France

Eric Goubault
LIX, Ecole polytechnique, CNRS,

IP-Paris, Palaiseau, France

Romain Pennec
Uber ATCP, Paris, France

Sylvie Putot
LIX, Ecole polytechnique, CNRS,

IP-Paris, Palaiseau, France

François Sillion
Uber ATCP, Paris, France

ABSTRACT
In the context of developing safe air transportation, our work is
focused on understanding how Reinforcement Learning methods
can improve the state of the art in traditional control, in nominal
as well as non-nominal cases. The end goal is to train provably safe
controllers, by improving both training and verification methods.
In this paper, we explore this path for controlling the attitude of a
quadcopter: we discuss theoretical as well as practical aspects of
training neural nets for controlling a crazyflie 2.0 drone. In particular
we describe thoroughly the choices in training algorithms, neural
net architecture, hyperparameters, observation space etc. We also
discuss the robustness of the obtained controllers, both to partial
loss of power for one rotor and to wind gusts. Finally, we measure
the performance of the approach by using a robust form of a signal
temporal logic to quantitatively evaluate the vehicle’s behavior.
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1 INTRODUCTION
Neural net based methods have had numerous successes in drone
control, over the last few years, using privileged learning [27] or re-
inforcement learning [26]. However impressive actual experiments
look like, we are still in need of fully understanding what advan-
tages and performances we can gain with learning-based control,
and what level of guarantees we can reach.

We concentrate here on low-level controls, and more specifi-
cally attitude control for quadcopters. These controllers have the
advantage of being understandable - performances being easily
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measurable -, well studied in the literature, and essential to all
higher levels controls and path tracking algorithms. We also focus
on reinforcement learning (RL) methods, which are close to control
and more particularly optimal control. Furthermore, RL has known
tremendous progress over the past years, with continuous state and
action spaces training algorithms such as SAC [23] and TD3 [19].

A common belief is that learning-based control would be more
robust to perturbations than e.g. PIDs, or at least could be trained to
be more robust. Indeed, even a rather small neural net can encode
a much more complex feedback control function than a simple
PID, but this is commonly believed to be at the expense of formal
guarantees. Also, the current zoology of training methods and
architecture choices makes it difficult to fully understand the range
of possible results.

This paper studies some of these aspects on an attitude controller
for the crazyflie 2.0 [18] quadcopter. We first present a non-linear
ODE model for simulating the dynamics of a quadcopter, Section 2,
and extend it to account for partial motor failures, aerodynamic
effects and wind gusts. We then present a flexible training platform
with various neural net architectures and algorithms, Section 3,
discuss performance evaluation using a robust signal temporal
logic, Section 4, and describe our experimental setup, Section 5.
Finally we discuss experimental results, Section 6 and Section 7.

Claims. In this paper,

(1) we develop a neural-net based control study case, after mod-
eling a quadcopter’s dynamics, including aerodynamic ef-
fects and partial power loss on motors, Section 2

(2) we discuss the effect of the chosen training algorithm, neural
net architecture, reduced observable state spaces and hyper-
parameters on the performance of the controller, and on the
RL training process, Section 3 and 6

(3) we present our experimental platform, which allowed us to
compare more than 16,000 parameter choices, Section 5

(4) we develop Signal Temporal Logic observers to assess con-
troller performance in a precise manner, Section 4

(5) we demonstrate high-quality attitude control using RL, for a
relevant set of queries, Section 6

(6) we show these controllers have a certain built-in robustness
in non-nominal cases, with respect to partial failures of ac-
tuators and perturbations such as wind gusts, Section 6.3.
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Trying to train networks in non-nominal and nominal cases
does not bring better performance so far, Section 6.4

Related work. This paper is based on, and compared with, the
following work:

RL in control. Reinforcement learning in control has been ad-
vertised, since [45], for the possibility to be more adaptative than
classical methods in control such as PIDs. RL’s close relationship
with optimal control (the reward function is dual to the objective
function) also makes it particularly appealing for applications to
control, see e.g. [8].

Recently model-based reinforcement learning has been success-
fully used to train controllers without any initial knowledge of
the dynamics and in a data-efficient way. For instance, in [30], a
learning-based model predictive control algorithm has been used
to synthesize a low level controller. In [47], a hybrid approach is
proposed, combining the model based algorithm PILCO [12] and a
classic controller like a PD or a LQR controller.

In this paper, we focus on model-free algorithms because of
their generality and because we have high fidelity models available
for quadrotors, such as the crazyflie 2.0 [18]. More specifically we
concentrate on actor-critic learning which has undergone massive
improvements over the last few years with DDPG [32], SAC [23],
TD3 [19], and compare it with the popular PPO method [42].

The high dimensionality of the full Markovian observation space
is a challenge for training, prompting for a study of different choices
for the sets of states observed by RL: we consider sub-spaces of the
full Markovian observation space, where we leave out the states
which have the least effect on the dynamics of the quadcopter. This
is linked to partially observed Markov Decision Processes and Non
Markovian learning, see e.g. [20].

We also study the robustness of our neural nets, as well as the
specific training of the neural net controller to be able to handle
disturbances (wind gusts, partial motor failures). These issues are
linked to robust MDPs [38], although we use the classical (PO)MDP
approach here.

RL for quadcopters, and attitude control. Most papers have been
focusing on higher control loops, with the notable exception of [28],
which serves as the basis of our work. We improve the results of
[28] by considering more recent training algorithms (SAC and TD3),
finer performance measures, and refined physical models (in par-
ticular perturbations due to partial motor failures and wind gusts).
The closest other works related to attitude control for quadcopter
are [37], [16], [29] and [10].

In [37], the goal is to stabilize a quadcopter in hover mode, from
various initial conditions. The authors also consider perturbations
to the dynamics, which are different from ours: motor lag and noise
on sensors. In [16], the objective is to control a quadcopter under
cyber-attacks targeting its localization sensors and motors. The au-
thors consider (partial) motor failure (a limit on its maximal power,
just like we do), but not wind gusts. Contrarily to most approaches
including ours, their controller combines a classical controller and
a neural net. In [29] the authors discuss the training of a neural net
controller for both attitude and position. They observe that it is
difficult to train both aspects at the same time, whereas separating
control in hover mode (acting mostly on the attitude) and control

in position seems to work better. The learning process is based on
a full state observation plus the difference with the target state.
We extend this work first by discussing the simplification of the
observed states, then by more rigorously defining observation met-
rics for offsets and overshoots. Finally, in [10], the author considers
neural nets for controlling roll, pitch, yaw rate and thrust, which is
similar to the problem we are studying here, and attempts to train
a controller that can accommodate motor and mass uncertainties
within given bounds. In contrast, we deal with uncertainties such as
wind gusts and motor failures, following known parametric models.

Signal Temporal Logics. Temporal logics with quantitative se-
mantics such as Metric Interval Temporal Logic (MITL) [15], Signal
Temporal Logic (STL) [13] . . . , have been recently studied in rela-
tion with reinforcement learning. Robust interpretation yields a
real number indicative of the distance to the falsification boundary.
STL has seen numerous extensions improving expressiveness and
signal classes [1, 2, 5, 11] as well as smooth differentiable semantics
[21, 24, 36]. STL usages are varied: In [3], Q-learning is used to
train a policy maximizing both the probability of satisfaction and
the expected robustness of a given STL specification; In [31] the
authors derive barrier functions from robust temporal logic specifi-
cations, either to modulate rewards during training or to control
the switch from an optimal and potentially unsafe controller to
a safe backup controller [33]. Considering our goal is to study a
large hyper-parameter space for training controllers and we need to
quantify controller performance rigorously, we used an expressive
yet tractable variant of STL [5] to specify properties and assess
trained controllers offline, separately after training.

2 MODELLING A CRAZYFLIE 2 QUADROTOR
In this section, we detail the dynamical model of the crazyflie
quadrotor [22, 35] and we augment it with partial motor failures
and wind gusts modelling.

2.1 Nominal model
The Crazyflie 2.0 linear velocities (hence, positions) are controlled
through the angular velocities and the angular velocities are con-
trolled through rotor thrust differential. For instance, to increase
the pitch rate 𝑞 (see Figure 1b), 𝑀𝑜𝑡𝑜𝑟2 and 𝑀𝑜𝑡𝑜𝑟3 rotor speeds
(see Figure 1a) should be higher than𝑀𝑜𝑡𝑜𝑟1 and𝑀𝑜𝑡𝑜𝑟4.

(a) Motors’ controls (b) Principal axes

Figure 1: Crazyflie 2.0 – source: http://www.bitcraze.io [9]
CC BY-SA 3.0

As there is symmetry, it works similarly for the roll rate 𝑝 (with
𝑀𝑜𝑡𝑜𝑟4 and𝑀𝑜𝑡𝑜𝑟𝑠3 vs.𝑀𝑜𝑡𝑜𝑟1 and𝑀𝑜𝑡𝑜𝑟2 instead). However, the

http://www.bitcraze.io
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yaw rate 𝑟 is controlled through the gyroscopic effect. To make
the quadcopter rotate clockwise in the x-y plane, the rotor speeds
of the clockwise rotating motors (𝑀𝑜𝑡𝑜𝑟2 and 𝑀𝑜𝑡𝑜𝑟4) should be
higher than those of the counterclockwise rotating ones (𝑀𝑜𝑡𝑜𝑟1
and𝑀𝑜𝑡𝑜𝑟3).

Using Newton’s equations given a thrust force and moments𝑀𝑥 ,
𝑀𝑦 and 𝑀𝑧 exerted along the three axes of the quadcopter, and
using the rotation matrix 𝑅 from the body frame to the inertial
frame, the translation-rotation kinematics and dynamics [35] lead
to a 10-dimensional non-linear dynamical system:

¤𝑧 = −𝑠𝜃𝑢 + 𝑐𝜃𝑠𝜙𝑣 + 𝑐𝜃𝑐𝜙𝑤 ¤𝜃 = 𝑐𝜙𝑞 − 𝑠𝜙𝑟

¤𝑢 = 𝑟𝑣 − 𝑞𝑤 + 𝑠𝜃𝑔 ¤𝜓 =
𝑐𝜙
𝑐𝜃
𝑟 + 𝑠𝜙

𝑐𝜃
𝑞

¤𝑣 = −𝑟𝑢 + 𝑝𝑤 − 𝑐𝜃𝑠𝜙𝑔 ¤𝑝 =
𝐼𝑦−𝐼𝑧
𝐼𝑥

𝑞𝑟 + 1
𝐼𝑥
𝑀𝑥

¤𝑤 = 𝑞𝑢 − 𝑝𝑣 − 𝑐𝜃𝑐𝜙𝑔 + 𝐹
𝑚 ¤𝑞 =

𝐼𝑧−𝐼𝑥
𝐼𝑦

𝑝𝑟 + 1
𝐼𝑦
𝑀𝑦

¤𝜙 = 𝑝 + 𝑐𝜙𝑡𝜃𝑟 + 𝑡𝜃𝑠𝜙𝑞 ¤𝑟 = 𝐼𝑥−𝐼𝑦
𝐼𝑧

𝑝𝑞 + 1
𝐼𝑧
𝑀𝑧

(1)

where 𝑧 is the vertical position in theworld frame, the linear velocity
of the center of gravity in the body-fixed frame with respect to
the inertial frame is (𝑢, 𝑣,𝑤), the angular orientation is represented
by the Euler angles (𝜙, 𝜃,𝜓 ) (roll, pitch, yaw), (𝑝, 𝑞, 𝑟 ) (roll, pitch
and yaw rate) is the attitude or angular velocity with respect to the
body frame. We write 𝑐𝑥 as a short for 𝑐𝑜𝑠 (𝑥), 𝑠𝑥 for 𝑠𝑖𝑛(𝑥) and 𝑡𝑥
for 𝑡𝑎𝑛(𝑥). Finally, 𝐹 is the sum of the individual motor thrusts, 𝐼𝑥 ,
𝐼𝑦 , 𝐼𝑧 are the quadcopter’s moments of inertial around the 𝑥 , 𝑦 and
𝑧 axes, respectively.

Instead of controlling directly each rotor speed (PWM), the four
commands 𝑡ℎ𝑟𝑢𝑠𝑡 , 𝑐𝑚𝑑𝜙 , 𝑐𝑚𝑑𝜓 and 𝑐𝑚𝑑𝜃 are used. They are de-
duced by a simple linear transformation from the PWM values
to apply to each motor. PWMs are linked to rotation rates Ω:
Ω = [𝜔1 𝜔2 𝜔3 𝜔4]⊤ = 𝐶1𝑃𝑊𝑀 + 𝐶2. and we deduce the input
force and moments from the squared rotation rates, Equation (1),
with force and momentum equations [𝐹 𝑀𝑥 𝑀𝑦 𝑀𝑧]⊤ equal to:


𝐶𝑇

(
𝐶2
1 (𝑐𝑚𝑑

2
𝜃
+ 𝑐𝑚𝑑2

𝜙
+ 4𝑐𝑚𝑑2

𝜓
+ 4𝑡ℎ𝑟𝑢𝑠𝑡2) + 8𝐶1𝐶2𝑡ℎ𝑟𝑢𝑠𝑡 + 4𝐶2

2
)

4𝐶𝑇𝑑
(
𝐶2
1 (𝑐𝑚𝑑𝜙𝑡ℎ𝑟𝑢𝑠𝑡 − 𝑐𝑚𝑑𝜃𝑐𝑚𝑑𝜓 ) +𝐶1𝐶2𝑐𝑚𝑑𝜙

)
4𝐶𝑇𝑑

(
𝐶2
1 (𝑐𝑚𝑑𝜃 𝑡ℎ𝑟𝑢𝑠𝑡 − 𝑐𝑚𝑑𝜙𝑐𝑚𝑑𝜓 ) +𝐶1𝐶2𝑐𝑚𝑑𝜃

)
2𝐶𝐷

(
𝐶2
1 (4𝑐𝑚𝑑𝜓 𝑡ℎ𝑟𝑢𝑠𝑡 − 𝑐𝑚𝑑𝜙𝑐𝑚𝑑𝜃 ) + 4𝐶1𝐶2𝑐𝑚𝑑𝜓

)


(2)
The parameters are those of [22, 35].

2.2 Motor failure
We suppose here that the quadcopter may experience a power loss
on motor 1, modeled as a saturation of the maximum PWM, with a
factor between 0.8 and 1.

Since quadcopter controls rely on differential thrust between
motors, motor failures are very difficult to cope with. In order to
keep a constant yawwhen onemotor is failing, the gyroscopic effect
must be made equal to zero, for instance by having the two motors
rotating in the opposite direction match the saturation of the faulty
motor. The same idea applies to pitch and roll axes. Therefore, if the
failure is not too harsh, and the target states are not too demanding,
it is a priori feasible to recover some control of the faulty quadrotor
by saturating all four motors in the same way.

In this paper, we will look at two potential solutions to control
in the presence of partial motor failure. The first one is to look at
how robust a controller that has been designed for nominal cases
(i.e. without partial motor failures) is. The other one is to train,
using reinforcement learning, a controller optimized for a variety
of situations, from no failure to maximal failure rate.

2.3 Wind gusts
2.3.1 Aerodynamic effects. In Equation (1), we neglected all aero-
dynamic effects. When we take into account aerodynamic forces,
an extra force 𝐹𝑎 is exerted on the quadcopter that depends on the
wind speed and direction relative to the quadcopter, the angular ve-
locities of the rotors and extra moments𝑀𝑎

𝑥 ,𝑀𝑎
𝑦 and𝑀𝑎

𝑧 . We follow
the full aerodynamic model of [18] with the coefficients measured
for a crazyflie 2.0, where the effect of the wind on the structure is
neglected with respect to the effect on the rotors, and the blade
flipping effect (due to elasticity of the rotor) is also neglected.

The extra force 𝐹𝑎 can be decomposed as the sum of the four
extra aerodynamic forces on rotor 𝑖 (𝑖 = 1, . . . , 4), that can be mod-
elled as depending linearly on the rotors angular velocities, and
linearly on the wind relative speed with respect to rotors. Other
models [6] include blade flipping and other drag effects, but the
induced drag we are modelling is the most important one for small
quadrotors with rigid blades. We use 𝑓 𝑖 = Ω𝑖𝐾𝑊

𝑟
𝑖
for the aerody-

namic force exerted on rotor 𝑖 in the inertial frame, where 𝐾 is the
drag coefficients matrix,𝑊 𝑟

𝑖
is the relative wind speed as seen from

rotor 𝑖 , in the body frame, i.e.𝑊 𝑟
𝑖

= (𝑢𝑖 , 𝑣𝑖 ,𝑤𝑖 ) − 𝑅𝑇𝑊𝑎 with𝑊𝑎

the absolute wind speed in the inertial frame, (𝑢𝑖 , 𝑣𝑖 ,𝑤𝑖 ) being the
linear velocities of the rotors in the body frame, 𝑅 is the rotation
matrix from the body frame to the inertial frame (𝑅𝑇 is its inverse),
and Ω𝑖 is the absolute value of the rotation rates (angular velocity,
defined in Section 2.1) of the 𝑖-th rotor. The linear velocities of
rotors can be computed as follows:

©«
𝑢 𝑗
𝑣 𝑗
𝑤 𝑗

ª®¬ = ©«
𝑝

𝑞

𝑟

ª®¬ × ©«
𝑑𝑐 𝑗
𝑑𝑠 𝑗
ℎ

ª®¬ + ©«
𝑢

𝑣

𝑤

ª®¬ =
©«

𝑞ℎ − 𝑟𝑑𝑠 𝑗 + 𝑢
−𝑝ℎ + 𝑟𝑑𝑐 𝑗 + 𝑣
𝑝𝑑𝑠 𝑗 − 𝑞𝑑𝑐 𝑗 +𝑤

ª®¬
where 𝑑 is the length of the arm linking the center of the drone to
any of the fourmotors, and for 𝑗 ∈ {1, 2, 3, 4}, 𝑐 𝑗 = 𝑠𝑖𝑛

(
𝜋
2 ( 𝑗−1)+

3𝜋
4
)

and 𝑠 𝑗 = 𝑐𝑜𝑠
(
𝜋
2 ( 𝑗−1)+

3𝜋
4
)
are such that (𝑐 𝑗 , 𝑠 𝑗 , ℎ) is the coordinate

of rotor 𝑗 in the body frame, with the center of mass being the origin.
Now, we add to the second term of Equation (1) for ¤𝑢, ¤𝑣 , ¤𝑤 the

aerodynamic force 𝐹𝑎 = (𝐹𝑎𝑥 , 𝐹𝑎𝑦 , 𝐹𝑎𝑧 ) divided by𝑚, and to moments
of Equation (2), the aerodynamic moments 𝑀𝑎 = (𝑀𝑎

𝑥 , 𝑀
𝑎
𝑦 , 𝑀

𝑎
𝑧 )

with 𝐹𝑎 = 𝑓1+ 𝑓2+ 𝑓3+ 𝑓4 and𝑀𝑎 = (𝑑𝑐1, 𝑑𝑠1, ℎ) ∧ 𝑓1+ (𝑑𝑐2, 𝑑𝑠2, ℎ) ∧
𝑓2 + (𝑑𝑐3, 𝑑𝑠3, ℎ) ∧ 𝑓3 + (𝑑𝑐4, 𝑑𝑠4, ℎ) ∧ 𝑓4.

We derive the full dynamics of the quadcopter considering aero-
dynamic effects, and only write below the modified equations:

¤𝑢 = 𝑟𝑣 − 𝑞𝑤 + 𝑠𝜃𝑔 +
𝐹𝑎𝑥
𝑚

¤𝑝 =
𝐼𝑦−𝐼𝑧
𝐼𝑥

𝑞𝑟 + 1
𝐼𝑥
(𝑀𝑥 +𝑀𝑎

𝑥 )

¤𝑣 = −𝑟𝑢 + 𝑝𝑤 − 𝑐𝜃𝑠𝜙𝑔+
𝐹𝑎𝑦
𝑚 ¤𝑞 =

𝐼𝑧−𝐼𝑥
𝐼𝑦

𝑝𝑟 + 1
𝐼𝑦
(𝑀𝑦 +𝑀𝑎

𝑦 )

¤𝑤 = 𝑞𝑢 − 𝑝𝑣 − 𝑐𝜃𝑐𝜙𝑔+
𝐹+𝐹𝑎𝑧
𝑚 ¤𝑟 = 𝐼𝑥−𝐼𝑦

𝐼𝑧
𝑝𝑞 + 1

𝐼𝑧
(𝑀𝑧 +𝑀𝑎

𝑧 )

(3)

2.3.2 Wind models. There are two main types of models in the
litterature, represented by e.g. discrete wind gusts models and the
stochastic von Kármán Gust or Dryden gust models. The discrete
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wind gusts models consists in a explicit and deterministic represen-
tation of wind gusts as half period cosine perturbations ([39], eq.
(45)) detailed below. We focus on this model because it is widely
used for aircraft certification (using dozens of discrete wind gusts
with different magnitudes and scales). A discrete wind gust is char-
acterized by its fixed direction, magnitude and scale, and lasts for a
half period during which wind speed increases until it reaches its
maximum intensity; its absolute velocity is given as, using the same
notations as in Section 2.3.1:𝑊𝑎 (𝑡) =

𝐴𝑔

2

(
1 − 𝑐𝑜𝑠

( 𝜋 (𝑡−𝑡0)
𝛿

) )
𝑉𝑑 if

𝑡0 ≤ 𝑡 ≤ 𝑡0 + 2𝛿 , 0 otherwise, where 𝐴𝑔 is the maximal magnitude
of the wind gust, 𝛿 is the half life of the gust, and𝑉𝑑 is a normalized
vector in 𝑅3, which is the wind (absolute) direction.

2.4 PID Control
As in [28], the objective is to train only the attitude controller, and
not the altitude one. We therefore use a PID for controlling 𝑧. We
will also need some idea of what a standard PID controller may
achieve in terms of performance, and robustness to wind gusts
and failures. For this, we will primarily use one of the altitude
and attitude PID controller implemented in the crazyflie 2.0. Given
setpoints 𝑧𝑠𝑝 , 𝑝𝑠𝑝 , 𝑞𝑠𝑝 and 𝑟𝑠𝑝 , the quadrotor is controlled using a
PID controller (called PID1 in the sequel) which is the one of [22].

But as we will see, the attitude controller implemented in the
crazyflie 2.0 is not very reactive, most probably for ensuring that
the altitude is very securely controllable (since too much reactivity
in pitch and roll means sudden loss of vertical speed). In order to
give an idea of what we could observe as best performance, we
also designed a specific PID for attitude, that we call PID2, which is
much more reactive, with in particular higher proportional gains,
Equation 4 :



𝑡ℎ𝑟𝑢𝑠𝑡 = 3000(𝑧𝑠𝑝 − 𝑧)
+ 300 ∫ (𝑧𝑠𝑝 − 𝑧) d𝑡 − 500 ¤𝑧 + 48500

𝑐𝑚𝑑𝜙 = 1000(𝑝𝑠𝑝 − 𝑝) + 400 ∫ (𝑝𝑠𝑝 − 𝑝) d𝑡 − 40 ¤𝑝
𝑐𝑚𝑑𝜃 = 1000(𝑞𝑠𝑝 − 𝑞) + 400 ∫ (𝑞𝑠𝑝 − 𝑞) d𝑡 − 40 ¤𝑞
𝑐𝑚𝑑𝜓 = 2000(𝑟𝑠𝑝 − 𝑟 ) + 1000 ∫ (𝑟𝑠𝑝 − 𝑟 ) d𝑡 − 100¤𝑟

(4)

3 TRAINING
3.1 Underlying Markov decision process
Reinforcement learning is designed to solve Markov decision prob-
lems. At each discrete time step 𝑘 = 1, 2, . . ., the controller observes
the state 𝑥𝑘 of the Markov process, selects action 𝑎𝑘 , receives a
reward 𝑟𝑘 , and observes the next state 𝑥𝑘+1. As we are dealing
with Markov processes, the probability distributions for 𝑟𝑘 and
𝑥𝑘+1 depend only on 𝑥𝑘 and 𝑎𝑘 . Reinforcement learning tries to
find a control policy, i.e. a mapping from states to actions, in the
form of a neural net, that maximizes at each time step the expected
discounted sum of future rewards.

For the attitude control problem at hand, the set of Markovian
states is 𝑡ℎ𝑟𝑢𝑠𝑡 , 𝑝 , 𝑞, 𝑟 , 𝑒𝑟𝑟𝑝 = 𝑝𝑠𝑝 −𝑝 , 𝑒𝑟𝑟𝑞 = 𝑞𝑠𝑝 −𝑞, 𝑒𝑟𝑟𝑟 = 𝑟𝑠𝑝 −𝑟
(where (𝑝𝑠𝑝 , 𝑞𝑠𝑝 , 𝑟𝑠𝑝 ) is the target state, or "plateau" we want to
reach), in the nominal case (similarly to [29]). We will also consider
partially observed Markov processes, with only subsets of states for
improving sampling over smaller dimensional states, by leaving out

those states which should have less influence on the dynamics: our
first candidate is to leave out thrust, which appears only as second
order terms in the moments calculation, Equation (2), and also, 𝑝 ,
𝑞, 𝑟 that are second order in the formulation of the angular rates,
again in Equation (2). In all cases no simplification is performed
on physical model presented in section 2, only observations of the
learning agent are restricted. We do not consider here adding past
information, classical in non Markovian environments [20], that
has been used for attitude control in e.g. [28], but increases the
dimension by a large amount.

In the case of partial motor failure, we add the knowledge of
the maximum thrust for faulty motor 1, as a continuous variable
between 80% and 100%. In the case of aerodynamic effect and wind
gusts, we add the knowledge of the maximal magnitude and di-
rection (in the inertial frame) of the incoming wind. In both cases,
it can effectively be argued that it is possible to detect failures in
almost real time, and to measure (or be given from ground stations)
maximum winds and corresponding directions, in almost real time
as well. In the case of wind-gusts, Markovian states include also
the linear velocities 𝑢, 𝑣 and𝑤 , since wind gusts are only defined
in the inertial frame, and the induced aerodynamic effects depend
on relative wind speed.

With a view to solving optimal control problems (or Model-
Predictive like control), we choose to use a reward function which
is a measure of the distance between the current attitude (𝑝, 𝑞, 𝑟 )
with the target attitude (𝑝𝑠𝑝 , 𝑞𝑠𝑝 , 𝑟𝑠𝑝 ) (similar to the one used in
[28]): 𝑟 (𝑠) = −𝑚𝑎𝑥

(
0,𝑚𝑖𝑛

(
1, 1

3Ω𝑚𝑎𝑥
∥Ω∗ − Ω∥

))
, Ω𝑚𝑎𝑥 being the

maximal angular rate that we want to reach for the quadcopter, and
Ω is the angular rate vector (𝑝, 𝑞, 𝑟 ) which is part of the full state 𝑠
of the quadcopter.

3.2 Neural net architecture
Neural nets, such as multiple layer perceptrons (MLP) with RELU
activation, can efficiently encode all piecewise-affine functions [4].
It is also known [7] that the solution to a quadratic optimal control
(MPC) problem for linear time-invariant system is piecewise-affine.
Furthermore, there are good indications that this applies more
generally, in particular for non-linear systems [17]. This naturally
leads to thinking that MLPs with RELU networks are the prime
candidates for controlling the attitude with distance to the objective
as cost (or reward). In some ways, the resulting piecewise-affine
function encodes various proportional gains that should be best
adapted to different subdomains of states, so as to reach an optimal
cumulated (and discounted, here with discount rate 𝛾 = 0.991)
distance to the target angular rates, until the end of training.

Architectures that have been reported in the literature for similar
problems are generally alike. In [37], the neural net is a Multi-Layer
Perceptron (MLP) with two layers of 64 neurons each, and with
tanh activation function. In [16], the part of the controller which
is a neural net is a MLP with two layers of 96 neurons each and
tanh activation function, whose input states (observation space)
are all states plus the control. In [29], the hover mode neural net
controller, which is the most comparable to our work, is a MLP
with two layers of 400 and 300 neurons respectively, with RELU
1All other parameters, learning rates in particular are the standard ones of Stable
Baselines 2.7.0.
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activation for hidden layers and tanh for the last layer. In [10], the
resulting architecture is a two layers MLP with 128 neurons on
each layer, and RELU activation function. A few authors argue
that deeper networks should behave better, see e.g. [34]. We will
report experiments with one to four layers, and with 4, 8, 16, 32
or 64 neurons per layer, with RELU activation function (except for
the rescaling of the output, using tanh). We limit the reporting of
our experiments to these values since we observed that these were
enough to find best (and worst) behaviours.

3.3 Training algorithms
The first three algorithms we are discussing in Section 5, DDPG
[32], SAC [23] and TD3 [19] are all off-policy, actor-critic methods,
and more importantly, with continuous states and actions, which
are generally considered to be better suited for control applications
in robotics [45] (DDPG is used for instance in [16]). Because of
its effectiveness in practice, observed by many authors, e.g. [28]
for attitude control, we also compare with the on-policy Proximal
Policy Optimisation [42], also used for similar applications in [37]
and in [10].

Let us now describe the training mechanism: we call query signal
the function describing the prescribed angular rates at any given
time. We model this signal by a constant plateau, of magnitude
chosen randomly between -0.6 and 0.6 radians per second, and du-
ration chosen randomly between 0.1 and 1 second. We are training
over a time window of 1 second (a training episode) during which
the query signal is a constant plateau followed by a value of 0 until
the end of the episode. We chose to report on training where these
query signals are used independently on pitch, roll and yaw. Having
joint queries on pitch, roll and yaw does not seem to change the
outcome of our experiments.

Controls are updated every 0.03 seconds, and we simulate the full
state of the quadrotor, using a Runge Kutta of order 4 on Equation (1)
with a time step of 0.01 seconds.

The evaluation of the controller is made on similar query sig-
nals, but on time windows that last 20 seconds, with a query signal
generated according to a more general class of queries (see below).
Query signals on such longer time windows could also be consid-
ered for training : [28] refers to this approach as "continuous mode"
and reports much poorer performance compared to the "episodic
mode" with 1 second queries. We therefore decided to report only
on episodic mode training.

Such query classes are characterised by three distributions 𝐴, 𝐷
and 𝑆 for respectively the amplitude and duration of stable plateaus,
and the step amplitude between successive stable plateaus. These
distributions are the same for each axis. We define three different
classes of queries (where U(a,b) denotes the Uniform distribution
of support [a,b]): easy (A = U(-0.2, 0.2), D = U(0.5, 0.8), S = U(0, 0.3)),
medium (A = U(-0.4, 0.4), D = U(0.2, 0.5), S = U(0, 0.6)) and hard (A
= U(-0.6, 0.6), D = U(0.1, 0.2), S = U(0, 0.9)). Our query generator
actually changes the joint distribution of amplitude and duration of
stable plateaus by filtering out those queries which would make the
roll, pitch and yaw go through singular values in the Euler angles
description of the dynamics.

4 FORMAL PERFORMANCE CRITERIA
Designing a controller for a specific application requires balancing
multiple criteria such as rising time, overshoot, steady error, etc.
In order to quantify rigorously the performance of the learned
controller, we formalized requirements using a recent extension
of Signal Temporal Logic (STL) published in [5], interpreted over
piecewise constant signals. In addition to the usual Globally, Finally
and Until modalities, this logic offers:

• On[𝑎,𝑏 ] Agg 𝜏 (𝑥), with Agg ∈ {Min,Max}, which computes
a Min/Max aggregate of a real-valued term 𝜏 (𝑥) on time
interval [𝑎, 𝑏];

• 𝜏 (𝑥) 𝑈𝑑
[𝑎,𝑏 ] 𝑃 (𝑥), which samples the term 𝜏 (𝑥) when 𝑃 (𝑥)

first becomes true within [𝑎, 𝑏], or returns the default value
𝑑 if 𝑃 (𝑥) does not become true in [𝑎, 𝑏];

• 𝐷𝑑
𝑎𝜏 (𝑥) which samples the value of term 𝜏 (𝑥) (or formula

𝑃 (𝑥)) at time 𝑎 if it is defined, or returns 𝑑 otherwise;
• ite(𝑃 (𝑥), 𝜏1 (𝑥), 𝜏2 (𝑥)) which is equal to 𝜏1 (𝑥) when 𝑃 (𝑥) is
true and to 𝜏2 (𝑥) otherwise.

A first set of formulae allows to identify instants when a query
signal 𝑞 becomes stable for 𝑇 time units, and whether 𝑞 goes up or
down at any instant (with 𝜖 and 𝑑 two small constants), together
with the corresponding step size:

stable(𝑞) = (On[0,𝑇 ] Max 𝑞) − (On[0,𝑇 ] Min 𝑞) < 𝑑 (5)

stableup(𝑞) = (𝐷⊥
−𝜖 ¬stable(𝑞)) ∧ stable(𝑞) (6)

up(𝑞) = 𝑞 − (𝐷0
−𝜖 𝑞) > 0 (7)

down(𝑞) = 𝑞 − (𝐷0
−𝜖 𝑞) ≤ 0 (8)

step(𝑞) = ite(stableup(𝑞), 𝑞 − 𝐷0
−𝜖𝑞, 0) (9)

We consider an angular rate signal 𝑥 as acceptable if it does not
overshoot a stable query 𝑞 by more than 𝛼% of the step size on
[0,𝑇1], and does not stray away from a stable query 𝑞 by more than
𝛽% of the step size on [𝑇1,𝑇 ]:

stableup(𝑞) ∧ up(𝑞) =⇒ On[0,𝑇1 ] Max (𝑥 − 𝑞) < 𝛼step(𝑞)
(10)

stableup(𝑞) ∧ down(𝑞) =⇒ On[0,𝑇1 ] Max (𝑞 − 𝑥) < 𝛼step(𝑞)
(11)

stableup(𝑞) =⇒ On[𝑇1,𝑇 ] Max ∥𝑥 − 𝑞∥ < 𝛽step(𝑞)
(12)

Figure 2: Property parameters 𝑇1, 𝑇 , 𝑅𝑇 , 𝛼 , 𝛽 , 𝛾 .
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We define the rising time RT as the time it takes for 𝑥 to first
reach 𝑞 within 𝛾%:

ite(stableup(𝑞), 𝑡 − (𝑡 𝑈 +∞
[0,𝑇 ] ∥(𝑥 − 𝑞)∥ < 𝛾𝑞), +∞) (13)

Figure 2 illustrates the formalised notions and parameters.
Using observer code generated from these specifications, we

compute statistics on property violations and associated robust-
ness margins on angular rate signals and queries on pitch, yaw
and roll axis of the system, acquired at regular intervals during the
training of the controller. For evaluation each property 𝑃 (𝑥, 𝑞) is
wrapped in a globally modality over the episode length yielding
𝐺 [0,episode_length] 𝑃 (𝑥, 𝑞). Automating the computation of these met-
rics is essential in allowing to scale up the hyper-parameter space
exploration and identify the best controller according to objective
measurements.

5 EXPERIMENTAL SETUP
We have developed a platform2 with the purpose of running experi-
ments in a reproducible and scalable way, becoming an integration
layer between the different moving parts in both training and test-
ing. From a technological standpoint the platform is based on the
Stable Baselines 2.7.0 reinforcement learning library itself based on
Tensorflow, all of our code is in Python and we used Bazel as build
system. We used Tensorboard to monitor losses and the internal
dynamic of the neural networks during the training.

One intermediate goal was to explore the large combinatorial
hyperparameter space efficiently to be able to identify the best
hyperparameters values with respect to the STL metrics we defined
and to get a better understanding of their impact.

With 4 different algorithms, 20 possible configurations for the
network architecture and 3 sets of observed states, our hyperparam-
eters space contains a total of 240 points that need to be trained and
tested. The corresponding jobs are dispatched on our Kubernetes
cluster where they can run in parallel. Disposing of 1 vCPU on the
Cascade Lake platform (base frequency of 2.8 GHz), the 3 millions
iterations of a single training job take between 3 and 8 hours to
complete. The cluster autoscales with the workload and allowed us
to run 1200 hours worth of training in half a day.

The container images that end up running on the cluster are
created, uploaded and finally dispatched in a reproducible manner
thanks to the Bazel rules of our Research Platform. Those rules are
built on top of the Bazel Image Container Rules and the Bazel Kuber-
netes Rules and specially designed to generate all the experiment
jobs of the hyperparameters analysis.

The training and testing results are automatically uploaded on
our cloud storage where they can be browsed for quick inspections,
or fed as input for the next pipeline stage. We saved 30 check-
points per experiment (each file containing 100k training iterations
weights between 10KB and 100KB). Including the TensorFlow logs,
the training results amount to >100GB of data.

Each of the 30 × 240 checkpoints was then evaluated on 100
queries computed by the Query Generator, producing the same
number of concrete traces representing the commands and the

2The full code is available as open source at https://github.com/uber-research/rl-
controller-verification, the repeatability package associated with this paper being only
a subset, available under https://github.com/uber-research/rl-controller-verification/
tree/main/papers/hscc_2021/rep.

states over the whole episode. Each set of such traces is about 600k
hence it yields total of 60MB per checkpoint. Finally each of the 30
× 240 × 100 traces was evaluated with STL properties observer to
compute synthetic metrics: aggregating the 100 traces of a single
checkpoint produced a 150KB file and required approximately 45
minutes. The checkpoint specific CSV files were further aggregated
in experiment specific and round specific checkpoints for the final
visual inspection. We used Hiplot [25] for browsing through the
enormous number of parameters and data generated, for filtering
the data set of controllers, only retaining the ones with better
success in offset, overshoot and rising times altogether, with respect
to the best PIDs, and for understanding what correlations we have
between controller performance and the way it has been trained.

6 EXPERIMENTS RESULTS
6.1 Performance metrics
Each controller is evaluated on a hundred episodes using the STL
observers defined in Equations (10) to (13), where parameters are
set to 𝛼 = 10%, 𝛽 = 5% and 𝛾 = 5%, 𝑇 = 0.5𝑠 , 𝑇1 = 0.25𝑠 , 𝜖 = 0.01𝑠 ,
𝑑 = 0.005. For each evaluation episode the following statistics are
computed over all stable query plateaus:

• average and maximum overshoot percentage relative to the
query step size,

• average andmaximum offset percentage relative to the query
step size,

• average andmaximum rising time values in seconds (only for
plateaus where the signal actually reaches 𝛾% of the query
within [0,𝑇 ]).

For each metric (overshoot, offset, rising time), we compute the
success percentage % OK, i.e. the percentage of stable plateaus of the
episode forwhich the controller behaviour satisfies the specification.
Then, episode-level statistics are further averaged, yielding results
presented in the tables, where columns represent:

• avg (resp. max) overshoot: is the per-episode-average of the
average (resp. maximum) overshoot values,

• avg (resp. max) offset: is the per-episode-average of the av-
erage (resp. maximum) offset values,

• avg (resp. max) rising time: is the per-episode-average of the
average (resp. max) rising time,

• % OK offset (resp. overshoot, rising time): is the per-episode-
average of the success percentage for the offset (resp over-
shoot, rising time) metric.

6.2 Performance of nominal-trained networks
in nominal test case

6.2.1 Overall best performance comparison. The PID performance
metrics in the nominal case are reported in the first two lines of
Table 1 to serve as a reference point for neural controller evaluation.
Examples of query tracking behavior are given in Figure 3 for
reference.

PID2 reaches within 5% of the target state for about 70% of
the queries, and is relatively slow with an average rising time of
0.44s. PID1 in comparison reaches within 5% of the target state for
only 8% of the queries, with a better rising time, but that is not
statistically meaningful. Overshoot success rates are really good for

https://github.com/uber-research/rl-controller-verification
https://github.com/uber-research/rl-controller-verification
https://github.com/uber-research/rl-controller-verification/tree/main/papers/hscc_2021/rep
https://github.com/uber-research/rl-controller-verification/tree/main/papers/hscc_2021/rep
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Figure 3: PID2 controller query tracking

Figure 4: Neural controller behaviour (sac, 2 layers, 16 neu-
rons per layer, 3M iterations)

both PIDs (95-100% OK). Offset success rates are bad (1-3% OK), due
to their slow convergence. We will hence use PID2 as a reference
for discussing neural controller performance.

The comparison between the best networks and the PIDs is
reported in Table 1. We see that our neural nets give much quicker
controls, with an average rising time of about a fourth to a fifth
of the rising time for the two PIDs, although with a negligible
offset. This is at the expense of a slightly lesser performance on the
maximum overshoot at least for SAC and DDPG trained networks,
with respect to PID2 (our neural nets are still much better than PID1).
Results are far less good, in particular concerning overshoots, with
PPO and TD3 trained networks. This is also visible when comparing
signals between Figure 4 and Figure 3. Somehow, neural nets exhibit
extreme reactivity as well as good asymptotic convergence, but
show some very short-lived "spikes", as in the sample trajectory
shown in Figure 4.

When we filter the neural nets meeting or exceeding the perfor-
mances of PID2, many networks remain, the best being:

Figure 5: Performance of SAC 32x32 on dim 3 observation
space trained neural nets w.r.t. the number of iterations

• DDPG 64×64×64×64 trained for 1500000 iterations (and also
DDPG 32 × 32, 400000 iterations) on the three-dimensional
observation space (𝑝 − 𝑝𝑠𝑝 , 𝑞 − 𝑞𝑠𝑝 , 𝑟 − 𝑟𝑠𝑝 )

• SAC 32×32×32×32 (and SAC 32×32 and 16×16 trained for
3000000 iterations coming very close) trained for 2900000
iterations on the same three-dimensional observation space

6.2.2 Training algorithm influence. We observe in Table 1 that
PPO and TD3 do not show as good performance as SAC (and even
DDPG), moderating the conclusion of [28], and the common belief
that TD3 should improve performance of neural net control. We
have for now no explanation for this, largely because we have not
been able (which is also the case in [28]) to get rid of the overshoot
spikes, even using SAC which does some amount of regularization,
or TD3 which should lead to more stable solutions at, potentially,
the expense of a slower convergence rate.

6.2.3 Convergence of the training algorithms. We show in Figure 5
the evolution of the three main performance measures, the OK
overshoot, OK offset and OK rising time, for one of the best network,
SAC 32×32 neurons. The three metrics improve quickly and almost
stabilize in the first 1000000 iterations.

6.2.4 Observation state influence. Of course, the smaller dimension
the observation state is, the better the quality of the sampling is,
for the same number of iterations. Still, we observe that using
a Markovian state or the simpler three-dimensional state space
(𝑒𝑟𝑟𝑝 , 𝑒𝑟𝑟𝑞, 𝑒𝑟𝑟𝑟 ) does not change significantly the performance of
the best neural nets obtained, see Table 2, although the 3 dimension
observation space gives slightly better performance overall. In fact,
we even get a worse performance with the dimension 7 full state,
mostly because of the difficulty to sample this higher dimensional
space, and to identify the subtle second-order effects of some of
these states on angular rates.

6.2.5 Neural net architecture influence. First, we observe that al-
most none of the single-layer neural nets seem to converge to a
correct controller (see e.g. Figure 6). At 64 neurons, 1 hidden layer
networks seem to exhibit some good behaviour, but still far from
any of the e.g. two-layers neural nets.
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algo OK rising t. OK off. OK overshoot avg rising t. avg off. avg overshoot max rising t. max off. max overshoot

PID2 70.52 0.52 100.00 0.41 20.22 0.00 0.48 25.26 0.00
PID1 7.73 3.44 94.88 0.33 58.93 3.91 0.38 138.44 50.56
SAC 97.35 99.54 96.55 0.08 0.12 0.50 0.21 2.44 6.21
DDPG 99.05 98.59 98.21 0.08 0.21 0.23 0.17 3.97 3.91
PPO 96.96 97.26 91.98 0.08 0.43 1.41 0.19 7.08 11.93
TD3 96.70 86.80 88.16 0.09 2.40 2.13 0.22 18.08 20.09

Table 1: PIDs and overall best networks performance (all in % except rising t. in seconds)

algo dim OK rising t. OK off. OK overshoot avg rising t. avg off. avg overshoot max rising t. max off. max overshoot

SAC 3 98.88 98.01 98.58 0.09 0.28 0.18 0.19 5.01 3.28
SAC 6 97.24 98.70 94.82 0.09 0.25 0.81 0.19 4.72 8.07
SAC 7 94.26 94.57 97.79 0.09 0.80 0.33 0.25 11.56 5.75

Table 2: Influence of the observable space dimension (all in % except rising t. in seconds)

Figure 6: OK rising t. for our best SAC network wrt number
of training iterations for different architectures

Still, 3-layers and even 4-layers networks do not seem to exhibit
much better behaviour than the "best" 2-layers networks, with 16
or 32 neurons each, although they converge in a faster manner.
Recently Sinha et al. in [44] empirically observed the performance
of SAC have a peak using 2 layers MLP and their explanation for
this result relies on the Data Processing Inequality hence the fact
that mutual information between layers decreases with depth. This
will have to be further investigated in our framework.

6.3 Performance of nominal-trained networks
in non-nominal test cases

6.3.1 Robustness to motor failures. We now assess the robustness
of our PIDs and "best" neural nets (trained in nominal situations as
discussed in Section 6.2) to partial motor failures, without training
again the neural nets nor changing the gains of PIDs.

We report in Table 3 the same performance measures as the
one used in the nominal case, in the test cases where motor 1 can
experience a partial power loss, down to 80% of its maximal power,

at the start of any new plateau along the 20 second episodes that we
are observing (which can contain about 30 different target angular
states, or plateaus, to reach within a short time). We take maxima
and averages of these measures on 100 such queries as before.

In case of partial motor failure, our best SAC trained neural
net behaves much better than our two PIDs: it keeps on reaching
plateaus within 0.5 seconds about 94% of the time, whereas even the
best PID goes down to a success rate of less than 60%. Our network
is even better when it comes to satisfying offset constraints (82%
of the time) whereas the PIDs almost never comply. Performance
concerning overshoot is comparable, even though the PIDs are very
slightly better, but only in cases where PIDs actually reach the
target state, which is the case much less often. The best neural nets
that have been trained under nominal conditions show very little
degradation of performance when a partial failure occurs.

6.3.2 Robustness to wind gusts. We then assess the robustness
of our PIDs and "best" neural nets (trained in nominal situations,
Section 6.2) to wind gusts (see Section 2.3.1), without training again
the neural nets nor changing the gains of PIDs.We present in Table 3
the same performance measures as the ones used in the nominal
case, with random wind gusts of magnitude up to 10𝑚.𝑠−1, from
any fixed direction in the inertial frame, randomly chosen at the
start of any new target plateau along the 20 second episodes that we
are observing. We take maxima and averages of these measures on
100 such queries as before. The PIDs and the neural nets exhibit the
same kind of minor loss of performance, and the nominal trained
neural nets are still far superior to the two PIDs.

6.4 Performance of non-nominal-trained
networks

6.4.1 Training under partial motor failures. In what follows, we
train the attitude controller to sustain partial motor failures, adding
the magnitude of the power loss (1 extra dimension) to the obser-
vation states discussed in Section 3.1. We report the performance
measures obtained in the non-nominal case in Table 4. The concern
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mode algo OK rising t. OK off. OK overshoot avg rising t. avg off. avg overshoot max rising t. max off. max overshoot

windgust SAC 98.50 97.40 98.48 0.09 0.41 0.22 0.17 6.78 3.81
windgust PID2 70.32 0.65 100.00 0.41 20.16 0.00 0.48 24.25 0.00
windgust PID1 6.55 2.97 94.28 0.33 60.23 4.43 0.38 146.00 57.65
saturation SAC 94.20 81.58 92.85 0.12 17.63 6.04 0.33 145.91 81.25
saturation PID2 58.24 2.94 93.98 0.39 34.33 4.66 0.48 129.36 58.46
saturation PID1 14.50 3.71 92.13 0.30 64.83 5.67 0.40 166.82 70.45

Table 3: Robustness of the best networks and PIDs w.r.t. wind gusts and motor saturation (in % except rising t. in seconds)

algo OK rising t. OK off. OK overshoot avg rising t. avg off. avg overshoot max rising t. max off. max overshoot

DDPG 89.40 73.82 90.53 0.13 20.61 6.84 0.37 156.87 87.98
SAC 90.93 79.00 90.45 0.12 20.36 7.18 0.35 164.34 95.79

Table 4: Best networks trained for partial motor failures, tested under potential motor failures (in % except rising t. in seconds)

one may have is that, training the neural net in more various con-
ditions (nominal and non-nominal), the resulting controller may
exhibit lower performance. We thus report the same performance
measures for neural nets trained with potential motor failures, in
nominal situations, e.g. when no power loss happens, see Table 5

We see that we still achieve much better performance than PIDs,
but that we are only similar and even slightly worse than the neural
nets trained in nominal conditions, both in nominal conditions,
compare Table 5 to Table 1 and in non-nominal conditions, compare
Table 4 to Table 3. Understanding this non intuitive behaviour and
improving the training in this case is left for future work.

6.4.2 Training under wind gusts. In what follows, we train the atti-
tude controller to sustain wind gusts up to 10 m.s−1 in any direction,
adding to the observation states we discussed in Section 3.1 the
wind gust magnitude and directions (4 dimensions more) plus the
linear velocities of the quadcopter (𝑢, 𝑣 and𝑤 , 3 dimensions more)
since they are necessary for determining the relative wind velocity.

We report the performance measures that we get in the non-
nominal case in Table 6 and in the nominal case in Table 7.

We see that, the SAC and DDPG controller trained with potential
wind gusts still behave about as well as the nominal controller,
compare Table 7 to Table 1. Surprisingly, the best (SAC) network
behaves slightly worse than the nominal-trained SAC network
under wind gusts, compare Table 6 to Table 3, where we can see a
slight drop of performance in e.g. OK off. and OK overshoot: it does
not seem to be able to learn correctly how to stay close enough to
the target plateau, in some cases.

7 LESSONS LEARNED
First, we observed that we should restrict to a “good” subspace of the
(full quadcopter) states that is sufficiently low dimensional for effi-
cient sampling and such that it avoids potentially spurious correla-
tions, while still bringing sufficient information for learning. For in-
stance, in the nominal case, the observation space (𝑒𝑟𝑟𝑝 , 𝑒𝑟𝑟𝑞, 𝑒𝑟𝑟𝑟 )
was found to be the optimal choice. Training depends of course on
sampling data, that has to be done on representative data, and on
sampling initial states in a large enough space. In order to do this,

for better results, we developed a specific query generator, and we
sampled initial states in quite large spaces.

SAC gives very good results as expected. It is most probably
more efficient due to entropy regularization that partially cancels
spurious correlations, but it still has to be confirmed inmore general
situations. A lesson for us was that TD3 was not behaving as well
as expected. Our current guess is that TD3 suffers from too much
bias on the Q-function estimation at some point in our training
environment, or that TD3 needs much more iterations to converge
in our case due to bad exploration performance. Recent papers have
suggested that action clipping in TD3 can result in poor exploration
performance on problems with bounded action spaces (actions on
the boundary are too frequently sampled) which has been shown
to be remedied by the entropy regularization of SAC or other out-
put scaling and replay buffer sampling approaches that simulate
entropy regularization, [40, 46]. Another newly documented [43]
undesired behavior of TD3 is to have all Critics converge to a same
point in parameter space and degenerate into single-Q-network
performance. Without further experiments we cannot say if poor
performance is due to action clipping, to critic diversity collapse,
or both. Considering SAC works a lot better and also uses dual
Q-networks like TD3, it seems more likely that clipping and bad
exploration are to blame than diversity collapse.

It is actually hard to find good attitude controllers by RL, proba-
bly explaining why papers in this area generally only discuss one
neural net controller: we had only 9 out of about 5000 controllers
which comply with our specifications. The very last 5% performance
seems to be very hard to get because of “spikes” we observed, due to
spurious correlations in the fully connected neural net controllers
we have been considering. We also note that small and rather shal-
low (two or three hidden layers) networks were observed to be best
trained and to be behaving best for attitude control.

We also observed that there is some amount of robustness built
in neural net controllers, suitably trained in nominal conditions,
to certain non-nominal situations. We believe this is due to the
fact that the controllers which are trained in the nominal case, are
actually trained in many different states that appear in non-nominal
situations, for the same neural net inputs (e.g. angular rate errors),
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algo OK rising t. OK off. OK overshoot avg rising t. avg off. avg overshoot max rising t. max off. max overshoot

SAC 95.35 95.42 97.47 0.09 0.66 0.34 0.22 9.35 5.30
DDPG 94.21 95.17 94.69 0.09 0.83 0.80 0.21 11.29 10.51

Table 5: Performance of best networks trained with potential motor failures, tested nominally (in % except rising t. in seconds)

algo OK rising t. OK off. OK overshoot avg rising t. avg off. avg overshoot max rising t. max off. max overshoot

DDPG 99.13 90.04 95.28 0.09 1.75 0.79 0.21 17.46 11.40
SAC 97.67 89.58 92.97 0.10 1.52 1.01 0.28 13.91 11.65

Table 6: Best networks trained forwind gusts conditions, tested underwind gusts conditions (all in % except rising t. in seconds)

algo OK rising t. OK off. OK overshoot avg rising t. avg off. avg overshoot max rising t. max off. max overshoot

DDPG 96.53 91.43 94.83 0.09 1.76 0.96 0.23 17.47 12.41
SAC 95.96 97.09 96.77 0.09 0.42 0.45 0.21 5.57 6.34
Table 7: Best networks trained for wind gusts conditions, tested in nominal conditions (all in % except rising t. in seconds)

by using a very wide distribution of initial states during training.
Similar observations on robustness by training from wide initial
state distributions were made in [41]. Finally, training neural net
controllers to both nominal and non-nominal situations is not an
easy endeavor and should be further studied. The difficulty lies in
training on sufficiently many non-nominal data, as well as avoiding
overfitting to non-nominal cases: reward distributions can become
multi-modal and expectation maximization could be bad in such
cases.

8 CONCLUSION
We have presented a complete study of learned attitude controls for
a quadcopter using reinforcement learning. In particular we extend
previous results by modeling partial motor failure as well as wind
gusts, and generating extensive tests of various network architec-
tures, training algorithms and hyperparameters using a flexible and
robust experimental platform. We also present a precise evaluation
mechanism based on robust signal temporal logic observers, which
allows us to characterize the best options for training attitude con-
trollers. Results show that learned controllers exhibit high quality
over a range of query signals, and are more robust to perturbations
than PID controllers.

The immediate next step will be to start using STL-derived re-
ward signals during training on the most promising architectures,
and try to improve training under non-nominal situations.

Finally, because we use an explicit ODE model, we can hope to
discuss formal reachability properties of the complete controlled
system, using or elaborating on approaches such as [14] and [22].
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