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ABSTRACT
We investigate the information and guarantees provided by different

inner and outer approximated reachability analyses, for proving

properties of dynamical systems.We explore the connection of these

approximated sets with the maximal and minimal reachable sets of

Mitchell [31], with an additional notion of robustness to disturbance.

We demonstrate the practical use of a specific computation of these

approximated reachable sets. We revisit in particular the reach-

avoid properties.
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1 INTRODUCTION
Verifying properties of control systems usually involves rigorously

proving that a dynamical system, subject to uncertain initial condi-

tions, parameters, and environment, will eventually reach a region

of the state-space, while avoiding some unsafe set of states. An-

alytical verification of such properties is generally impossible, as

well as computing exact reachable sets for nonlinear systems. Dif-

ferent algorithms have been proposed to compute safe outer (or

over) approximations of reachable states of the system. When the

outer-approximations are tight enough, they are often sufficient to

prove the property. However, when the property cannot be proved,

we are facing the question of whether this is a false alarm, or the

property is indeed not satisfied. Computing an inner (or under) ap-

proximation of the reachable set is a possible though still very little

explored way to prove that there exist executions of the system

that are guaranteed to reach an unsafe state.

For systems involving external disturbances, a stronger property

is proving that some (unsafe) states are always reached, whatever

these disturbances, for some control signal or input parameters.

This is what we define as robust inner-approximations, and we
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propose a general algorithm to compute them for non-linear dy-

namical systems. This algorithm extends the approach of [19] in

two ways. First, we introduce here the notion of robustness to

a possible disturbance. Second, we allow the input signal to be

time-dependent.

Another contribution of this work is to relate the notions of

inner-approximating reachable sets that we introduce, to the no-

tions of minimal and maximal reachable sets of Mitchell [31]. This

constitutes a starting point to demonstrate how the combination

of inner and outer approximations of reachable sets can be used to

prove or falsify reach-avoid properties, where regions to reach or

avoid can be moving regions, and possibly in presence of a distur-

bance in the system. We also demonstrate that we can prove some

new properties, such as the sweep-avoid property, where the target

region is proved to be fully covered by executions of the system. We

illustrate these contributions using our prototype implementation.

Related work. Reachability properties have been extensively

studied for a wide number of system models, ODEs, DDEs, dis-

crete systems, hybrid systems. As they are in general undecidable,

numerous methods have been proposed to outer-approximate (or

over-approximate) flowpipes and reachable sets. Fewer methods

have been proposed for inner-approximations. These methods fol-

low either a Lagrangian approach, which follows the flow of the

system, or an Eulerian method, which models the dynamics of a

system by looking at how it flows through fixed sets.

Lagrangian methods are generally based on set-based methods,

and are generally scalable. For linear ODEs, sub-polyhedral or ellip-

soidal abstractions are generally used for outer-approximations [13,

14] and for inner-approximations [14, 26]. Several approaches exist

for outer-approximations of non-linear ODEs [1, 5, 9, 33, 34]. For

inner-approximations, both forward Taylor model based [19] and

backwardmethods [6, 39] have been recently proposed. Thesemeth-

ods have also been extended to Delay Differential Equations [20, 38],

that appear naturally when modeling networked control systems,

where delays are introduced in the feedback loop.

Eulerianmethods, generally based onHamilton-Jacobi-Bellman’s

equation [3] are known to be in general less tractable, but more

expressive, solving generalized reachability problems, such as reach-

avoid properties [11] and extensions to differential games such as

pursuit-evasion, reach-avoid-capture, and control/path-planning

synthesis [40]. For polynomial systems of ODEs, computations of

inner-approximations of the region of attraction [25] and of the

reachable set [37], based on the formulation as solutions to the

Hamilton-Jacobi partial differential equations, have been proposed.

Important verification properties also include stability or con-

trollability, and the computation of invariants or viability kernels.

https://doi.org/10.1145/3302504.3311794
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Let us mention related work that involve both outer and inner-

approximation. Approximations of reachable sets can be used to

characterize these invariants or viability kernels, see e.g. [23], where

the authors compute inner-approximations of the viability kernel

by backward inner-approximated reachability, using the ellipsoidal

methods of [26]. Recently, an interval-based method [30] was intro-

duced for bracketing between inner and outer approximations the

positive invariant set of a system without relying on integration.

However, it relies on space discretization and has only been applied

successfully, as far as we know, to low dimensional systems.

Reachability properties naturally concern systems with uncer-

tainties. Whether these should be seen as controllable, non-determi-

nistic, or even a stochastic noise, has also been discussed in some

papers, e.g. [24, 29, 31, 35], where so-called minimal and maximal

reachable sets have been introduced. The natural question of what

these - forward or backward - reachable sets can help prove about

control systems is also discussed there.

Our work proposes a set-based Lagrangian approach to semi-

decide verification properties such as target reachability while

avoiding unsafe regions, extending the previous Lagrangian ap-

proaches to more general, possibly time-varying, uncertainties,

including a controllable part and non-controllable disturbances.

2 MINIMAL, ROBUST AND MAXIMAL
REACHABLE SETS

We consider general systems of parametric ODEs, possibly non-

linear, or even non-polynomial, of the form:{
Ûz(t) = f (z(t),u(t)) if t ≥ 0

z(t) = z0 if t = 0

(1)

where the continuous vector z(t) belongs to the state-space domain

D ⊆ Rn , the initial value is defined by z(0) = z0 ∈ D, and the input

signal u belongs to U = {ϕ : R+ → U}, where U ⊆ Rm . Function

f : D ×U → D is assumed sufficiently smooth on D ⊆ Rn (at

least C1
, and more when we will use higher order Taylor models).

Controls u ∈ U are also supposed to be sufficiently smooth Ck for

some k ≥ 0 stepwise. This allows discontinuous controls, where the

discontinuities can only appear at discrete times tj , corresponding
to general switched systems with time-dependent switches [27].

We make the assumption through the paper, that given an initial

state, and the input signal, there exists a unique solution or tra-

jectory of the dynamical system (1) for all time t ∈ T = [0,Tmax].

Let φf (t ; z0,u) for time t ∈ T denote the time trajectory of (1) with

initial state z(0) = z0, and for input signal u.
We are interested in the sets of states z reachable by trajectories

of the system, starting with z0 in an initial set Z 0. We call reachable
set the set of states reachable by trajectories at a specified time t , and
reachable tube or flowpipe the set of states reachable by trajectories

over all times prior to and including the specified time.

Following [31], we now define forward maximal and minimal

reachability, depending whether the input u is used to maximize or

minimize the width of the reachable set.

Maximal reachability. Given a vector of uncertain input signal u
defined in the set U, we use the subscript E to denote the maximal
reachable set or tube, where we seek the input signal that maximizes

the size of the reachable set. In this case, u will correspond to a

controllable input signal, which is existentially quantified, hence

the E subscript notation.

R
f
E
(t ;Z 0,U) = {z ∈ D | ∃u ∈ U, ∃z0 ∈ Z 0, z = φ

f (t ; z0,u)}

R
f
E
([0, t];Z 0,U) = {z ∈ D | ∃u ∈ U, ∃z0 ∈ Z 0,

∃s ∈ [0, t], z = φf (s; z0,u)}

Minimal reachability. We use the subscript A to denote the min-
imal reachable set, where we want to compute only states that

trajectories will reach whatever the input signal is.

R
f
A
(t ;Z 0,U) = {z ∈ D | ∀u ∈ U, ∃z0 ∈ Z 0, z = φ

f (t ; z0,u)}

R
f
A
([0, t];Z 0,U) = {z ∈ D | ∀u ∈ U, ∃z0 ∈ Z 0,

∃s ∈ [0, t], z = φf (s; z0,u)}

In this case, u will correspond to an uncontrollable disturbance,

with respect to which the behavior of the system must be robust,

and it is universally quantified.

Robust reachability. Finally, we generalize the definitions above
by using the subscriptAE to define the reachable set which is max-

imal with respect to some dimensions of the input (vector) defined

by the subset of indices IE , and minimal or robust with respect to

the remaining dimensions IA , that represent the disturbance part

of the input signal. Let u = (uA,uE ) ∈ U = (UA,UE ), where uA
(resp uE ) contains the components of u corresponding to indices

IA (resp IE ), and UA (resp UE ) is the corresponding domain of

definition. We define the robustly reachable set, robust with respect

to uA , by:

R
f
AE

(t ;Z 0,U, IA, IE ) = {z ∈ D | ∀uA ∈ UA,

∃uE ∈ UE, ∃z0 ∈ Z 0, z = φ
f (t ; z0,u)}

We define R
f
AE

([0, t];Z 0,U, IA, IE ) similarly.

Remark 1. Note that the order on quantifiers in this notion of
robustness is backwards compared to classical formulations [31]. But
we can also indirectly revisit expressions with the stronger classical
order on quantifiers, as noted in Section 4.4.

Remark 2. Consider two partitions (I1
A
, I1
E
) and (I2

A
, I2
E
) of I . If

I1
E
⊆ I2

E
, then Rf

AE
(t ;Z 0,U, I

1

A
, I1
E
) ⊆ R

f
AE

(t ;Z 0,U, I
2

A
, I2
E
).

In particular, when there is no controllable component in the in-
put, or IE = ∅, we have Rf

AE
(t ;Z 0,U, I , ∅) = R

f
A
(t ;Z 0,U), and

when there is no disturbance in the input, or IA = ∅, we have
R
f
AE

(t ;Z 0,U, ∅, I ) = R
f
E
(t ;Z 0,U). Then, for any partition (IA, IE )

of I , Rf
A
(t ;Z 0,U) ⊆ R

f
AE

(t ;Z 0,U, IA, IE ) ⊆ R
f
E
(t ;Z 0,U).

Remark 3. We could also split the parameters that appear in the
initial condition in a controllable and a disturbance part, as for the
input signal. We chose not to do so to stick to the definitions of the
minimal reachable sets of Mitchell [31].

We are interested here in computable abstractions:
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Definition 2.1 (Inner and outer approximations of the reachable
sets). Let two sets IAE and OAE such that

IAE ⊆ R
f
AE

(t ;Z 0,U, IA, IE ) ⊆ OAE .

We call IAE a robust inner-approximation, and OAE a robust outer-
approximation. robust with respect to disturbance uA .

When IE = ∅, we call IAE = IA aminimal inner-approximation
and OAE = OA a minimal outer-approximation.

When IA = ∅, we callIAE = IE amaximal inner-approximation
and OAE = OE a maximal outer-approximation.

Example 2.2. We consider a basic PD-controller, controlling a

car’s position x and velocity v by adjusting its acceleration depend-

ing on the current distance to a reference position pr :{
x ′(t) = v(t)

v ′(t) = −Kp
(
x(t) − pr

)
− Kd v(t)

with initial condition (x(0),v(0)) ∈ [−0.1, 0.1] × [0, 0.1]. The param-

eters Kp and Kd of the PD-controller are uncertain and bounded

by (Kp ,Kd ) ∈ [1.95, 2.05] × [2.95, 3.05]. The maximal reachable set

is the set of states that can be reached for some initialization of x
and v , and some value of Kp and Kd . The minimal reachable set is

the set of states that can be reached, whatever the values of Kp and

Kd , for some initialization of x and v . Finally, we will be interested
in the set of states that can be reached, whatever the values of Kd ,
for some value of Kp and some initialization of x and v . In that last

case, only Kp will be considered as a control parameter. Inner and

outer-approximations of these sets are represented in Figure 1.

In the next section, we propose a computation of these outer and

inner-approximations.

3 COMPUTING INNER AND OUTER
APPROXIMATIONS

3.1 Generalized interval computations
Set valued quantities, scalar or vector valued, corresponding to

uncertain inputs or parameters, will be noted with bold letters,

e.g x , throughout the paper. An outer-approximating extension of

a function f : Rm → Rn is a function [f ] : P(Rm ) → P(Rn ),
such that for all x in P(Rm ), range(f ,x) = { f (x), x ∈ x} ⊆ [f ](x).
Dually, inner-approximations determine a set of values proved to

belong to the range of the function over some input set. An inner-

approximating extension of f is a function ]f [: P(Rm ) → P(Rn ),
such that for all x in P(Rm ), ]f [(x) ⊆ range(f ,x). Inner and

outer approximations can be interpreted as quantified propositions:

range(f ,x) ⊆ z can be written ∀x ∈ x, ∃z ∈ z, f (x) = z, while
z ⊆ range(f ,x) can be written ∀z ∈ z, ∃x ∈ x, f (x) = z.

Classical intervals [32] are used in many situations to rigorously

compute with interval domains instead of reals, usually leading

to outer-approximations of function ranges over boxes. Intervals

are non-relational abstractions, in the sense that they rigorously

approximate independently each component of a vector function

f . We thus consider in this section a function f : Rm → R. The
natural interval extension consists in replacing real operations by

their interval counterparts in the expression of the function. A

generally more accurate extension relies on a linearization by the

mean-value theorem. Suppose f is differentiable over the interval x .

Then, the mean-value theorem implies that ∀x0 ∈ x, ∀x ∈ x, ∃c ∈

x, f (x) = f (x0) + f ′(c)(x − x0). If we can bound the range of the

gradient of f over x , by [f ′](x), then we can derive the following

interval enclosure, called the mean-value extension: for any x0 ∈

x, range(f ,x) ⊆ f (x0) + [f
′](x)(x − x0).

The results introduced here rely on work by Goldsztejn et al. [16–
18] on modal intervals. Let us first introduce the set of generalized

intervals, denoted by IK = {x = [x, x], x ∈ R, x ∈ R}. Given
two real numbers x and x , with x ≤ x , one can consider two

generalized intervals, [x, x], which is called proper, and [x, x], which
is called improper. We define dual ([a,b]) = [b,a] and pro([a,b]) =
[min(a,b), max(a,b)].

Definition 3.1 ([18]). Let f : Rm → R be a continuous function

and x ∈ IKm , which we can decompose in xA ∈ IRp and x E ∈

(dual IR)q with p + q =m. A generalized interval z ∈ IK is (f ,x)-
interpretable if

∀xA ∈ xA, Qzz ∈ proz, ∃xE ∈ prox E, f (x) = z (2)

where Qz = ∃ if (z) is proper, and Qz = ∀ otherwise.

When all intervals are proper, (2) corresponds to classical interval

computation, which gives an outer-approximation of range(f ,x),
or ∀x ∈ x, ∃z ∈ [z], f (x) = z.When all intervals are improper, (2)

yields an inner-approximation of range(f ,x), or ∀z ∈ ] proz[, ∃x ∈

prox, f (x) = z.
Kaucher arithmetic [22] provides a computation on generalized

intervals that is (f ,x)-interpretable in some simple cases. Kau-

cher addition extends addition on classical intervals by x + y =
[x + y, x + y] and x − y = [x − y, x − y]. For multiplication, let

us decompose IK in P = {x = [x, x], x ⩾ 0 ∧ x ⩾ 0}, −P =

{x = [x, x], x ⩽ 0 ∧ x ⩽ 0}, Z = {x = [x, x], x ⩽ 0 ⩽ x}, and
dual Z = {x = [x, x], x ⩾ 0 ⩾ x}. Kaucher multiplication xy
extends the classical multiplication to all possible combinations

of x and y belonging to these sets. We refer to [18, 22] for more

details. Kaucher arithmetic defines a generalized interval natural

extension:

Proposition 3.2 ([16, 18]). Let f : Rm → R be a function, given
by an arithmetic expression where each variable appears syntactically
only once (and with degree 1). Then for x ∈ IKm , f (x), computed
using Kaucher arithmetic, is (f ,x)-interpretable.

In some cases, Kaucher arithmetic can thus be used to compute

an inner-approximation of range(f ,x). But the restriction to f
with single occurrences of variables, that is with no dependency,

prevents a wide use. A generalized interval mean-value extension

allows us to overcome this limitation:

Theorem 3.3 ([17, 18]). Let f : Rm → R be differentiable, x ∈

IKm . Suppose that for each i ∈ {1, . . . ,m}, we can compute ∆i ∈ IR
such that {

∂ f

∂xi
(x), x ∈ prox

}
⊆ ∆i . (3)

Then, for any x̃ ∈ prox , the following interval, evaluated with
Kaucher arithmetic, is (f ,x)-interpretable:

˜f (x) = f (x̃) +
n∑
i=1

∆i (x i − x̃i ). (4)
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When using (4) for inner-approximation, we can only get the

following subset of possible cases in the Kaucher multiplication ta-

ble: (x ∈ P) × (y ∈ dualZ) = [xy, xy], (x ∈ −P) × (y ∈ dualZ) =

[xy, xy], and (x ∈ Z) × (y ∈ dualZ) = 0. Indeed, for an im-

proper x , and x̃ ∈ prox , it holds that (x − x̃) is in dualZ. The

outer-approximation ∆i of the Jacobian is a proper interval, in

P, −P or Z. We deduce from the multiplication rules that the

inner-approximation is non empty only if ∆i does not contain 0.

Example 3.4. Let f (x) = x2 − x , we want an inner-approxi-

mation of its range over x = [2, 3]. Due to the two occurrences

of x , f (dualx), computed with Kaucher arithmetic, is not (f ,x)-

interpretable. The interval
˜f (x) = f (2.5) + f ′([2, 3])(x − 2.5) =

3.75 + [3, 5](x − 2.5) given by its mean-value extension, computed

with Kaucher arithmetic, is (f ,x)-interpretable. Forx = [3, 2], using

the multiplication rule for P × dualZ, we get

˜f (x) = 3.75 + [3, 5]([3, 2] − 2.5) = 3.75 + [3, 5][0.5,−0.5]

= 3.75 + [1.5,−1.5] = [5.25, 2.25] (5)

Thus, [2.25, 5.25] is an inner-approximation of range(f , [2, 3]).

3.2 Application to reachable sets
In this section, we express maximal, minimal and robust inner and

outer approximations for reachable sets as quantified AE expres-

sions, where universal (forall) quantifiers always precede existential

(exists) quantifiers, such as defined in Section 3.1. This will then

allow us to use Theorem 3.3 with f being each component (for a

n-dimensional system) of the trajectories of system (1), in order to

compute minimal robust and maximal inner, and maximal outer, ap-

proximations for reachable sets. An additional argument allows us

to extend this computation in Proposition 3.7 to robust and minimal

outer-approximations.

We consider here the approximation of reachable sets, at a given

t , but the approach can be generalized to the approximation of

reachable tubes or flowpipes.

Lemma 3.5. Let IAE be a set such that ∀z ∈ IAE , ∀uA ∈

UA, ∃uE ∈ UE, ∃z0 ∈ Z 0, φ
f (t ; z0,u) = z. Then IAE is a ro-

bust inner-approximation, robust to disturbances uA , in the sense of
Definition 2.1. Furthermore, such sets IAE have a supremum, equal
to Rf

AE
(t ;Z 0,U, IA, IE ).

This includes the particular cases ofminimal andmaximal innner-

approximations. When IE = ∅, then IAE = IA such that ∀z ∈

IA, ∀uA ∈ UA, ∃z0 ∈ Z 0, φ
f (t ; z0,u) = z defines a minimal

inner-approximation (an inner-approximation of the minimal reach-

able set R
f
A
). When IA = ∅, then IAE = IE such that ∀z ∈

IE , ∃uE ∈ UE, ∃z0 ∈ Z 0, φ
f (t ; z0,u) = z defines a maximal inner-

approximation (an inner-approximation of the maximal reachable

set R
f
E
).

The situation is a little more subtle for robust outer-approximations:

Lemma 3.6 is weaker than its counterpart Lemma 3.5 for robust

inner-approximations.

Lemma 3.6. Let OAE be a set such that ∀uE ∈ UE, ∀z0 ∈ Z 0,

∃uA ∈ UA, ∃z ∈ OAE, φ
f (t ; z0,u) = z. In the case when IA = ∅,

setOAE = OE is such that∀u ∈ U, ∀z0 ∈ Z 0, ∃z ∈ OE, φ
f (t ; z0,u) =

z and defines amaximal outer-approximation (an outer-approximation
of the maximal reachable set Rf

E
). Moreover, the infimum of sets OE

is equal to Rf
E
(t ;Z 0,U).

In the general case of non empty IA , we can only state that

outer-approximations of R
f
AE

(t ;Z 0,U, IA, IE ) can be expressed as

such quantified sets OAE (but not that all such OAE define robust

outer-approximations). However, the particular set OAE computed

by the generalized mean-value extension of Theorem 3.3 yields a

robust outer-approximation:

Proposition 3.7 (Computing a robust outer-approximation).

Under the hypotheses of Theorem 3.3, with x = (xA,x E ) ∈ IR
m . For

any x̃ ∈ x , if Of
AE

(x, x̃) defined by

O
f
AE

(x, x̃) = f (x̃) + ∆A (dual xA − x̃A ) + ∆E (x E − x̃E ) (6)

evaluated with Kaucher interval arithmetic, is proper, then it is an
outer-approximation of {z | ∀xA ∈ xA, ∃xE ∈ x E, z = f (x)}.

In the next section, we will obtain a robust outer-approximation

of the reachable set R
f
AE

([0, t]; Z 0,U, IA, IE ) by applying Proposi-

tion 3.7 to f being the solution φf of the uncertain system. Let us

first exemplify Proposition 3.7 on a simple function f .

Example 3.8. Let f (xA, xE ) = xAxE , we want to compute inner

and outer approximations of R
f
AE

([3, 5] × [1, 3]) = {z | ∀xA ∈

xA = [3, 5], ∃xE ∈ x E = [1, 3], z = f (x)}. It is easy to verify that

R
f
AE

([3, 5]× [1, 3]) = [5, 9], and that the range of f on [3, 5]× [1, 3]

is [3, 15]. From Proposition 3.7, taking x̃ to be the center (4, 2) of

box x = [3, 5] × [1, 3], we define

O
f
AE
= 2 × 4 + ∆A ([5, 3] − 4) + ∆E ([1, 3] − 2),

where we can substitute ∆A = [1, 3] and ∆E = [3, 5], yielding

O
f
AE
= 8 + [1, 3]([1,−1]) + [3, 5]([−1, 1]) = 8 + [1,−1] + [−5, 5]

= [4, 12] ⊇ [5, 9] = R
f
AE

([3, 5] × [1, 3]).

We can also use Theorem 3.3 for robust inner-approximation: if

I
f
AE
= 8 + [1, 3](xA − x̃A ) + [3, 5](dual x E − x̃E ) is an improper

interval, then it gives an inner-approximation of R
f
AE

(x). Here,
the robust inner-approximation is reduced to a point:

I
f
AE
= 8+[1, 3]([3, 5]−4)+[3, 5]([3, 1]−2) = 8+[−3, 3]+[3,−3] = 8.

Still with Theorem 3.3, but taking both input components as im-

proper (existentially quantified), we can also compute a maximal

inner-approximation: if I
f
E
= 8 + [1, 3]([5, 3] − 4) + [3, 5]([3, 1] − 2)

is an improper interval, then its proper counterpart is an inner-

approximation of the range of f over box x . We obtain I
f
AE
=

8 + [1,−1] + [3,−3] = [12, 4], proving that [4, 12] is an inner-

approximation of the range of f on [3, 5] × [1, 3] (the exact range

being [3, 15]).

3.3 Computing robust inner and outer
approximated reachable sets

We now use Theorem 3.3 to compute inner-approximations from

outer-approximations, following [19]. We also show, as a novelty
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compared to [19], that we can compute inner-approximations of

minimal, robust and maximal reachable sets. Additionally, we use

Proposition 3.7 to obtain robust and minimal outer-approximations

(maximal outer-approximations being obtained classically with

Taylor models, as described in Section 3.3.1). We first consider the

case where the input u(t) is constant in time, and is simply noted u.
We then discuss the case of time dependent signal in Section 3.3.4.

The main idea is to instantiate in the generalized mean-value

theorem, the function f as the solution of system (1), and parameter

x as the uncertain initial condition z0 and input u. We first need to

compute:

(1) a maximal outer-approximation
˜O
f
E
(t) of the trajectory

φf (t ; z̃0, ũ) for a given (z̃0, ũ) ∈ Z 0 ×U .

(2) a maximal outer-approximation OF
E
(t) of the sensitivity or

Jacobian matrix J (t ;Z 0,U ) with respect to uncertain initial

condition z0 and input u, over the range Z 0 ×U .

Computing these maximal outer-appproximations is classical, we

can for instance use Taylor model methods, as described in Sec-

tion 3.3.1. In Section 3.3.2, we explicit the differential system sat-

isfied by the sensitivity matrix: the method of Section 3.3.1 can

again be used to compute a maximal outer-approximation of its

dynamics.

3.3.1 Taylor models for outer enclosure of the maximal reachable
set. Consider the uncertain dynamical system (1). We define a time

grid t0 = 0 < t1 < . . . < tN . Taylor methods for guaranteed set

integration, see [33] for a review, compute on each time interval

[tj , tj+1] of the grid, a Taylor model (7) that defines a flowpipe

guaranteed to contain the maximal reachable set R
f
E
(t ;Z 0,U) for

all time t in [tj , tj+1], initializing z0 = Z 0 at time t0.
They first verify the existence and uniqueness of the solution

using the Banach fixed point theorem and the Picard-Lindelöf oper-

ator, and compute an a priori rough enclosure r j+1 of the solution
z(t) for all t in [tj , tj+1]. A tighter enclosure valid for t in [tj , tj+1]
is then computed using a Taylor-Lagrange expansion of order k of

the solution at tj , where r j+1 is used to enclose the remainder:

z(t ;z j , tj ,u) = z j +
k−1∑
i=1

(t − tj )
i f [i](z j ,u(tj ))

+ (t − tj )
k f [k ](r j+1,u([tj , tj+1])), (7)

where the (set extensions of the) Taylor coefficients

f [i] :=
z(i)

i!
are defined inductively, and can be computed by automatic differ-

entiation. In the classical case where u is a constant parameter, the

Taylor coefficients are given, starting with f [1] = f , by:

f [i+1] =
1

i + 1

∂ f [i]

∂z
. f

If we consider the more general case where u is a function of

time, sufficiently smooth on each time interval [tj , tj+1], and with

bounded time derivatives u(i), then f [i+1] can be computed by:

f [i+1] =
1

i + 1

(
∂ f [i]

∂z
.f +

i−1∑
l=0

∂ f [i]

∂u(l )
.u(l+1)

)

Hence, f [i+1] depends on function u and its time derivatives

u(l ) up to order l = i . Then, for an order k Taylor model, we need

bounds on u and its time derivatives up to order k .
Finally, we use enclosure z j+1 = [z](tj+1, tj , z j ) as initial solution

set at time tj+1 to derive the interval Taylor model on the next time

step.

This scheme yields an outer-approximation O
f
E
(t ;Z 0,U) of the

maximal reachable set. By Remark 2, this scheme also outer-approxi-

mates all robust reachable sets. If evaluated plainly in interval

arithmetic, it yields enclosures of increasing width. A classical

way to control the loss of accuracy due to the loss of correlation,

called wrapping effect, is a method introduced by Lohner, that

uses QR-factorization [33]. Alternatively, we choose here to control

wrapping using affine arithmetic [7] instead of interval arithmetic,

following [19].

3.3.2 Maximal outer-approximation of the sensitivity matrix. We

suppose that the initial condition z0 of the n-dimensional system (1)

depends on a p-dimensional vector of parameters β . The constant
but uncertain input u, is a vector of dimension m. The Jacobian

matrix of the solution z = (z1, . . . , zn ) of this system with respect

to β = (β1, . . . , βp ) and u = (u1, . . . ,um ), is a matrix J =
(
J β Ju

)
of dimension n × (p +m), such that

J
β
i j (t) =

∂zi
∂βj

(t), Juik (t) =
∂zi
∂uk

(t)

for 1 ≤ i ≤ n, 1 ≤ j ≤ p, and 1 ≤ k ≤ m. Differentiating (1), the

coefficients of the Jacobian matrix of the flow satisfy:

ÛJ
β
i j (t) =

n∑
l=1

∂ fi
∂zl

(z,u).J
β
l j (t) (8)

ÛJuik (t) =
n∑
l=1

∂ fi
∂zl

(z,u).Jul j (t) +
∂ fi
∂uk

(z,u)(t) (9)

with initial condition J (0) = (
∂z0
∂β 0n×m ). This defines J as the

solution of an initial value problem of the form (1).

We can thus use the method of Section 3.3.1 to compute outer-

approximations of its maximal reachable set.

3.3.3 Inner- and outer-approximations.

Proposition 3.9. Let ˜O
f
E
(t) a maximal outer-approximation of

the solution of the system, OF β
E

(t) a maximal outer-approximation
of the components of J corresponding to the partial derivatives with
respect to the parameters β involved in the initial condition z0, where

F β is the second member of (8), O
Fu
A

E
(t) and O

Fu
E

E
(t) maximal outer-

approximations of the components of J corresponding to the partial
derivatives with respect to inputs uA and uE respectively, where Fu

is the second member of (9). Then for each component zi of vector z:

(i) if I
f
AE

(t ;Z 0,U , IA, IE ) = ˜O
f
E
(t) + OF β

E
(t)(dual β − ˜β)+

O
Fu
A

E
(t)(uA − ũA ) + O

Fu
E

E
(t)(dualuE − ũE ) (10)

is an improper interval, then its proper counterpart is an inner-
approximation of the set Rf

AE
(t ;Z 0,U, IA, IE ). Otherwise the result
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cannot be interpreted as an inner-approximation.

(ii) if O
f
AE

(t ;Z 0,U , IA, IE ) = ˜O
f
E
(t) + OF β

E
(t)(β − ˜β)+

O
Fu
A

E
(t)(dualuA − ũA ) + O

Fu
E

E
(t)(uE − ũE ) (11)

is a proper interval, then it is an outer-approximation of the set
R
f
AE

(t ;Z 0,U, IA, IE ).

A unique outer-approximation of a center solution and the Jaco-

bian matrix can be used to infer different interpretations as inner-

approximations or robust inner-approximations:

Lemma 3.10. The approximations defined by (10) and (11) are such
that if I1

E
⊆ I2

E
, then

I
f
AE

(t ;Z 0,U, I
1

A, I
1

E
) ⊆ I

f
AE

(t ;Z 0,U, I
2

A, I
2

E
)

O
f
AE

(t ;Z 0,U, I
1

A, I
1

E
) ⊆ O

f
AE

(t ;Z 0,U, I
2

A, I
2

E
)

In particular, the minimal approximations will always be included
in the robust approximations, which will always be included in the
maximal approximations.

Remark 4. We have no guarantee of inclusion between minimal
outer-approximations and robust inner-approximations, or between
robust outer-approximations and maximal inner-approximations.

Remark 5. The computation of the inner-approximations and
robust outer-approximations fully relies on the outer-approximations.
Thus we can soundly implement most of our approach using classical
interval-basedmethods: outward rounding should be used for the outer
approximations of flows and Jacobians. Only the final computation
by Kaucher arithmetic of improper intervals should be done with
inward rounding. This also means that the potential conservatism in
the interval-based computation of the inner-approximations does not
propagate as time progresses. On contrary, if the distance between
inner and outer-approximations becomes large, indicating a loss of
precision, then the approximation could be dynamically refined, using
higher order Taylor models or smaller time step.

3.3.4 The case of time dependent input. In this section, inputu is

now time dependent, a case that, as far as we know, was not handled

in previous work on inner-approximation. For simplicity’s sake,

we consider here only inner-approximations of maximal reachable

sets, but this naturally extends to robust reachable sets.

For inner-approximations, we can restrict U to the space ofm
piecewise polynomials of degree l on each interval [tj , tj+1], as con-
sidering less controls means inner-approximating the reachability

sets. The set of polynomials of degree l defined over [tj , tj+1] is

denoted by Pl
j and is parameterized by l + 1 coefficients noted

uij , i = 0, . . . , l . Such a (l + 1)-uple of coefficients describes the

following polynomial in Pl
j :

p(u ij )
(t) =

l∑
q=0

u
q
j
(t − tj )

q

q!
(12)

for t ∈ [tj , tj+1]. The i-th time derivative of p(u ij )
at time tj is equal

to uij . Each of them components of the control in this space can

thus be identified with a sequence (uij ), i = 0, . . . , l , j = 0, . . . , r .

We now extend ODE (1) by adding variable zn+1, identified with
time, solution of Ûzn+1 = 1, zn+1(0) = 0. Replacing each control

component by expressions (12), and t with zn+1, we obtain a new

ODE system. For simplicity’s sake, we now renumber parameters

(uij ), as (uj ), j = 1, . . . ,m × (l + 1) × (r + 1).

We suppose as in Section 3.3 that the initial condition z0 of the
n-dimensional system (1) depends on a p-dimensional vector of

uncertain parameters β , independent of u. The Jacobian matrix of

the solution z = (z1, . . . , zn+1) of this system with respect to β =

(β1, . . . , βp ) and u = (uj ), is identified with a matrix J =
(
J β Ju

)
of dimension n × (p +m × (r + 1) × l), such that

J
β
i j (t) =

∂zi
∂βj

(t), Juik (t) =
∂zi
∂uk

(t)

for 1 ≤ i ≤ n, 1 ≤ j ≤ p, and 1 ≤ k ≤ m. Differentiating (1) as in

Section 3.3, the coefficients of J also satisfy Equations (8) and (9)

with the same initial condition.

Generally, the set of controlsU is defined by bounds on its values

and its derivatives up to some degree l . This translates as constraints
on the parameters (uj ). We can then derive an inner-approximation

of the maximal reachable sets for time-dependent controls.

3.4 Experiments
The approach is implemented in a prototype, available from https://

github.com/cosynus-lix/RINO. In this section, we use this prototype

to illustrate these different reachable set approximations.

3.4.1 Illustrating example: the car controller. Let us illustrate on
Example 2.2 these different inner and outer-approximating schemes.

On each sub-plot of Figure 1, we represent the maximal outer-

and inner-approximations, robust outer- and inner-approximations,

and minimal outer- and inner-approximations until time T = 5,

for different hypotheses on Kp and Kd , although always taken in

[1.95, 2.05] × [2.95, 3.05]. Outer-approximations are delimited by

plain lines, while inner-approximations are represented as filled

region. As noted in Section 3.3, a unique computation of the Taylor

models (here obtained in 1 second, with order 3 Taylor models

and a time step of 0.02) yields the different AE interpretations of

Equations (10) and (11). In Figure 1(a) and (b), Kp and Kd are un-

certainly known but constant in time. In Figure 1(a), the robust

approximation (in red) is robust with respect to the uncertainty

in Kp : it contains only states that are guaranteed to be reached,

whatever the values of Kp in [1.95, 2.05], for some initialization

of x and v in [−0.1, 0.1] × [0, 0.1], and some Kd in [2.95, 3.05]. In

Figure 1(b), the robust approximations are robust with respect to

the uncertainty in Kp . We note that the robust approximations in

Figure 1(b) are wider than that in Figure 1(a), which can be inter-

preted as the system being less sensitive to uncertainty in Kp than

uncertainty in Kd . Minimal and maximal (outer and inner) approxi-

mations are naturally identical in Figure 1(a) and (b). The minimal

approximations are robust to both Kp and Kd in both cases, while

the maximal approximations are robust to neither Kp and Kd . As
expected, the minimal approximations are included in the robust

approximations, which in turn are included in the maximal approx-

imations. In Figure 1(c), Kp and Kd are now time-dependent, while

still being bounded in [1.95, 2.05] × [2.95, 3.05]. Their first-order

time derivatives are bounded in [−2, 2] and higher order derivatives

https://github.com/cosynus-lix/RINO
https://github.com/cosynus-lix/RINO
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(a) constant Kd , Kp , robustness to Kp (b) constant Kd , Kp , robustness to Kd (c) time-dependent Kd , Kp , robustness to Kd

Figure 1: Velocity v(t) and position x(t) of the car in Example 2.2

equal to 0. We consider, as in Figure 1(b), robustness to disturbance

in Kd . As more input signals u are possible than in the constant

case, the outer-approximation is larger than in Figure 1(b). For

inner-approximations, we restrict Kp to be piecewise constant, that

is constant on each time step. The robust inner-approximation is

robust to piecewise linear signals Kd , with magnitude and slopes as

described above. Theywill become a good approximation of the con-

tinuous input signals only when the time step tends towards zero,

otherwise we can get a poor quality of inner-approximation. On

this simple experiment, it is clear that the innner-approximations

and outer-approximations are not so close from one another than

in the case of constant parameters, indicating a loss of imprecision.

We intend to further investigate the handling of variable input sig-

nal in the future. We observe here an illustration of Remark 4: for

example, the robust outer-approximations is not included in the

maximal inner-approximations.

3.4.2 Benchmark example: a quadrotor controller. We now ex-

emplify the scalability of our approach by computing the maximal

inner and outer reachable sets on the dynamics of the full non linear

model of a quadrotor (the Crazyflie 2.0), with its attitude controller

[12, 28]. We are interested here in a takeoff maneuver, and thus

study the dynamic on the vertical axis and the pitch rate, roll rate

and yaw rate control, with the following state variables:

• the vertical position in the world frame z,
• the linear velocity of the center of gravity (CoG) in the body-
fixed frame with respect to the inertial frame [u v w]T ,

• the angular orientation is represented by the Euler angles:
[ϕ θ ψ ] where ϕ is the roll angle, θ is the pitch angle and

ψ is the yaw angle,

• the angular velocity with respect to the body frame: [p q r ]T

with p the roll rate, q the pitch rate and r the yaw rate.
Given setpoints zsp , psp , qsp and rsp , the quadrotor is controlled

using a set of PI controllers given by Equation (13).

thrust = 1000 ∗ (25(2(zsp − z) −w)

+15
∫
(2(zsp − z) −w)dt) + 36000

cmdϕ = 250(psp − p) + 500
∫
(psp − p)dt

cmdθ = 250(qsp − q) + 500
∫
(qsp − q)dt

cmdψ = 120(rsp − r ) + 16.7
∫
(rsp − r )dt

(13)

These values are used to deduce the PWM values to apply to

each motors. A linear relation links the PWM to rotation rates.

Finally, we deduce the input force F and momentsMx ,My ,Mz :

Mx = 4CTC1d(C1thrust +C2)cmdϕ − (4C2

1
CTd)cmdθ cmdψ

My = (−4C2

1
CTd)cmdϕcmdψ + 4CTC1d(C1thrust +C2)cmdθ

Mz = (−2C2

1
Cd)cmdϕcmdθ + 8CDC1(C1thrust +C2)cmdψ

F = CTC
2

1
cmd2θ +CTC

2

1
cmd2ϕ + 4CTC

2

1
cmd2ψ

+(4CTC
2

1
)thrust2 + (8CTC1C2)thrust + 4CTC

2

2

Finally, the system has been augmented with new states x11, x12,
x13 and x14 representing the integral terms in (13). We obtain the

final 14-dimensional non-linear dynamical system below:

Ûz = −sin(θ )u + cos(θ )sin(ϕ)v + cos(θ )cos(ϕ)w
Ûu = rv − qw + sin(θ )д
Ûv = −ru + pw − cos(θ )sin(ϕ)д

Ûw = qu − pv − cos(θ )cos(ϕ)д + F
m

Ûϕ = p + cos(ϕ)tan(θ )r + tan(θ )sin(ϕ)q
Ûθ = cos(ϕ)q − sin(ϕ)r
Ûψ =

cos(ϕ)
cos(θ ) r +

sin(ϕ)
cos(θ )q

Ûp =
Iy−Iz
Ix qr + 1

Ix Mx

Ûq =
Iz−Ix
Iy pr + 1

Iy My

Ûr =
Ix−Iy
Iz pq + 1

Iz Mz
Ûx11 = 2(zsp − z) −w
Ûx12 = psp − p
Ûx13 = qsp − q
Ûx14 = rsp − r

The physical and constant parameters for the crazyflie are obtained

by merging data from [12, 28], and summed up in Table (1).

Ix 1.657171e − 5

Iy 1.6655602e − 5

Iz 2.9261652e − 5

m 0.028

д 9.81

CT 1.285e − 8

CD 7.645e − 11

C1 0.04076521

C2 380.8359

d 0.046√
2

Table 1: Parameters for the model
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Specifications of the experiments. We are defining a setpoint as

above, so that the quadrotor should move from altitude 0 to 1 meter

and so that its roll rate would go from 0 to 1 degree per second,

within 5 seconds. In our equations, this corresponds to : psp = 1.0,

qsp = 0, rsp = 0, zsp = 1.0.

The initial altitude and rotation speeds of the quadrotor are con-

sidered uncertain and are as follows : z = [−0.2, 0.2],p = [−0.5, 0.5],

q = [−0.5, 0.5] and all other values are initialized to 0.

Using our prototype with a variable step size between 0.001

and 0.036 and Taylor models of order 5, the computation time to

complete the outer-approximation of the reachable set over a time

interval of 5 seconds was 6.3 seconds on a standard laptop PC with

an i5-7300HQ 2.5GHz processor and 8 Gb RAM, running under

Linux Ubuntu 16.04. This compares favorably with other methods

for such high-dimensional non-linear models [8], especially with

respect to the Eulerian methods of [3] which need a linearization

of the dynamics, and clever decomposition methods to deal with

6-dimensional sub-models. The computation time for both inner

and outer-approximations is 996 seconds.

The inner and outer approximations obtained for a selection

among the components are represented Figure 2.

4 REACHABILITY AND VERIFICATION
4.1 Safety analysis
Following [31], we specify a safety problem by a tuple (φf ,Z 0, L),

where φf is the dynamics, Z 0 is the set of initial states, and L is the

set of unsafe states.

We will say that φf is safe over time horizon [0, t] for all possible

inputs if for all z0 ∈ Z 0, for all u ∈ U, trajectories φf ([0, t]; z0,u)

do not intersect L. Similarly, we are interested in φf being safe

over time horizon [0, t] for some input u ∈ U, or for some inputs

uE ∈ UE depending on other arbitrary inputs uA ∈ UA .

Forward inner and outer-approximations provide semi-decision

procedures for safety over a finite time horizon:

Proposition 4.1. Any inner-approximation Is (resp. outer-appro-
ximation Os ) for s ∈ [0, t] or any flowpipe inner-approximation I

(resp. outer-approximation O) of the robust (resp. maximal) reachable
set allows to prove the following:

• If Os ∩L = ∅ for all s ∈ [0, t] (resp. O ∩L = ∅) then φf is safe
over horizon [0, t] for all possible inputs u ∈ U

• If Is ∩ L , ∅ for some s ∈ [0, t] (resp. I ∩ L , ∅) then φf is
unsafe over horizon [0, t], for some possible inputs uE ∈ UE

(possibly depending on disturbances uA ∈ UA )

The proof relies on Proposition 3 of [31].

Example 4.2. The example of Section 3.4.1 gives an application

to Proposition 4.1 : take L to be x ≥ 1. The maximal outer flowpipe

does not intersect L, which proves safety whatever the parameters

values. Now, take L to be x ≥ 0.95 and t ≤ 4, it intersects the

inner-approximation of the maximal reachable set, proving it is

unsafe, i.e. there exist some parameters values such that the car gets

as close as 0.05 to its objective in less than 4 seconds. This is true

also robustly, with respect to Kd (Figure 1 (a)): whatever Kd , there
exist an initial condition and a value of Kp such that the unsafe

region is reached. But this is not true robustly with respect to Kp

(Figure 1 (b)): the robust inner-approximation does not intersect

x ≥ 0.95: we cannot prove that whatever Kp , there exist an initial

condition and a value of Kd such that the unsafe region is reached.

Finally, the minimal outer flowpipe does not intersect x ≥ 0.95,

which proves that there exist values of Kd and Kp for which the

system is safe, whatever the initial condition.

Example 4.3. Consider the quadrotor example of Section 3.4.2.

We can for example prove using Proposition 4.1 and the outer-

approximation represented on Figure 2(a) that the roll rate p will

not go above 1.4 degree per second over the first 5 seconds of

operation, whatever initial roll rate, altitude, and state.

4.2 Forward reach-avoid and sweep-avoid
A useful generalization of safety properties is the so-called reach-

avoid properties. In general, they are defined as backward prop-

erties, see e.g. [11]: given a target set K and a set L to be avoided,

we are looking for the set of initial states such that there exists a

control going from these initial states to K , while avoiding L.
Still, a forward analogue, the forward robust reach-avoid set, is

useful for checking that from a given set of initial states, for a given

set of controls, even in the presence of disturbances, trajectories

given by φf reach a target set while avoiding another one:

FRA
f
AE

(K, L, [0, t];Z 0,U, IA, IE ) = {z ∈ K | ∀uA ∈ UA,

∃uE ∈ UE, ∃z0 ∈ Z 0(∃s ∈ [0, t], z = φf (s; z0,u)

∧ (∀s ′ ∈ [0, t], ∄z′ ∈ L, z′ = φf (s ′; z0,u()))} (14)

Note that the definition given here is slightly stronger than that

in [11], as we require here that the unsafe states are avoided until

time t instead of until the time s where the target is reached. This
formulation simplifies in particular the verification conditions, but

could be adapted to match the original definition. Note also that

some previous work [29, 35] has also been considering robust reach

avoid properties, but generally the quantifiers on controls uA and

uE are reversed with respect to our definition. This can be desirable

for example when disturbances are not observable.

In the case we can reach K while avoiding L, FRA
f
AE

(K, L,

[0, t];Z 0,U, IA, IE ) is the subset of K that is effectively reached

in K while avoiding L. In case it is non empty, we have proved the

existence of solutions to the reach-avoid problem for (K, L). In case

it is equal toK , we say that we have solved the sweep-avoid problem
for (K, L). We mean that we can cover all of K while avoiding L.
This is naturally useful in path-planning problems.

Classically, the existence of solutions to the reach-avoid prob-

lem is proved if we can find an outer-approximation O at some

time instant fully included in the target set, and if the intersection

of the outer-approximation tube with the unsafe set L is empty.

However, this is a strong condition, which we can weaken using

the computation of an inner-approximating tube: indeed, if we can

find a (robust) inner-approximation I with non empty intersec-

tion with the target set K , then the existence of solutions to the

(robust) reach-avoid problem is proved. If moreover, K ⊆ I, then

we proved that the whole target set K is covered, we solved the

(robust) sweep-avoid problem.
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(a) Roll rate p (b) Roll ϕ (c) Pitch θ

Figure 2: Inner and outer approximations for the quadrotor model.

Example 4.4. A cannon shoots bullets, that should be able to

reach targets T1 and T2, and should avoid a vertical wall, described

by the avoid set L, before which the canon is hiding. The ballistics

of the bullets is given by the trajectory (x,y), the velocity v and

the angle γ of the velocity with respect to the x axis. We use a

simple approximation of an Euler model without wind [21], in

which there is a drag effect due to the air, and we use a small angles

approximation:

Ûv = −дγ −
ρv2

2m aCd

Ûγ = −
д(1−γ 2/2)

v

Ûx = v(1 − γ 2/2)
Ûy = vγ

The gravity д is taken to be 9.81m/s2, ρ = 1204.4 is the air density,

a = 0.000126677 is the cross section of the bullet, Cd = 0.45 is the

drag coefficient. The mass m of the bullet is uncertain bounded

in [11,15], and considered as a disturbance. Initial velocity v(0) is
taken to be in [181,185], and initial angle γ (0) is in [2.5,3.5]. The

initial coordinates are x(0) ∈ [0, 0.01] and y(0) ∈ [0, 0.01].

We plot in Figure 3, the computed reachable sets, for y(t), the
unsafe region L and target regions T1 and T2 described hereafter.

Figure 3: Height y(t) in Example4.4

The unsafe region L is a wall, defined by y(t) ≤ 2, ∀t ∈ [0.4, 0.6].

Safety is proved here, as the intersection between L and the outer-

approximated flowpipe is empty.

The target regionT1 is defined by 3 ≤ y(t) ≤ 4, ∀t ∈ [0.75, 1].We

want to prove that every state of this region is reachable for some

admissible initial condition of the system, or said differently that

the whole region is covered or swept, and this whatever the mass

of the bullet. This property is proved here by the fact that region

T1 is fully included in the robust inner-approximated flowpipe.

The target region T2 is a moving target, defined by some lower

and upper surfaces l(t) and u(t), by l(t) ≤ y(t) ≤ u(t). We want

to prove that some point of this target is reachable, whatever the

mass of the bullet. This property is proved by the fact that the

intersection between regionT2 and the robust inner-approximation

is non-empty. Also, we can localize time instants at which the region

is sure to be reached: the intersection of the robust flowpipe with

the moving target is non-empty only for 0.3 ≤ t ≤ 1.2 (the outer-

approximation would also give an over-approximation 0.3 ≤ t ≤
1.35 of time instants at which the region can possibly be reached).

Note that our abstraction being parameterized by the time of

the system, we could consider some temporal properties, such as

bounds on the minimal or maximal time between crossing over an

obstacle L and reaching a target T1.

Example 4.5. Let us now come back to the quadrotor example.

Using the combination of inner and outer-approximations in Fig-

ure 2, we can prove that there exist some input states such that the

quadrotor will reach a roll angle of 5 degrees in less than 5 seconds,

while not getting above 0.15 degrees of pitch angle, showing the

good behavior of the attitude controller.

4.3 Backward reachable sets
Backward reachability is known [31] to allow for proving a larger

set of properties. Backward minimal and maximal reachable sets

[24] can be generalized to robust reachable sets, as in the forward

case. We will define here only the backward reachable tubes (also
called victory domain , [4] or capture basin [2]):

B
f
AE

(K, [0, t];Z 0,U, IA, IE ) = {z0 ∈ Z 0 | ∀uA ∈ UA,

∃uE ∈ UE, ∃s ∈ [0, t], ∃z ∈ K, z = φf (s; z0,u)}

We note that

B
f
AE

(K, [0, t];Z 0,U, IA, IE ) = R
−f
AE

([0, t];K,U, IA, IE )∩Z 0 (15)
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Therefore, we can also inner and outer-approximate the backward

reachable sets. This allows for supplementing the semi-decision

procedures for e.g. safety analyses sketched in Section 4.1:

Proposition 4.6. Let L be a set of unsafe states, IAE an inner-
approximation of the robust reachable set R−f

AE
([0, t];L,U, IA, IE ),

and OE a maximal outer-approximation, we have:

• If OE ∩ Z 0 = ∅ then ∀u ∈ U, φf is safe over time [0, t]
• If IAE ∩ Z 0 , ∅ then ∃uE ∈ UE which makes φf unsafe

4.4 Backward reach-avoid properties
Some authors [29] study stronger backward robust properties than

considered up to now in this work, such as the following backward

reach-avoid set:

BRA
f
EA

(K, L, [0, t];Z 0,U, IA, IE )

= {z0 ∈ Z 0 | ∃uE ∈ UE ,∀uA ∈ UA, (∃s ∈ [0, t], ∃z ∈ K,

z = φf (t ; z0,u) ∧ ∀s ′ ∈ [0, t], ∄z ∈ L, z = φf (t ; z0,u)}

This definition uses a different alternation of quantifiers (exists, for

all) from the one (for all, exists) our framework of Section 3 can deal

with - note the notation BRA
f
EA

reflecting this point. In BRA
f
EA,

controls do not depend on perturbations, which make it a stronger

property. We can still compute approximations of this set by noting

that it can be decomposed as⋃
uE ∈UE

(
B
f
AE

(K, [0, t];Z 0,U, IA, ∅) ∩ B
f
AE

(L, [0, t];Z 0,U, ∅, IA )c
)

where (.)c denotes the set complement.

We can thus find inner-approximations (respectively outer-ap-

proximations) ofBRA
f
EA by inner-approximating (respectively outer-

approximating) B
f
AE (K, [0, t];Z 0,U, IA, ∅) and outer-approxima-

ting (respectively inner-approximating) B
f
AE ( L, [0, t];Z 0,U, ∅, IA ).

As we need to take a union on alluE , this method is only convenient

when instantiating uE on a finite set.

5 CONCLUSION AND FUTUREWORK
We discussed the use of inner and outer approximated reachable

sets for property verification, and demonstrated it on simple ex-

amples. The Taylor-based flowpipes that we compute for the ma-

trix of sensitivity of trajectories with respect to initial conditions

and parameters or inputs, can also be used for backward analy-

sis yielding inputs and parameter synthesis, using a parametric

Hansen-Sengupta operator [15]. The inner-approximation we pro-

pose here relying purely on outer-approximation, we believe it

can also be extended quite naturally to the case of hybrid system.

Finally, this work is intended to be a component of future work to-

wards abstract model-checking algorithms for STL-like properties,

and actual control synthesis in the line of e.g. TuLiP [10, 36].
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A PROOFS
Proof of Theorem 3.3. The proof can be found in [17]. □

Proof of Lemma 3.5. Let a setIAE such that∀z ∈ IAE , ∀uA ∈

UA, ∃uE ∈ UE, ∃z0 ∈ Z 0, φ
f (t ; z0,u) = z. Then any such z ∈

IAE obviously belongs to R
f
AE

(t ;Z 0,U, IA, IE ). In other words,

whatever the disturbances uA , any point of IAE is proved to be

the solution at time t of system (1), for some value of z0 ∈ Z 0

and some control uE . Thus IAE is an inner-approximation of

R
f
AE

(t ;Z 0,U, IA, IE ).

Now, we prove that the set of robust inner-approximations of

R
f
AE

(t ;Z 0,U, IA, IE ) admits a supremum. For every set of inner-

approximations (Ii ) of R
f
AE

(t ;Z 0,U, IA, IE ), their union I = ∪
i
Ii

is an inner-approximation of R
f
AE

(t ;Z 0,U, IA, IE ) : for all z ∈ I,

there is an index i with z ∈ Ii . As Ii is an inner-approximation

of R
f
AE

(t ;Z 0,U, IA, IE ), we thus know that ∀uA ∈ UA, ∃uE ∈

UE, ∃z0 ∈ Z 0, φ
f (t ; z0,u) = z. Overall, the supremum I is thus an

inner-approximation of R
f
AE

(t ;Z 0,U, IA, IE ).

We then show that I is equal to R
f
AE

(t ;Z 0,U, IA, IE ). Take

z ∈ R
f
AE

(t ;Z 0,U, IA, IE ) and consider the supremum I of all sets

inner-approximating R
f
AE

(t ;Z 0,U, IA, IE ). We prove that I ∪ {z}

is an inner-approximation of R
f
AE

(t ;Z 0,U, IA, IE ) as well: for all

z̃ ∈ I ∪ {z}, either z̃ = z and as z ∈ R
f
AE

(t ;Z 0,U, IA, IE ), we have

that ∀uA ∈ UA, ∃uE ∈ UE , ∃z0 ∈ Z 0, z = φ
f (t ; z0,u), or z̃ ∈ I

and we have the same property. Overall this means that I ∪ {z}

is an inner-approximation of R
f
AE

(t ;Z 0,U, IA, IE ). But as I is the

supremum of all such sets and I ⊆ I ∪ {z}, I ∪ {z} = I and

z ∈ I. □

Proof of Lemma 3.6. Let z ∈ R
f
AE

(t ;Z 0,U, IA, IE ), we first

prove that z is in a setOAE defined by the hypotheses of Lemma 3.6.

As z ∈ R
f
AE

(t ;Z 0,U, IA, IE ), then by definition, ∀uA ∈ UA ,

∃z0 ∈ Z0, ∃uE ∈ UE such that z = φf (t ; z0,u). Then, for these
z0 ∈ Z0 and uE ∈ UE , we know there exists uA ∈ UA , such

that z = φf (t ; z0,u). Thus z is in a set OAE defined by the hy-

potheses of Lemma 3.6, but z is not in all such sets (depending

on the choice of uA ), so that OAE does not in general define an

outer-approximation of R
f
AE

(t ;Z 0,U, IA, IE ).

In the case when IA = ∅, then z ∈ R
f
E
(t ;Z 0,U) is such that

∃z0 ∈ Z0, ∃u ∈ U such that z = φf (t ; z0,u). Then, for these z0 ∈ Z0
and u ∈ U, we have z = φf (t ; z0,u), thus z ∈ OE .

Let us now note that the intersection of outer-approximations

of R
f
E
(t ;Z 0,U) is an outer-approximation of R

f
E
(t ;Z 0,U). Consider

O = ∩
i
Oi where all Oi are outer-approximations of R

f
E
(t ;Z 0,U).

For all i , Oi being an outer-approximation means that for all u ∈

U,∀z0 ∈ Z 0, ∃zi ∈ Oi , φ
f (t ; z0,u) = zi . Therefore, for such u

and z0, zi = φf (t ; z0,u) = zj , for all i and j. Therefore all zi are
equal and in all the Oi , i.e. are in O. Thus O is the infimum of

all outer-approximations (for a given Z 0, and U) and is an outer-

approximation of R
f
E
(t ;Z 0,U).

Suppose O is not equal to R
f
E
(t ;Z 0,U), therefore, O contains

R
f
E
(t ;Z 0,U) strictly. Let z ∈ O which is not in R

f
E
(t ;Z 0, U). We

prove that O\{z} is an outer-approximation. For all u ∈ U, for all

z0 ∈ Z0, we wish to find z̃ ∈ O\{z} such that z̃ = φf (t ; z0,u) ;

for now we have a z̃ ∈ O with z̃ = φf (t ; z0,u), we have to prove

that z̃ cannot be equal to z. As z < R
f
E
(t ;Z 0,U), for all u ∈ U,

for all z0 ∈ Z0, z , φf (t ; z0,u). Because of this we are sure that
z̃ , z. Therefore O\{z} is an outer-approximation, and as O is the

infimum of such sets, z < O. Therefore O is equal to R
f
E
(t ;Z 0,U).

□

Proof of Proposition 3.7. Let
˜fAE (a, e) = c + ∆Aa + ∆Ee be

an affine interval-valued function from Rn to IR (c ∈ IRn , ∆A ∈

IRp , a ∈ Rp , ∆E ∈ IRq , e ∈ Rq , , p + q = n) and let fAE be any

affine real-valued function in
˜fAE , i.e.

fAE (a, e) = c + δAa + δEe

for some c ∈ c , δA ∈ ∆A and δE ∈ ∆E . Write c = [c−, c+],
and components (∆A )i = [(δ−

A
)i , (δ

+
A
)i ] (i = 1, . . . ,p), (∆E )j =

[(δ−
E
)j , (δ

+
E
)j ] (j = 1, . . . ,q), and components of a : ai for i =

1, . . . ,p, and of e : ej for j = 1, . . . ,q.
Components (∆A )i and (∆E )j can be of three types : either

entirely positive, containing 0, or entirely negative. We divide the

indices of components ∆A as I the set of indices such that for all i
in I , (δ−

A
)i > 0, J the set of indices such that for all j in J , 0 ∈ (∆A )j ,

and the set of indices K such that for all k in K , (δ+
A
)k < 0.

Consider now z such that ∀a ∈ [−1, 1]p , ∃e ∈ [−1, 1]q , z =
fAE (a, e). Choose a to have as components, ai = 1 (for i ∈ I ),
aj = 0 (for j ∈ J ) and ak = −1 (for k ∈ K). Then necessarily

z ≥ c− +
∑
i ∈I

(δ−
A
)i −

∑
k ∈K

(δ+
A
)k −

∑
l
inf((δ−

E
)l , (δ

+
E
)l ). Similarly,

choose a to have as components, ai = −1 (for i ∈ I ), aj = 0 (for

j ∈ J ) and ak = 1 (for k ∈ K ). Then necessarily, z ≤ c+−
∑
i ∈I

(δ−
A
)i +∑

k ∈K
(δ+

A
)k +

∑
l
sup((δ−

E
)l , (δ

+
E
)l ). We recognize the Kaucher arith-

metic interpretation of
˜fAE ([1,−1]

p , [−1, 1]q ) (see e.g. [18, 22]).

Now, consider a general function f : Rm → R, differentiable
and x ∈ Rm , which we can decompose in xA ∈ Rp and x E ∈ Rq

with p + q = m. Let, for each i ∈ {1, . . . ,m}, ∆i ∈ IR such that{
∂f
∂xi

(x), x ∈ x
}
⊆ ∆i . And construct for any x̃ ∈ x ,

˜fAE (a, e) = f (x̃) + ∆Aa + ∆Ee

By the mean-value theorem, for all xA and xE there exists some

fAE in
˜fAE such that fAE (xA−x̃A, xE−x̃E ) is equal to f (xA, xE )

(i.e. equal to z). Up to translation and rescaling, we can suppose

that xA − x̃A ∈ [−1, 1] and xE − x̃E ∈ [−1, 1]. Consider the set

R = {z | ∀xA ∈ xA, ∃xE ∈ x E , z = f (x)}. For z an element of R,
and for all xA and a choice of xE witnessing the fact that z belongs
to R, we have a function fAE as shown above, such that fAE (xA −

x̃A, xE − x̃E ) is equal to f (xA, xE ). By what we proved above,

z ∈ ˜fAE ([1,−1]
p , [−1, 1]q ), i.e. z ∈ O

f
AE

(x, x̃). Hence O
f
AE

(x, x̃)
is an outer-approximation of R. □
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Proof of Proposition 3.9. Let
˜O
f
E
(t) a maximal outer-approxi-

mation of the solution of the system, OF β
E

(t) a maximal outer-

approximation of the components of J corresponding to the partial

derivatives with respect to the parameters β involved in the initial

condition z0, where F
β
is the second member of (8), O

Fu
A

E
(t) and

O
Fu
E

E
(t) maximal outer-approximations of the components of J cor-

responding to the partial derivatives with respect to inputs uA and

uE respectively, where Fu is the second member of (9). Suppose

now that for each component zi of vector z:

I
f
AE

(t ;Z 0,U , IA, IE ) = ˜O
f
E
(t) + OF β

E
(t)(dual β − ˜β)+

O
Fu
A

E
(t)(uA − ũA ) + O

Fu
E

E
(t)(dualuE − ũE )

is an improper interval. Then by Theorem 3.3, as OF β
E

(t), OF β
E

(t)

and O
Fu
E

E
(t) are outer-approximations of the Jacobian of the solu-

tions of our differential system, with respect to z0, uA and uE , and

as
˜O
f
E
(t) is an outer-approximation of a “central” solution of our

system, I
f
AE

(t ;Z 0,U , IA, IE ) yields an inner-approximation of the

set R
f
AE

(t ;Z 0,U, IA, IE ).
Now, suppose

O
f
AE

(t ;Z 0,U , IA, IE ) = ˜O
f
E
(t) + OF β

E
(t)(β − ˜β)+

O
Fu
A

E
(t)(dualuA − ũA ) + O

Fu
E

E
(t)(uE − ũE )

is a proper interval. Then by Proposition 3.7, as OF β
E

(t), OF β
E

(t)

and O
Fu
E

E
(t) are outer-approximations of the Jacobian of the so-

lutions of our differential system, with respect to z0, uA and uE ,

and as
˜O
f
E
(t) is an outer-approximation of a “central” solution

of our system again, O
f
AE

is an outer-approximation of the set

R
f
AE

(t ;Z 0,U, IA, IE ). □

Proof of Proposition 4.1. The proof relies on Proposition 3 of

[31], which states that the following properties are equivalent:

• φf is safe over horizon [0, t] for all inputs u ∈ U

• R
f
E
(s;Z 0,U) ∩ L = ∅ for all s ∈ [0, t]

• R
f
E
([0, t];Z 0,U) ∩ L = ∅

Suppose that Os is an outer-approximation of R
f
E
(s ;Z 0,U) for all

s ∈ [0, t]. By Lemma 3.6, we have, for all s ∈ [0, t], R
f
E
(s;Z 0,U) ⊆

Os . Therefore if Os ∩L = ∅, for all s ∈ [0, t], we have R
f
E
(s ;Z 0,U)∩

L ⊆ Os ∩ L = ∅ for all s ∈ [0, t] hence φf is safe over horizon

[0, t] for all inputs by the above equivalent properties. For inner-

approximations, they are a direct translation of the definition. □

Proof of Proposition 4.6. The proof of the first statement is

akin to the proof of Proposition 4 of [31]. Suppose O∩Z 0 = ∅, then

for all z0 ∈ Z 0, z0 is in the complement of O, and by Lemma 3.6

z0 is also in the complement of the maximal reachable set for −f ,
which is the maximal backward reachable set for f by Equation (15).

Negating its definition, we get ∀u ∈ U, ∀s ∈ [0, t], φf (s; z0,u) < L.
Conversely, suppose that O ∩ Z 0 , ∅. Take z0 ∈ Z 0, then for a

control u and this initial state z0, there exists s ∈ [0, t] and z ∈ L

such that φf (s ; z0,u) = z, contradicting the fact that φf is safe. For

the second statement, IAE ∩ Z 0 , ∅ exactly means that there is

some initial state z0 such that for all disturbances uA ∈ UA , there

exists uE ∈ UE (thus possibly depending on z0 and uA ) which

makes φf unsafe over time horizon [0, t]. □
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