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Abstract. We define and study a new abstract domain which is a fine-grained
combination of zonotopes with (sub-)polyhedric domains such as the interval, oc-
tagon, linear template or polyhedron domains. While abstract transfer functions
are still rather inexpensive and accurate even for interpreting non-linear compu-
tations, we are able to also interpret tests (i.e. intersections) efficiently. This fixes
a known drawback of zonotopic methods, as used for reachability analysis for
hybrid systems as well as for invariant generation in abstract interpretation: in-
tersection of zonotopes are not always zonotopes, and there is not even a best
zonotopic over-approximation of the intersection. We describe some examples
and an implementation of our method in the APRON library, and discuss some
further interesting combinations of zonotopes with non-linear or non-convex do-
mains such as quadratic templates and maxplus polyhedra.

1 Introduction

Zonotopic abstractions are known to give fast and accurate over-approximations in in-
variant synthesis for static analysis of programs, as introduced by the authors [10, 11, 7],
as well as in reachability analysis of hybrid systems [8]. The main reason for this is that
the interpretation of linear assignments is exact and done in linear time in terms of the
“complexity” of the zonotopes, and non-linear expressions are dynamically linearized
in a rather inexpensive way, unlike for most of other sub-polyhedric domains (zones
[19], linear templates [21], even polyhedra [6]). But unions, at the exception of recent
work [14], and more particularly intersections [9] are not canonical operations, and are
generally computed using approximate and costly methods, contrarily to the other do-
mains we mentioned. We present in this article a way to combine the best of the two
worlds: by constructing a form of logical product [15] of zonotopes with any of these
sub-polyhedric domains, we still get accurate and inexpensive methods to deal with
the interpretation of linear and non-linear assignments, while intersections in particular,
come clean thanks to the sub-polyhedric component of the domain.

Consider for instance the following program (loosely based on non-linear interpo-
lation methods in e.g. embedded systems), which will be our running example:

r e a l x = [ 0 , 1 0 ] ;
r e a l y = x∗x − x ;
i f ( y >= 0) y = x / 1 0 ; /∗ ( x=0 or x >= 1) and y i n [ 0 , 1 ] ∗ /
e l s e y = x∗x +2; /∗ ( x>0 and x<1) and y i n [ 2 , 3 ] ∗ /



As indicated in the comments of the program, the if branch is taken when we have
x = 0 or x ≥ 1, so that y at the end of the program, is always in [0, 3]. Although this
program looks quite simple, it is difficult to analyze, and the invariants found for y at the
end of the program by classical domains1 are disappointing: intervals, octagons, polyhe-
dra, or zonotopes without constraint all find a range of values for y larger or equal than
[0, 102]: even those which interpret quite accurately non-linear operations are not able
to derive a constraint on x from the constraint on y. Whereas by the method proposed
here, a logical product of zonotopes with intervals, in its APRON implementation, we
find the much better range [0, 9.72] (comparable to the exact result [0, 3]).

Contents of the paper We first introduce in Section 2 affine sets, a zonotopic abstract
domain for abstract interpretation, that abstracts input/output relations in a program.
We then introduce the problem of computing intersections in Section 3: starting with
the running example, we define constrained affine sets as the combination of zonotopes
with polyhedric domains and show they are well suited for the interpretation of tests. We
then generalize the order on affine sets to constrained affine sets and define monotonic
abstract transfer functions for arithmetic operators, that over-approximate the concrete
semantics. Section 4 completes the definition of this new abstract domain: starting with
the easier “one-variable” problem, we then give an algorithm for computing a join oper-
ator. We demonstrate the interest of the domain by describing in Section 5 the results on
some examples, based on an implementation of our method in the library APRON. We
conclude by a discussion of future work, including some further interesting combina-
tions of zonotopes with non-linear or non-convex domains such as quadratic templates
and maxplus polyhedra.

Related work In [17], the authors propose an approach based on a reduced product [5],
to get more tractable and efficient methods for deriving sub-polyhedric invariants. But,
still, the reduction algorithm of [17] is fairly expensive, and this domain also suffers
from the drawbacks of polyhedra, in the sense that it is not well suited for efficiently
and precisely deriving invariants for non-linear computations. Logical products in ab-
stract interpretation are defined in [15]. The authors use the Nelson-Oppen combination
method for logical theories, in the convex case, to get polynomial time abstractions on
a much finer (than classical reduced products) combination of two abstract domains. As
explained in Section 3.2, this approach does not directly carry over our case, because the
theories we want to combine do not satisfy all the hypotheses of [15]. We thus choose
in this paper a direct approach to the logical product of zonotopes with other classical
abstract domains.

2 Affine sets: main definitions and properties

2.1 Affine arithmetic and zonotopes

Affine arithmetic is an extension of interval arithmetic on affine forms, first introduced
in [4], that takes into account affine correlations between variables. An affine form is a

1 The experiments were carried out using the domains interfaced within APRON [20].



formal sum over a set of noise symbols εi

x̂
def= αx0 +

n∑
i=1

αxi εi,

with αxi ∈ R for all i. Each noise symbol εi stands for an independent component
of the total uncertainty on the quantity x̂, its value is unknown but bounded in [-1,1];
the corresponding coefficient αxi is a known real value, which gives the magnitude of
that component. The same noise symbol can be shared by several quantities, indicating
correlations among them. These noise symbols can not only model uncertainty in data
or parameters, but also uncertainty coming from computation. The semantics of affine
operations is straightforward, non affine operations are linearized and introduce a new
noise symbol: we refer the reader to [11, 13] for more details.

In what follows, we introduce matrix notations to handle tuples of affine forms. We
note M(n, p) the space of matrices with n lines and p columns of real coefficients.
A tuple of affine forms expressing the set of values taken by p variables over n noise
symbols εi, 1 ≤ i ≤ n, can be represented by a matrix A ∈M(n+ 1, p). We formally
define the zonotopic concretization of such tuples by :

Definition 1. Let a tuple of affine forms with p variables over n noise symbols, defined
by a matrix A ∈M(n+ 1, p). Its concretization is the zonotope

γ(A) =
{
tAte | e ∈ Rn+1, e0 = 1, ‖e‖∞ = 1

}
⊆ Rp .

x

y

10 15 20 25 30
5

10

15 For example, for n = 4 and p = 2,
the gray zonotope is the concretisa-
tion of the affine set X = (x̂, ŷ),
with x̂ = 20 − 4ε1 + 2ε3 + 3ε4,
ŷ = 10 − 2ε1 + ε2 − ε4, and
tA =

(
20 −4 0 2 3
10 −2 1 0 −1

)
.

2.2 An ordered structure: affine sets

In order to construct an ordered structure preserving abstract input/output relations [14],
we now define affine sets X as Minkowski sums of a central zonotope, γ(CX) and of
a perturbation zonotope centered on 0, γ(PX). Central zonotopes depend on central
noise symbols εi, whose interpretation is fixed once and for all in the whole program:
they represent the uncertainty on input values to the program, with which we want
to keep as many relations as possible. Perturbation zonotopes depend on perturbation
symbols ηj which are created along the interpretation of the program and represent the
uncertainty of values due to the control-flow abstraction, for instance while computing
the join of two abstract values.

Definition 2. We define an affine set X by the pair of matrices
(CX , PX) ∈M(n+ 1, p)×M(m, p). The affine form πk(X) = cX0k +

∑n
i=1 c

X
ikεi +∑m

j=1 p
X
jkηj , where the εi are the central noise symbols and the ηj the perturbation or

union noise symbols, describes the kth variable of X .



We define an order on affine sets [7, 14] which is slightly more strict than concretiza-
tion inclusion: it formalizes the fact that the central symbols have a specific interpreta-
tion as parametrizing the initial values of input arguments to the analyzed program:

Definition 3. LetX = (CX , PX), Y = (CY , PY ) be two affine sets inM(n+1, p)×
M(m, p). We say that X ≤ Y iff

∀u ∈ Rp, ‖(CY − CX)u‖1 ≤ ‖PY u‖1 − ‖PXu‖1 .

It expresses that the norm of the difference (CY − CX)u for all u ∈ Rp is less than
what the perturbation terms PX and PY allow, that is the difference of the norms of
PY u with PXu.

Classically, input/output functional abstractions are handled by adding slack vari-
ables corresponding to the initial values of the inputs. Here, we want relations between
the variables of the program and the uncertain inputs, that is the inputs that create noise
symbols. It can be proved that the relation of Definition 3 is equivalent to the geometric
order on the larger zonotopes obtained by adding these slack variables to the zonotopes
represented by our affine sets.

The binary relation ≤ of Definition 3 is a preorder, that we identify in the sequel
with the partial order, quotient of this preorder by the equivalence relation2 X ∼ Y iff
by definition X ≤ Y and Y ≤ X . Note also that this partial order is decidable, with a
complexity bounded by a polynomial in p and an exponential in n+m. In practice, see
[14], we do not need to use this costly general decision procedure.

3 Constrained affine sets for intersection

We now introduce the logical product of the domain A1 of Section 2 with any lattice,
(A2,≤2,∪2,∩2), used to abstract the values of the noise symbols εi and ηj . Formally,
supposing that we have n + 1 noise symbols εi and m noise symbols ηj as in Section
2.2, we are given a concretization function: γ2 : A2 → P({1}×Rn×Rm) and pseudo-
inverse α2. We now define constrained affine sets:

Definition 4. A constrained affine set U is a pair U = (X,ΦX) whereX = (CX , PX)
is an affine set, andΦX is an element ofA2. Equivalently, we writeU = (CX , PX , ΦX).

Classical abstractions of “constraints” on the εi we will be using throughout this
text areA consisting of products of 1+n+m intervals (with the first one always being
equal to 1), zones, octagons, and polyhedra (in the hyperplane ε0 = 1).

3.1 Interpretation of tests

Equality tests on variables We first consider the case of the interpretation of equality
test of two variables within an abstract state. Let us begin by a motivating example,
which will make clear what the general interpretation of Definition 5 should be.

2 It can be characterized by CX = CY and same concretizations for PX and PY .



Example 1. Consider, with an interval domain for the noise symbols, Z = [[x1 ==
x2]]X where ΦX = 1× [−1, 1]× [−1, 1]× [−1, 1]

x̂X1 = 4 + ε1 + ε2 + η1, γ(x̂1) = [1, 7]
x̂X2 = −ε1 + 3ε2, γ(x̂2) = [−4, 4]

We look for ẑ = x̂1 = x̂2, with ẑ = z0 + z1ε1 + z2ε2 + z3η1. Using x̂1 − x̂2 = 0, i.e.

4 + 2ε1 − 2ε2 + η1 = 0, (1)

and substituting η1 in ẑ − x̂1 = 0, we deduce z0 = 4z3, z1 = 2z3 − 1, z2 = −2z3 + 3.
The abstraction in intervals of constraint (1) yields tighter bounds on the noise symbols:
ΦZ = 1× [−1,−0.5]× [0.5, 1]× [−1, 0]. We now look for z3 that minimizes the width
of the concretization of z, that is 0.5|2z3 − 1|+ 0.5|3− 2z3|+ |z3|. A straightforward
O((m+n)2) method to solve the problem evaluates this expression for z3 successively
equal to 0, 0.5 and 1.5: the minimum is reached for z3 = 0.5. We then have{

ΦZ = 1× [−1,−0.5]× [0.5, 1]× [−1, 0]
x̂Z1 = x̂Z2 (= ẑ) = 2 + 2ε2 + 0.5η1, γ(x̂Z1 ) = γ(x̂Z2 ) = [2.5, 4]

Note that the concretization γ(x̂Z1 ) = γ(x̂Z2 ) is not only better than the intersection of
the concretizations γ(x̂X1 ) and γ(x̂X2 ) which is [1, 4], but also better than the intersection
of the concretization of affine forms (x̂X1 ) and (x̂X2 ) for noise symbols in ΦZ . Note that
there is not always a unique solution minimizing the width of the concretization.

In the following, we use bold letters to denote intervals, and for an interval u = [u, u],
we note dev(u) = u− u.

Definition 5. Let X = (CX , PX , ΦX) a constrained affine set with (CX , PX) ∈
M(n+ 1, p)×M(m, p). We define Z = [[xj == xi]]X by:
- ΦZ = ΦX

⋂
α2

({
(ε1, . . . , εn, η1, . . . , ηm) | (cX0j − cX0i) +

∑n
r=1(c

X
rj − cXri)εr+∑m

r=1(p
X
rj − pXri)ηr = 0

})
,

- cZrl = cXrl ,∀r ∈ {0, . . . , n}, and ∀l ∈ {1, . . . , p}, l 6= i, j,
- pZrl = pXrl ,∀r ∈ {1, . . . ,m} and ∀l ∈ {1, . . . , p}, l 6= i, j.
Let k such that cXkj − cXki 6= 0, we define

cZli = cZlj = cXli +
cXlj − cXli
cXkj − cXki

(cZki − cXkj) ∀l ∈ {0, . . . , n}, l 6= k, (2)

pZli = pZlj = pXli +
pXlj − pXli
cXkj − cXki

(cZki − cXkj) ∀l ∈ {1, . . . ,m}, (3)

with cZki that minimizes
∑n
l=1 |cZli |dev(εZ

l ) +
∑m
l=1 |pZli |dev(ηZ

l ).
If for all k, cXkj = cXki, then we look for r such that pXrj − pXri 6= 0; if for all r, pXrj = pXri
then xi = xj and Z = X .

This expresses that the abstraction of the constraint on the noise symbols induced by
the test is added to the domain of constraints, and the exact constraint is used to define



an affine form z satisfying z = xZj = xZi , and such that γ(z) is minimal. Indeed, let k
such that cXkj − cXki 6= 0, then xj == xi allows to express εk as

εk = cX0j − cX0i +
∑

1≤l≤n,l 6=k

(cXlj − cXli )
cXki − cXkj

εl +
∑

1≤l≤m

(pXlj − pXli )
cXki − cXkj

ηl . (4)

We now look for πi(Z) = πj(Z) equal to πi(X) and πj(X) under condition (4) on the
noise symbols (where πk(X) describes the kth variable of X, as introduced in Definition
2). Substituting εk in for example πi(Z) = πi(X), we can express, for all l, cZli and pZli
as functions of cZki and get possibly an infinite number of solutions defined by (2) and (3)
that are all equivalent when (4) holds. When condition (4) will be abstracted in a noise
symbols abstract domain such as intervals, these abstract solutions will no longer be
equivalent, we choose the one that minimizes the width of γ(πi(Z)) which is given by∑n
l=1 |cZli |dev(εZ

l )+
∑m
l=1 |pZli |dev(ηZ

l ). This sum is of the form
∑m+n
l=1 |al+ blc

Z
ki|,

with known constants al and bl. The minimization problem can be efficiently solved in
O((m+ n)log(m+ n)) time, m+ n being the number of noise symbols appearing in
the expressions of xi and xj , by noting that the minimum is reached for cZki = −al0

bl0

for a l0 ∈ {1, . . . ,m + n}. When it is reached for two indexes lp and lq , it is reached
for all cZki in

[
−alp

blp
,−alp

blp

]
, but we choose one of the bounds of this intervals because it

corresponds to the substitution in xZi of one of the noise symbols, and is in the interest
for the interpretation of tests on expressions.

Equality tests on expressions Now, in the case of an equality test between arithmetic
expressions, new constraints on the noise symbols can be added, corresponding to the
equality of the two expressions interpreted as affine forms. We also choose new affine
forms for variables appearing in the equality test: letX = (CX , PX , ΦX) a constrained
affine set with (CX , PX) ∈ M(n + 1, p) × M(m, p). We define Z = [[exp1 ==
exp2]]X by: Y1 = [[xp+1 = exp1]][[xp+2 = exp2]]X using the semantics for arithmetic
operations, as defined in section 3.3, then Y2 = [[xp+1 == xp+2]]Y1. Noting that one of
the noise symbols appearing in the constraint introduced by the equality test, does not
appear in xY2

p+1 = xY2
p+2 as computed by Definition 5, using this constraint we substitute

this noise symbol in the other variables in Y2. We then eliminate the added variables
xp+1 and xp+2 to obtain Z, in which exp1 == exp2 is thus algebraically satisfied.

Example 2. Consider Z = [[x1 + x2 == x3]]X where
ΦX = 1× [−1, 1]× [−1, 1]× [−1, 1]
x̂X1 = 2 + ε1, γ(x̂1) = [1, 3]
x̂X2 = 2 + ε2 + η1, γ(x̂2) = [0, 4]
x̂X3 = −ε1 + 3ε2, γ(x̂3) = [−4, 4]

We first compute x4 := x1 + x2 in affine arithmetic: here, problem x4 == x3 is then
the test we solved in example 1. The abstraction in intervals of constraint (1) yields
ΦZ = 1× [−1,−0.5]× [0.5, 1]× [−1, 0], and an affine form xZ3 optimal in the sense of
the width of its concretization, xZ3 = 2+2ε2 +0.5η1. Now, x̂X1 + x̂X2 = x̂Z3 is satisfied



when constraint (1) holds exactly, but not in its interval abstraction ΦZ . But substituting
ε1 which does not appear in xZ3 by −2 + ε2 − 0.5η1 in x̂X1 and x̂X2 , we obtain forms
x̂Z1 and x̂Z2 that satisfy x1 + x2 == x3 in the abstract domain:

ΦZ = 1× [−1,−0.5]× [0.5, 1]× [−1, 0]
x̂Z1 = ε2 − 0.5η1, γ(x̂1) = [0.5, 1.5]
x̂Z2 = 2 + ε2 + η1, γ(x̂2) = [1.5, 3]
x̂Z3 = 2 + 2ε2 + 0.5η1, γ(x̂Z1 ) = γ(x̂Z2 ) = [2.5, 4]

Inequality tests In the case of inequality tests, we only add constraints on noise sym-
bols, for example for strict inequality:

Definition 6. Let X = (CX , PX , ΦX) a constrained affine set with (CX , PX) ∈
M(n+ 1, p)×M(m, p). We define Z = [[exp1 < exp2]]X by Z = (CX , PX , ΦZ):
ΦZ = ΦX

⋂
α2

({
(ε1, . . . , εn, η1, . . . , ηm) | (cY0p+2 − cY0p+1)+∑n

k=1(c
Y
kp+2 − cYkp+1)εk +

∑m
k=1(p

Y
kp+2 − pYkp+1)ηk < 0

})
,

where Y = [[xp+1 = exp1]][[xp+2 = exp2]]X .

3.2 Order relation

In a standard reduced product [5] of A1 with A2, the order relation would naturally
be based on the component-wise ordering. But in such products, we cannot possibly
reduce the abstract values so that to gain as much collaboration as needed between A1

and A2 for giving formal grounds to the reasoning of Example 1 for instance. What
we really need is to combine the logical theories of affine sets, Th(A1)3 with the one
of quantifier-free linear arithmetic [18] over the reals, , Th(A2)4, including all the do-
mains we have in mind in this paper (intervals, zones, octagons, linear and non-linear
templates, polyhedra). Look back at Example 1: we found a solution to the constraint
x1 == x2 via a fine-grained interaction between the two theories Th(A1) and Th(A2).
Unfortunately, the methods of [15] are not directly applicable; in particular A1 is not
naturally expressible as a logical lattice - it is not even a lattice in general. Also, the
signatures ΣA1 and ΣA2 share common symbols, which is not allowed in the approach
of [15].

In order to compute the abstract transfer functions in the logical product Th(A1) ∪
Th(A2), we first define an order relation on the product domain A1 × A2, that al-
lows a fine interaction between the two domains. First, X = (CX , PX , ΦX) ≤ Y =
(CY , PY , ΦY ) should imply that ΦX ≤2 Φ

Y , i.e. the range of values that noise sym-
bols can take in form X is smaller than for Y . Then, we mean to adapt Definition 3 for
noise symbols no longer defined in [−1, 1] as in the unconstrained case, but in the range
of values ΦX common to X and Y . Noting that:

‖CXu‖1 = sup
εi∈[−1,1]

|〈ε, CXu〉|,

where 〈., .〉 is the standard scalar product of vectors in Rn+1, we set:
3 SignatureΣA1 comprises equality, addition, multiplication by real numbers and real numbers.
4 Signature ΣA2 comprises ΣA1 plus inequality and negation



Definition 7. Let X and Y be two constrained affine sets. We say that X ≤ Y iff
ΦX ≤2 Φ

Y and, for all t ∈ Rp,

sup
(ε,−)∈γ2(ΦX)

|〈(CY −CX)t, ε〉| ≤ sup
(−,η)∈γ2(ΦY )

|〈PY t, η〉| − sup
(−,η)∈γ2(ΦX)

|〈PXt, η〉| .

The binary relation defined in Definition 7 is a preorder on constrained affine sets
which coincides with Definition 3 in the “unconstrained” case when ΦX = ΦY =
{1} × [−1, 1]n+m. We use in the sequel its quotient by its equivalence relation, i.e. the
partial order generated by it.

Definition 8. Let X be a constrained affine set. Its concretization in P(Rp) is

γ(X) =
{
tCXε+ tPXη | ε, η ∈ γ2(ΦX)

}
.

For ΦX such that γ2(ΦX) = {1}× [−1, 1]n+m, this is equivalent to the concretiza-
tion of the affine set (CX , PX) as defined in Section 2.2. As for affine sets [14], the
order relation of Definition 7 is stronger than the geometric order: if X ≤ Y then
γ(X) ⊆ γ(Y ). This allows for expressing functional dependencies between the input
and current values of each variables as discussed in [14].

Note that γ is in general computable when A is a subpolyhedric domain (intervals,
zones, octagons, linear templates and general polyhedra), as a linear transformation
applied to a polyhedron. In the same case, the interval concretisation of X can be com-
puted using any (guaranteed) solver for linear programs such as LURUPA [16], since it
involves 2p (for p variables) linear programs:

sup
ε,η∈γ(ΦX)

tCXε+ tPXη, and inf
ε,η∈γ(ΦX)

tCXε+ tPXη .

Of course, when A is the domain of intervals, this is done by a direct and easy calcula-
tion.

3.3 Semantics of arithmetic operations

Operations are not different than the ones generally defined on zonotopes, or on affine
forms, see [4, 14], the only difference is in the multiplication where we use the con-
straints on εi and ηj to derive bounds for the non-linear part.

We note [[new εn+1]]A2Φ
X the creation of a new noise symbol εn+1 with (concrete)

values in [−1, 1]. We first define the assignment of a new variable xp+1 with a range of
value [a, b]:

Definition 9. Let X = (CX , PX , ΦX) be a constrained affine set with (CX , PX) ∈
M(n + 1, p) × M(m, p) and a, b ∈ R. We define Z = [[xp+1 = [a, b]]]X where
(CZ , PZ) ∈ M(n+ 2, p+ 1)×M(m, p+ 1) with : ΦZ = [[new εn+1]]A2Φ

X , CZ =
a+b
2
0

CX . . .
0

0 |a−b|
2

, PZ =

 0
PX . . .

0

 .



We carry on by addition, or more precisely, the operation interpreting the assign-
ment xp+1 := xi + xj and adding new variable xp+1 to the affine set:

Definition 10. Let X = (CX , PX , ΦX) be a constrained affine set where (CX , PX)
is inM(n + 1, p) ×M(m, p). We define Z = [[xp+1 = xi + xj ]]X = (CZ , PZ , ΦZ)
where (CZ , PZ) ∈M(n+ 1, p+ 1)×M(m, p+ 1) by ΦZ = ΦX and

CZ =

CX
cX0,i + cX0,j

. . .
cXn,i + cXn,j

 and PZ =

PX
pX1,i + pX1,j

. . .
pXm,i + pXm,j

 .

The following operation defines the multiplication of variables xi and xj , appending
the result to the constrained affine setX . All polynomial assignments can be defined
using this and the previous operations.

Definition 11. Let X = (CX , PX , ΦX) be a constrained affine set where (CX , PX)
is inM(n + 1, p) ×M(m, p). We define Z = (CZ , PZ , ΦZ) = [[xp+1 = xi × xj ]]X
where (CZ , PZ) ∈M(n+ 2, p+ 1)×M(m+ 1, p+ 1) by :

– ΦZ = [[new εn+1]]A2 ◦ [[new ηm+1]]A2Φ
X

– czl,k = cxl,k and czn+1,k = 0 for all l = 0, . . . , n and k = 1, . . . , p
– Letmr (resp. µr) be the (r+1)th coordinate (i.e. corresponding to εr) of mid(γ(ΦX))

(resp. of dev(γ(ΦX))), where mid (resp. dev ) denotes the middle (resp. the radius)
of an interval, ql (resp. χl) be the (l + n + 1)th coordinate (i.e. corresponding to
ηl) of mid(γ(ΦX)) (resp. of dev(γ(ΦX))). Write dxi = cx0,i +

∑
1≤r≤n c

x
r,imr +∑

1≤l≤m p
x
l,iql:

cz0,p+1 = dxi d
x
j −

∑
1≤r≤n(d

x
i c
x
r,j + dxj c

x
r,i)mr −

∑
1≤l≤m(dxi p

x
l,j + dxi p

x
l,i)ql +∑

1≤r≤n
1
2c
x
r,ic

x
r,jµ

2
r +

∑
1≤l≤m

1
2p
x
l,ip

x
l,jχ

2
l

– czl,p+1 = dxi c
x
l,j + cxl,id

x
j for all l = 1, . . . , n

– czn+1,p+1 =
∑

1≤r≤n
1
2 |c

x
r,ic

x
r,j |µ2

r +
∑

1≤r 6=l≤n |cxr,ic
y
l,j |µrµl

– pzl,k = pxl,k, pzm+1,k = 0 and pzl,p+1 = 0, for all l = 1, . . . ,m and k = 1, . . . , p
– pzm+1,p+1 =

∑
1≤l≤m |pxl,ipxl,j |χ2

l +
∑

1≤r 6=l≤m |pxr,ipxl,j |χrχl +
∑1≤l≤m

0≤r≤n (|cxr,ipxl,j |
+|pxl,icxr,j |)µrχl.

The correctness of this abstract semantics stems from the fact that these operations are
increasing functions over the set of constrained affine sets. For sub-polyhedric domains
A2, mr, ql, µr and χl are easily computable, solving with a guaranteed linear solver
the four linear programming problems supε,η∈γ(ΦX) εr (resp. inf) and supε,η∈γ(ΦX) ηl
(resp. inf) - for an interval domain for A2, no such computation is needed of course.

Getting back to the running example of Section 1, in the false branch of the
if (y>=0) test, we have to compute y = x ∗ x + 2 with x = 5 + 5ε1 and ε1 ∈
[−1,−0.444]. Using Definition 11 which takes advantage of the bounds on ε1 to get
a better bound on the non-linear part (typically not possible if we had constructed a
reduced product), we get y = 14.93 + 13.9ε1 + 0.96ε3 with ε3 ∈ [−1, 1]. This gives
γ(y) = [0.07, 9.72], which is very precise since γ(x) = [0, 2.77], hence we should
ideally find γ(y) in γ(x) ∗ γ(x) + 2 = [2, 9.72]. Note that the multiplication given
in Definition 11 and used here, is not the direct adaptation of the multiplication in



the unconstrained case, that would give the much less accurate form y = 41.97 +
50ε1 + 10.03ε3: the better formulation is obtained by choosing an affine form that is a
linearization of xi × xj no longer at 0, but at the center of the range of the constrained
noise symbols.

4 Join operator on constrained affine sets

We first examine the easier case of finding a join operator for affine sets with just one
variable, and A2 being the lattice of intervals. We then use the characterisations we
find in this case to give efficient formulas for a precise (although over-approximated)
join operator in the general case. We do not study here maximal lower bounds of affine
sets, although they are naturally linked to the interpretation of tests, Section 3.1, this is
outside the scope of this paper.

4.1 The one-dimensional case

In dimension one, constrained affine sets are simply constrained affine forms:

â =
(
â(ε) = αa0 +

n∑
1

αai εi, β
a, Φa

)
,

where ε = (ε1, . . . , εn)t belongs to Φa, and βa is non negative. We use the bold face
notation, εa

i , to denote the interval concretization of εi. Let â and b̂ be two constrained
affine forms. Then â ≤ b̂ in the sense of Definition 7 if and only if{

Φa ⊆ Φb
supε∈Φa |â(ε)− b̂(ε)| ≤ βb − βa

In general, there is no least upper bound for two constrained affine forms, but rather, as
already noted in the unconstrained case [13, 14], minimal upper bounds. A sufficient
condition for ĉ to be a minimal upper bound is to enforce a minimal concretization,
that is, γ(ĉ) = γ(â) ∪ γ(b̂), and then minimize βc among upper bounds with this
concretization.

Algorithm 1 computes this particular mub in some cases (when the first return
branch is taken), and else an upper bound with minimal interval concretisation. Let us
introduce the following notion used in the algorithm: let i and j be two intervals; i and
j are said to be in generic position if (i ⊆ j or j ⊆ i) imply (sup(i) = sup(j) or
inf(i) = inf(j)). We say by extension that two affine forms are in generic position if
their interval concretizations are in generic position. The join algorithm is similar to the
formula in the unconstrained case described in [14] except we have to be cautious about
the relative position of the ranges of noise symbols.

Example 3. To complete the analysis of the running example of Section 1, the join of
the abstract values for y on the two branches must be computed:Φa = 1× [−1, 1]× [−1, 1]× [−1, 1]
â = 0.5 + 0.5ε1
γ(â) = [0, 1]


Φb = 1× [−1,−0.444]× [−1, 1]× [−1, 1]
b̂ = 14.93395 + 13.9ε1 + 0.96605ε3
γ(b̂) = [0.0679, 9.7284]



Algorithm 1: Join of two constrained affine forms

if â and b̂ are in generic position then
if mid(γ(b̂)) ≤ mid(γ(â)) then swap â and b̂.
for i ≥ 1 do

αc
i ←− 0

if εa
i and εb

i are in generic position then
if αa

i ≥ 0 and αb
i ≥ 0 then

if mid(εa
i ) ≤ mid(εa

i ∪ εb
i ) and mid(εb

i ) ≥ mid(εa
i ∪ εb

i ) then
αc

i ←− min(αa
i , α

b
i )

if αa
i ≤ 0 and αb

i ≤ 0 then
if mid(εa

i ) ≥ mid(εa
i ∪ εb

i ) and mid(εb
i ) ≤ mid(εa

i ∪ εb
i ) then

αc
i ←− max(αa

i , α
b
i )

if 0 ≤
Pn

i=1 α
c
i (mid(εa

i ∪ εb
i )−mid(εa

i )) ≤ mid(γ(â) ∪ γ(b̂))−mid(γ(â)) and
mid(γ(â) ∪ γ(b̂))−mid(γ(b̂)) ≤

Pn
i=1 α

c
i (mid(εa

i ∪ εb
i )−mid(εb

i )) ≤ 0 then
βc ←− dev(γ(â) ∪ γ(b̂))−

Pn
i=1 |α

c
i | dev(εa

i ∪ εb
i )

αc
0 ←− mid(γ(â) ∪ γ(b̂))−

Pn
i=1 α

c
i mid(εa

i ∪ εb
i )

return (αc
0, α

c
1, . . . , α

c
n, β

c) /* MUB */

βc ←− dev(γ(â) ∪ γ(b̂)), αc
0 ←− mid(γ(â) ∪ γ(b̂)), return (αc

0, β
c) /* UB */

â and b̂ are in generic positions, and so are εa1 and εb1, but condition mid(εb
1) ≥

mid(εa
1 ∪εb

1) is not satisfied, so that the join gives the following minimal upper bound:{
Φc = 1× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]
ĉ = 4.8642 + 4.8642η1, γ(ĉ) = [0, 9.7284]

Example 4. Let us now consider a second example:{
Φa = 1× [−1, 0]× [−1, 1]
â = 1 + 2ε1 − ε2, γ(â) = [−2, 2]

{
Φb = 1× [−1, 1]× [0, 0.5]
b̂ = 4 + 3ε1 − ε2, γ(b̂) = [−2, 7]

â and b̂ are in generic positions, as well as εa1 and εb1, while εa2 and εb2 are not; the join
gives the following minimal upper bound:{

Φc = 1× [−1, 1]× [−1, 1]× [−1, 1]
ĉ = 5

2 + 2ε1 + 5
2η1, γ(ĉ) = [−2, 7]

4.2 Join operator in the general case

As in the unconstrained case [14], mubs for the global order on constrained affine sets
are difficult to characterize. Instead of doing so, we choose in this paper to describe a
simple yet efficient way of computing a good over-approximation of such mubs, relying
on Algorithm 1 for mubs with minimal concretisation for constrained affine forms.



We first project the constrained affine forms defining each variable of the environ-
ment (the πk(X), for all k) by considering all noise symbols as if they were central
noise symbols. We then use Algorithm 1 to independently compute a minimal upper
bound for the constrained affine form defining each variable of the environment (on
πk(X), for all k), and introduce a new noise symbol for each variable to handle the
perturbation term computed in this Algorithm. We thus obtain an upper bound of the
constrained affine set.

Example 5. Consider, for all noise symbols in [−1, 1], constrained affine sets X and Y
defined by x1 = 1 + ε1, x2 = 1 + ε2, and y1 = 1 + η1, y2 = 1 + η1. Considering
first the 1D cases, we have x1 ≤ y1 and x2 ≤ y2. However we do not have X ≤ Y for
the global order of Definition 7. Applying the join operator defined here on X and Y ,
we construct Z, defined by z1 = 1 + η2 and z2 = 1 + η3. We now have X ≤ Z and
Y ≤ Z.

5 Experiments

In this section, we compare results5 we obtain with our new domain, called constrained
T1+, in its APRON implementation, with the octagon and polyhedron APRON domains
and the unconstrained T1+[7]. Our constrained T1+ implementation allows to choose
as a parameter of the analysis, the APRON domain we want to use to abstract the con-
straints on noise symbols. However, at this stage, conditionals are interpreted only for
the interval domain, we thus present results for this domain only.

Table 1 shows the numerical range of a variable of interest of each test case and for
each domain, after giving the exact range we would hope to find. It can be noted that
on these examples, constrained T1+ is always more accurate than octagons, and is also
more accurate than polyhedra on non affine problems.

Table 1. Comparison of Constrained T1+ with APRON’s abstract domains

Exact Octagons Polyhedra T1+ Cons. T1+
InterQ1 [0, 1875] [−3750, 6093] [−2578, 4687] [0, 2500] [0, 1875]

Cosine [−1, 1] [−1.50, 1.0] [−1.50, 1.0] [−1.073, 1] [−1, 1]

SinCos {1} [0.84, 1.15] [0.91, 1.07] [0.86, 1.15] [0.99, 1.00]

InterL2 {0.1} [−1, 1] [0.1, 0.4] [−1, 1] [0.1, 1]

InterQ2 {0.36} [−1, 1] [−0.8, 1] [−1, 1] [−0.4, 1]

In Table 1, InterQ1 combines linear tests with quadratic expressions, only con-
strained T1+ finds the right upper bound of the invariant. Cosine is a piecewise 3rd
order polynomial interpolation of the cosine function: once again, only constrained T1+
finds the exact invariant. The program SinCos computes the sum of the squares of the
sine and cosine functions (real result is 1). InterL2 (resp. InterQ2) computes a
piecewise affine (resp. quadratic) function of the input, then focuses on the inverse im-
age of 1 by this function.

5 sources of the examples are available online http://www.lix.polytechnique.fr/
Labo/Khalil.Ghorbal/CAV2010



We now consider the computation of g(g(x)) on the range x = [−2, 2], where

g(x) =
√
x2 − x+ 0.5√
x2 + 0.5

.

We parametrize the program that computes g(g(x)) by a number of tests that subdivide
the domain of the input variable (see Figure 1 left for a parametrization by n subdivi-
sions), in order to compare the relative costs and precisions of the different domains
when the size of the program grows.

Fig. 1. Implementation of g(g(x)) for x in [-2,2] (left) and plot of g(g(x)) (right)

g ( x ) = s q r t ( x∗x−x + 0 . 5 ) / s q r t ( x∗x + 0 . 5 ) ;
x = [−2 ,2] ;
/∗ f o r n s u b d i v i s i o n s ∗ /
h = 4 / n ;
i f (−x<=h−2)

y = g ( x ) ; z = g ( y ) ;
. . .
e l s e i f (−x<=i∗h−2) /∗ i i n { 2 , . . . , n−1}∗ /

y = g ( x ) ; z = g ( y ) ;
. . .
e l s e

y = g ( x ) ; z = g ( y ) ;

x

g(g(x))

20−2

0.54

0.58

0.62

It can be noted (Figure 2 left) that our domain scales up well while giving here
more accurate results (Figure 2 right) than the other domains. As a matter of fact, with
an interval domain for the noise symbols, all abstract transfer functions are linear or at
worst quadratic in the number of noise symbols appearing in the affine forms. Notice
also that our implementations detects the squares of variables, which allows constrained
T1+ to give [0, 4.72] without subdivisions while all other domains end with [−∞,+∞]
(noted by the dotted lines on Figure 2 right). The fact that the results observed for 3 and
5 subdivisions (Figure 2 right) are less accurate respectively than those observed for 2
and 4 subdivisions, is related to the behaviour of g(g(x)) on [−2, 2] (see Figure 1 right):
for example when a change of monotony appears near the center of a subdivision, the
approximations will be less accurate than when it appears at the border.

6 Conclusion, and future work

In this paper, we studied the logical product of the domain of affine sets with sub-
polyhedric domains on noise symbols, although the framework as described here is
much more general. We concentrated on such abstract domains for A for practical rea-
sons, in order to have actual algorithms to compute the abstract transfer functions.



Fig. 2. Comparing analysis time and results of the different APRON domains.
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However, in some embedded control systems, quadratic constraints appear already
on the set of initial values to be treated by the control program, or as a necessary con-
dition for behaving well, numerically speaking. For example in [3], as in a large class
of navigation systems, the control program manipulates normalized quaternions, that
describe the current position in 3D, of an aircraft, missile, rocket etc. We think that a
combination of zonotopes with quadratic templates [1] in the lines of this article would
be of interest to analyze these programs.

Also, as noticed in [2], maxplus polyhedra encompass a large subclass of disjunc-
tions of zones; hence, by combining it with affine sets, we get another rather inexpensive
way to derive a partially disjunctive analysis from affine forms (another with respect to
the ideas presented in [13]).

Another future line of work is to combine the ideas of this paper with the ones of
[12] to get better under-approximation methods in static analysis.
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