
The Zonotope Abstract Domain Taylor1+

Khalil Ghorbal, Eric Goubault, and Sylvie Putot

CEA, LIST, Modelisation and Analysis of Systems in Interaction,
F-91191 Gif-sur-Yvette Cedex, France,

firstname.surname@cea.fr

1 Introduction

Static analysis by abstract interpretation [1] aims at automatically inferring
properties on the behaviour of programs. We focus here on a specific kind of
numerical invariants: the set of values taken by numerical variables, with a real
numbers semantics, at each control point of a program.

We present an implementation called Taylor1+, interfaced with the APRON
library [2], of an abstract domain using affine forms [3], defined by E. Goubault
and S. Putot in [4, 5].

Contributions and organisation of the paper. We recap, in Section 2 the seman-
tics of the main operations implemented, both arithmetic and order-theoretic.
We then explain in Section 3 how this real number semantics is implemented
using finite precision arithmetic. We finally present, in Section 4, experimen-
tal results, which we compare to the results obtained with other domains of
APRON, such as intervals [1], octagons [6] and polyhedra [7] abstract domains.

Related work. Geometrically, the representation of the abstract values (the joint
range of all variables) in our domain is a center-symmetric polytope called zono-
tope. Zonotopes were successfully applied elsewhere, such as for reachability
analysis in the model-checking of hybrid systems [8] or collision detection [9].

2 Abstract Domain Based On Affine Forms

Affine arithmetic [3] is an extension of Interval Arithmetic that keeps track
of affine relations between values of variables. An affine form expresses a set
of values as a central value plus a sequence of deviation terms over symbolic
symbols, called noise symbols. Formally, the affine form, x̂, describing the values
that program variable x can take, is :

x̂ = αx0 +
n∑
i=1

αxi εi

where the real coefficients (αxi)1≤i≤n are the partial deviations and the noise
symbols (εi)1≤i≤n have their unknown values within [−1, 1]. Its interval con-
cretisation is

γ(x̂) =

[
αx0 −

n∑
i=1

|αxi |, αx0 +
n∑
i=1

|αxi |

]

These noise symbols are introduced dynamically: ı) for each new input whose
value is given in an interval, or ıı) when non linear operations are achieved (see
section 2.1). For instance, the affine form abstraction of a new program variable
x known to lie in [a, b], is x̂ = 1

2 (a+ b)+ 1
2 (b−a)εn+1, where εn+1 is a fresh noise

symbol, i.e. is not used by any existing affine form.
Abstract operations must be sound, that is, in our case, ı) give guaranteed

range over-approximations of the variables at the current control point of the
program, and ıı) give guaranteed range over-approximations for all other expres-
sions on these variables that we might want to evaluate later (see [5]).

2.1 Arithmetic Operations

If performed with real number coefficients, affine arithmetic is exact on linear
operations : addition and subtraction operations are defined componentwise. For
non-linear unary operations, such as square root and inverse, our implementation
relies on Taylor forms of first order with rigorous error bounds for the error term.
For non-linear binary operations, an approximated affine form is computed, and
the remaining non-linear term is bounded, then assigned to a fresh noise symbol.
For instance, the multiplication of two affine forms x̂ = αx0 +

∑n
i=1 α

x
i εi and

ŷ = αy0 +
∑n
i=1 α

y
i εi is :

x̂× ŷ = αx0α
y
0 +

n∑
i=1

(αxi α
y
0 + αyi α

x
0)εi +

n∑
i=1

n∑
j=1

αxi α
y
j εiεj . (1)

We have implemented the method of [4]: εiεj is taken within [0, 1] whenever
i = j, and [−1, 1] otherwise. The method is cost-effective but not always the most
precise one. A more accurate but more costly technique is to use SemiDefinite
Programming (SDP) :

max
|εi|≤1

n∑
i=1

n∑
j=1

αxi α
y
j εiεj = max

|εi|≤1
εt.Φ.ε ≤ inf

µ∈IRn
+

{trace(µIn)|Φ− µIn � 0} (2)

where (φi,j)1≤i,j≤n = 1
2 (αxi α

y
j + αxjα

y
i) and M � 0 means that matrix M is

negative semidefinite. The equality holds when matrix Φ is negative semidefinite.
The right hand side of (2) is a typical SDP problem. We give first experimental
results in section 4.

2.2 Order-theoretic Operations

Perturbed Affine Forms defined in [5] extend standard affine forms by adding
special noise symbols εU , called join symbol, that allow simple and precise order-
theoretic operations We define then exemplify the (pseudo) join operation.

Definition 1. The join operation ẑ = x̂∪ ŷ defines an upper bound of x̂ and ŷ,
which is minimal in “generic” situations, and whose interval concretisation is

the union of interval concretisations of x̂ and ŷ :

αz0 = mid(γ(x̂) ∪ γ(ŷ)) (central value of ẑ)
αzi = argmin

min(αx
i ,α

y
i)≤α≤max(αx

i ,α
y
i)

(|α|),∀i ≥ 1 (coeff. of εi)

βz = sup(γ(x̂) ∪ γ(ŷ))− αz0 −
∑
i≥1 |αzi | (coeff. of εU)

where the γ function returns the interval concretisation of an affine form and
mid([a, b]) := 1

2 (a+ b) and argmin
a≤x≤b

(|x|) := {x ∈ [a, b], |x| is minimal }.

Example 1. By the formula of definition 1:(
x̂ = 3 +ε1 +2ε2
û = 0 +ε1 +ε2

)
∪

(
ŷ = 1 −2ε1 +ε2
û = 0 +ε1 +ε2

)
=
(
x̂ ∪ ŷ = 2 +ε2 +3εU
û ∪ û = 0 +ε1 +ε2

)

x̂

û

2 4 6

−2

2

∪
ŷ

û

−2 1 4

−2

2

=
6−2 2

−2

2

x̂∪ŷ

û

We also define the cyclic unfold, denoted by (i, c,N), as the one obtained
by initially unrolling i times the loop, and from then computing the fixpoint
of the loop functional iterated c times until convergence, this with at most N
iterations, after which a classical interval semantics is used [1]. As proved in [5],
and shown in Section 4, the cyclic unfold schemes together with the join operator
ensures termination with accurate fixpoint bounds for linear iterative schemes.

3 Implementation aspects

The APRON Project [2] provides a uniform high level interface for numerical
domains. For the time being, intervals, convex polyhedra, octagons, and congru-
ences abstract domains are interfaced. We enrich here the library with a domain
based on affine forms, called Taylor1+.

As we represent coefficients of affine forms by double precision floating-point
numbers instead of real numbers, we have to adapt our transfer functions. For
instance, instruction z = x + y; is abstracted by

ẑ = x̂⊕ ŷ = float(αx0 + αy0) +
n∑
i=1

float(αxi + αyi)εi +

(
n∑
i=0

dev(αxi + αyi)

)
εn+1

where float(x) is the nearest double-precision floating-point number to the real
number x and dev(x) := .(|x− float(x)|), (. being rounding towards +∞).

We are working on some techniques, namely those used in [8] and [10], to
control the potential increase of the number of noise symbols during analysis.
However, in practise, the number of symbols reaches high levels very scarcely,
since our join operator has the effect of reducing the number of noise symbols
by collapsing some of them into a join symbol.

4 Experiments and Benchmarks

We analyse hereafter two simple iterative schemes. We used a laptop equipped
with Intel(R) Core(TM)2 CPU (1.06GHz) and 2GB of RAM. All numerical
values are rounded to two significant decimal digits for readability’s sake.

4.1 Linear Iterative Schemes

Consider the following 2nd order filter :

Sn = 0.7En − 1.3En−1 + 1.1En−2 + 1.4Sn−1 − 0.7Sn−2

where En are independent inputs with unknown values in range [0, 1], and Sn is
the output of the filter at iteration n. Pôles are inside the unit circle (norm close
to 0.84), so the output in real numbers is provably bounded, and can be tightly
estimated by manual methods to [−1.09, 2.75]. We also study a 8th order linear
recursive digital filter used in an industrial test case (whose code is omitted for
obvious reasons), whose output is provably bounded in [−0.20, 1.20].

Unrolled schemes We first fully unroll the 2nd order filter scheme to compute
the abstract value at each iteration. Figure 1 compares accuracy and performance
of Taylor1+ with three domains, provided in APRON: Boxes (Interval Analysis),
Octagons, Polyhedra (both PK [11] and PPL [12] implementations were tested).
The current version of the Octagonal domain does not integrate any of the
symbolic enhancement methods of [13], which leads to inaccurate results. The
Polyhedra domain with exact arithmetic (using GMP) gives the exact bounds
for the filter output. One can see that Taylor1+ wraps very closely the exact
range given by polyhedra (left figure) with great performance (right figure).

Fig. 1. Unrolled scheme for the 2nd order filter

Fixpoint computation using Kleene-like iteration For both filters, we
detail results for two different (i, c,N)-iteration schemes (see end of Section 2.2)
for Taylor1+, with i = 0 and N = 103. Table 1 summarizes the results, for the
2nd order filter (left tables) and the 8th order filter (right tables). For boxes,
octagons, and polyhedra domains, their respectively classical widening operator
were used if a fixpoint is not reached after 100 iterations. For T1+ domain,
beyond this threshold, i.e. 100, and before N , we accelerated convergence of the
fixpoint computation by only keeping noise terms with equal coefficients and
collapsing all the others.

Since the output diverges for Boxes and Octagons domains, the fixpoint com-
putation diverges as well. Polyhedra gives the least fixpoint in a short time for
the second order filter, however it takes an enormous amount of time for the filter
of order 8, so we aborted computation. For the 2nd (resp. 8th) order filter, the
fixpoint reached in Taylor1+ for the scheme c = 20 (i.e. for the loop functional
iterated c times) is [−1.18, 2.84] (resp. [−0.27, 1.27]). From there, the computa-
tion of the fixpoint of the loop is slightly wider: [−5.40, 7.07] (resp. [−3.81, 4.81]);
we are working on improvements.

Table 1. Fixpoint computation (2nd
&8tho filters) using Kleene-like iteration technique

filter o2 fixpoint t(s) filter o8 fixpoint t(s)
Boxes > 6×10−3 Boxes > 0.01
Octagons > 0.19 Octagons > 21
Polyhedra [−1.30 , 2.82] 0.49 Polyhedra abort >24h
T.1+(5) [−8.90 , 10.57] 0.1 T.1+(5) [−19.77 , 20.77] 0.74
T.1+(20) [−5.40 , 7.07] 0.2 T.1+(20) [−3.81 , 4.81] 0.5

4.2 Non-linear Iterative Scheme

The non-linear scheme we are considering is based on a Householder method
of order 3 that converges towards the inverse of the square root of an input A.
It originates from an industrial code, used as a test case in [14]; The current
estimate of the inverse of the square root is updated as follows:

xn+1 = xn + xn

(
1
2
hn +

3
8
h2
n

)
where hn = 1−Ax2

n, A ∈ [16, 20] and x0 = 2−4.
We study the fully unrolled scheme for 5 iterations, then the fixpoint com-

putation by the (5, 1, 103)-iteration scheme for Taylor1+, and compare different
implementations of the multiplication; results are shown in Table 4.2. We com-
pute here all possible values, whatever the stopping criterion (on | xn+1−xn |) of
the loop may be. The fixpoint of

√
A (right table) encloses the first 5 iterations

and is hence wider than the fixpoint of the analysed scheme ([3.96, 4.51]). We
can see that even for non linear computations, the abstract scheme in Taylor1+
tightly over-approximates the concrete scheme. For the fully unrolled scheme
(left table), the SDP solver is costly in time and does not seem to buy much

more precision : results are more accurate when subdividing. For the fixpoint
computation, the use of the SDP solver is slightly more interesting. Moreover,
the real advantage of SDP over subdviding is that the process of subdividing
inputs might become intractable when several inputs would need subdividing.
We tested here a non-guaranteed SDP solver [15], but we plan in the future to
use guaranteed SDP solver such as the one described in [16].

Table 2. Comparison of domains on Householder (o3) example

Unrolling (5 It.)
√

A t(s) Kleene Iteration
√

A t(s)
Boxes [0.51 , 8.44] 1×10−4 Boxes > 1×10−4

Octagons [0.51 , 7.91] 0.01 Octagons > 0.04
Polyhedra [2.22 , 6.56] 310 Polyhedra abort >24h
T.1+ : [3.97 , 4.51] 1×10−3 T.1+ : [0.62 , 5.01] 0.01
• 10 subdivisions [4.00 , 4.47] 0.02 • 10 subdivisions [0.96 , 4.52] 0.2
• SDP [3.97 , 4.51] 0.16 • SDP [0.62 , 5.01] 0.86

References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
ACM POPL’77, pages 238–252, 1977.

[2] APRON Project. Numerical abstract domain library, 2007. http://apron.cri.

ensmp.fr.
[3] J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to computer

graphics. SIBGRAPI’93, 1993.
[4] E. Goubault and S. Putot. Static analysis of numerical algorithms. In SAS’06,

Seoul, volume 4134 of LNCS, pages 18–34, 2006.
[5] E. Goubault and S. Putot. Perturbed affine arithmetic for invariant computation

in numerical program analysis, 2008. http://arxiv.org/abs/0807.2961.
[6] A. Miné. The Octagon abstract domain. Higher-Order and Symbolic Computation,

pages 31–100, 2006.
[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In ACM POPL’78, pages 84–97, 1978.
[8] A. Girard. Reachability of uncertain linear systems using zonotopes. Hybrid

Systems: Computation and Control, pages 291–305, 2005.
[9] L. J. Guibas, A. Nguyen, and L. Zhang. Zonotopes as bounding volumes. Sym-

posium on Discrete Algorithms, pages 803–812, 2003.
[10] W. Kühn. Zonotope dynamics in numerical quality control. In in Mathematical

Visualization, pages 125–134. springer, 1998.
[11] B. Jeannet and al. Newpolka library. http://www.inrialpes.fr/pop-art/

people/bjeannet/newpolka.
[12] PPL Project. The Parma Polyhedra Library. http://www.cs.unipr.it/ppl/.
[13] A. Miné. Symbolic methods to enhance the precision of numerical abstract do-

mains. In VMCAI’06, pages 348–363, 2006.
[14] E. Goubault, S. Putot, P. Baufreton, and J. Gassino. Static analysis of the accu-

racy in control systems: Principles and experiments. In FMICS, 2007.
[15] B. Borchers. A C library for Semidefinite Programming, 1999. https://projects.

coin-or.org/Csdp.
[16] C. Jansson, D. Chaykin, and C. Keil. Rigorous error bounds for the optimal value

in semidefinite programming. SIAM J. Numer. Anal., 46(1):180–200, 2007.

