

Modular Static Analysis with Zonotopes

Eric Goubault, Sylvie Putot and Franck Védrine LMeASI, CEA LIST Sept 11, SAS 2012, Deauville, France

Context: validate numerical programs

- Check/infer invariant properties both in floating-point and real number semantics
- Very refined and complex (costly) properties: stability, decomposition of numerical errors etc.

Some success already with our abstract interpreter FLUCTUAT (see FMICS'07, DASIA'09, FMICS'09), mostly on \leq 50KLoC programs

Motivations

Long term goal for this talk:

- Static analysis of large control systems (e.g. primary flight computers, numerical protection for nuclear plants...), designed in a modular manner (e.g. generated by SCADE)
- Want to improve scalability of FLUCTUAT

Long term goal for this talk:

- Static analysis of large control systems (e.g. primary flight computers, numerical protection for nuclear plants...), designed in a modular manner (e.g. generated by SCADE)
- Want to improve scalability of FLUCTUAT
- A modular analysis:
 - Of classical inspiration (Cousot&Cousot 77, Sharir&Pnueli 81)
 - Particular to the abstract domain of zonotopes / affine sets (SAS'06, CAV'09, CAV'10, VMCAI'11)

Summary-based algorithm for the zonotopic abstract domain

Outline of the talk

A zonotopic abstract domain

- Summary-based modular analysis
- Experiments

Zonotopic abstraction based on Affine Arithmetic (Stolfi 93)

• Affine form \hat{x} for variable x:

 $\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n,$

where $x_i \in \mathbb{R}$ and the ε_i are independent symbolic variables called *noise symbols*, with unknown value in [-1, 1].

Sharing ε_i between variables expresses *implicit dependency*: concretization as a zonotope

Arithmetic operations

Assignment of a variable x whose real value is given in a range
 [a, b] introduces a noise symbol ε_i:

$$\hat{x} = rac{(a+b)}{2} + rac{(b-a)}{2} \varepsilon_i.$$

 functional abstraction: link to the inputs via the noise symbols, allowing sensitivity analysis and worst case generation

- ► Addition is computed componentwise (no new noise symbol): $\hat{x} + \hat{y} = (x_0 + y_0) + (x_1 + y_1)\varepsilon_1 + \ldots + (x_n + y_n)\varepsilon_n$
- Multiplication : we select an approximate linear form, the approximation error creates a new noise term :

$$\hat{x} \times \hat{y} = x_0 y_0 + \sum_{i=1} (x_i y_0 + y_i x_0) \varepsilon_i + R(x, y) \varepsilon_{n+1}.$$

 Non linear operations : approximate linear form (Taylor expansion), new noise term for the approximation error

Zonotopes define input-output relations

- We distinguish two kinds of noise symbols:
 - input noise symbols (ε_i) express sensitivity to the inputs
 - ▶ perturbation noise symbols (η_j) express uncertainty due to the analysis (non affine operations, join)
- Partial order:
 - geometric inclusion on zonotopes augmented by the input noise symbols
 - functional order: preserves input-output relations
 - weaker structure than lattice: no least upper bound (join) or greatest lower bound (meet)
- Relational abstraction for functions in the sense of [Jeannet, Gopan and Reps 2005]

A simple example

real x = [0,10];
real y = x*x - x;
$$\hat{x}$$

 \hat{y}

Zonotope (green) is

$$x = 5 + 5\varepsilon_1$$

 $y = (5 + 5\varepsilon_1)(5 + 5\varepsilon_1) - 5 - 5\varepsilon_1$
 $= 20 + 45\varepsilon_1 + 25\varepsilon_1^2 = 20 + 45\varepsilon_1 + 25(0.5 + 0.5\eta_1)$
 $= 32.5 + 45\varepsilon_1 + 12.5\eta_1$

Polyhedron: $-x + 10 \ge 0$; $y + 10 \ge 0$; $x \ge 0$; $4x - y + 50 \ge 0$

cer list

Functional interpretation of this example

Abstraction of function $x \rightarrow y = x^2 - x$ as

 $y = 32.5 + 45\varepsilon_1 + 12.5\eta_1$

E. Goubault, S. Putot and F. Védrine, MEASI, CEA LIST

Functional interpretation of this example

real x = [0,10];
real y = x*x - x;
$$\hat{x}$$

Abstraction of function $x \rightarrow y = x^2 - x$ as

$$y = 32.5 + 45\varepsilon_1 + 12.5\eta_1 = -12.5 + 9x + 12.5\eta_1$$

(since
$$x = 5 + 5\varepsilon_1$$
)

centint

Functional interpretation of this example

Abstraction of function $x \rightarrow y = x^2 - x$ as

$$y = 32.5 + 45\varepsilon_1 + 12.5\eta_1 = -12.5 + 9x + 12.5\eta_1$$

Almost modular by construction!

► But valid only for inputs in [0,10] ⇒ partition of contexts though a summary-based algorithm.

A componentwise upper bound operator

Keep "minimal common dependencies":

$$z_i = \underset{x_i \land y_i \le r \le x_i \lor y_i}{\operatorname{argmin}} |r|, \ \forall i \ge 1$$

 \hat{x} , \hat{y} functions of \hat{u}

E. Goubault, S. Putot and F. Védrine, MEASI, CEA LIST

A componentwise upper bound operator

For each var, the concretization is the interval union of the concretizations ($\gamma(\hat{z}) = [-2, 6]$) :

i)
$$z_0 = mid(\gamma(\hat{x}) \cup \gamma(\hat{y}))$$

ii) $\beta^z = \sup \gamma(\hat{x}) \cup \gamma(\hat{y}) - z_0 - \|\hat{z}\|_1$

A componentwise upper bound operator

For each var, the concretization is the interval union of the concretizations ($\gamma(\hat{z}) = [-2, 6]$) :

i)
$$z_0 = mid(\gamma(\hat{x}) \cup \gamma(\hat{y}))$$

ii) $\beta^z = \sup \gamma(\hat{x}) \cup \gamma(\hat{y}) - z_0 - \|\hat{z}\|_2$

$$\hat{x} = 3 + \varepsilon_1 + 2\varepsilon_2 \hat{y} = 1 - 2\varepsilon_1 + \varepsilon_2 \hat{u} = \varepsilon_1 + \varepsilon_2$$

 $\hat{z} = \hat{x} \cup \hat{y} = 2 + 0\varepsilon_1 + 1\varepsilon_2 + 3\eta_1$

 \hat{x} , \hat{y} and \hat{z} functions of \hat{u}

A componentwise upper bound operator

Keep "minimal common dependencies":

$$z_i = \underset{x_i \land y_i \le r \le x_i \lor y_i}{\operatorname{argmin}} |r|, \; \forall i \ge 1$$

For each var, the concretization is the interval union of the concretizations $(\gamma(\hat{z}) = [-2, 6])$:

i)
$$z_0 = mid(\gamma(\hat{x}) \cup \gamma(\hat{y}))$$

ii) $\beta^z = \sup \gamma(\hat{x}) \cup \gamma(\hat{y}) - z_0 - \|\hat{z}\|_1$

See NSAD'12 for an improved join operator

Outline of the talk

- A zonotopic abstract domain
- Summary-based modular analysis
- Experiments

Summary-based analysis

A summary is a pair of zonotopes (I, O):

- Summary of program functions
- I abstracts the calling context, O the output
- Both zonotopes abstract functions of the inputs of the program (linear form of the ε_i)
- Output can be instantiated for a particular calling context C ⊆ I (constraints on the noise symbols that define a restriction of the function)

A case of symbolic relational separate analysis as in [Cousot Cousot 2002, Modular static program analysis]

Interpretation of function call f(C), given calling context C, and function summary $S_f = (I, O)$: if $!(C \le I)$ then $I \leftarrow I \sqcup C$ // Join $S_f \leftarrow (I, \llbracket f \rrbracket (I))$ // New summary end if return $\llbracket I == C \rrbracket O$ // Summary instantiation

Algorithm

Interpretation of function call f(C), given calling context C, and function summary $S_f = (I, O)$:

if
$$!(C \le I)$$
 then
 $I \leftarrow I \sqcup C$ // Join
 $S_f \leftarrow (I, \llbracket f \rrbracket(I))$ // New summary
end if
return $\llbracket I == C \rrbracket O$ // Summary instantiation

Join: $I \leftarrow I \sqcup C$

Join calling context C and summary input I, using the join operator on zonotopes

Interpretation of function call f(C), given calling context C, and function summary $S_f = (I, O)$:

if $!(C \le I)$ then $I \leftarrow I \sqcup C$ // Join $S_f \leftarrow (I, \llbracket f \rrbracket(I))$ // New summary end if return $\llbracket I == C \rrbracket O$ // Summary instantiation

New summary: $S_f \leftarrow (I, \llbracket f \rrbracket(I))$

Interpret function call f with calling context I, using the zonotopic abstract domain, and create a new summary

Interpretation of function call f(C), given calling context C, and function summary $S_f = (I, O)$:

if
$$!(C \le I)$$
 then
 $I \leftarrow I \sqcup C$ // Join
 $S_f \leftarrow (I, [[f]](I))$ // New summary
end if
return $[I = - C] O$ // Summary instantia

return $[\![I] == C]\!]O //$ Summary instantiation

Summary instantiation: [I == C]O

I == C generate constraints on noise symbols that allow to substitute some perturbation noise symbols in O, and thus instantiate the output of the summary O

Summary instantiation $\llbracket I == C \rrbracket O$

- Starts with a summary (1, 0) of a function f, and a less general input context C (C ≤ 1)
- ► Outputs O' = [[I == C]]O less general output context than O (O' ≤ O) which still overapproximates [[f]]C

Summary instantiation $\llbracket I == C \rrbracket O$

- Starts with a summary (1, 0) of a function f, and a less general input context C (C ≤ 1)
- ► Outputs O' = [[I == C]]O less general output context than O (O' ≤ O) which still overapproximates [[f]]C

Principle:

• Write the constraint I == C in the space of noise symbols:

$$(c_{0i}^{\prime}-c_{0i}^{C})+\sum_{r=1}^{n}(c_{ri}^{\prime}-c_{ri}^{C})\varepsilon_{r}+\sum_{r=1}^{m}(p_{ri}^{\prime}-p_{ri}^{C})\eta_{r}=0 \ (i=1,\ldots,p)$$

• We derive relations of the form (by Gauss elimination):

$$\eta_{k_{i+1}} = R_i(\eta_{k_i}, \ldots, \eta_1, \varepsilon_n, \ldots, \varepsilon_1) \ (i = 0, \ldots, r-1)$$

• We eliminate $\eta_{k_1}, \ldots, \eta_{k_r}$ in O using the relations above

Summary instantiation $\llbracket I == C \rrbracket O$

- Starts with a summary (1, 0) of a function f, and a less general input context C (C ≤ 1)
- Outputs O' = [[I == C]]O less general output context than O (O' ≤ O) which still overapproximates [[f]]C

Principle:

• Write the constraint I == C in the space of noise symbols:

$$(c_{0i}^{I}-c_{0i}^{C})+\sum_{r=1}^{n}(c_{ri}^{I}-c_{ri}^{C})\varepsilon_{r}+\sum_{r=1}^{m}(p_{ri}^{I}-p_{ri}^{C})\eta_{r}=0 \ (i=1,\ldots,p)$$

• We derive relations of the form (by Gauss elimination):

$$\eta_{k_{i+1}} = R_i(\eta_{k_i}, \ldots, \eta_1, \varepsilon_n, \ldots, \varepsilon_1) \ (i = 0, \ldots, r-1)$$

• We eliminate $\eta_{k_1}, \ldots, \eta_{k_r}$ in O using the relations above In practice, with the componentwise join: all relations already in row-echelon form!

Example

if
$$!(C \le I)$$
 then
 $I \leftarrow I \sqcup C$
 $S_f \leftarrow (I, \llbracket f \rrbracket(I))$
end if
return $\llbracket I == C \rrbracket O$

$$S_f = \emptyset$$

(2): $I_1 = C_1 = (\varepsilon_1 + 1, \varepsilon_1)$

E. Goubault, S. Putot and F. Védrine, MEASI, CEA LIST

Example

if
$$!(C \le I)$$
 then
 $I \leftarrow I \sqcup C$
 $S_f \leftarrow (I, \llbracket f \rrbracket(I))$
end if
return $\llbracket I == C \rrbracket O$

(2):
$$I_1 = C_1 = (\varepsilon_1 + 1, \varepsilon_1)$$

 $O_1 = [[mult]](I_1) = -1.5 - \varepsilon_1 + 0.5\eta_1$
 $S = (I_1, O_1)$

E. Goubault, S. Putot and F. Védrine, MEASI, CEA LIST

Instantiation to 2nd calling context C_2

return
$$\llbracket I_2 == C_2 \rrbracket O_2$$

$$C_2 = (\varepsilon_1, 2\varepsilon_1)$$

$$I_2 = (\frac{1}{2} + \varepsilon_1 + \frac{1}{2}\eta_2, \frac{3}{2}\varepsilon_1 + \frac{1}{2}\eta_3)$$

 $I_2 == C_2$ yields constraints

$$\varepsilon_1 = \frac{1}{2} + \varepsilon_1 + \frac{1}{2}\eta_2 \Rightarrow \eta_2 = -1$$

$$2\varepsilon_1 = \frac{3}{2}\varepsilon_1 + \frac{1}{2}\eta_3 \Rightarrow \eta_3 = \varepsilon_1$$

Substitute η_2 and η_3 in $O_2 = -\frac{1}{4} - \frac{5}{4}\varepsilon_1 - \eta_2 + \frac{1}{4}\eta_3 + \frac{9}{4}\eta_4$ gives $\llbracket I_2 == C_2 \rrbracket O_2 = \frac{3}{4} - \varepsilon_1 + \frac{9}{4}\eta_4.$

centint

Instantiation to 2nd calling context C_2

return
$$[I_2 == C_2] O_2$$

$$C_2 = (\varepsilon_1, 2\varepsilon_1)$$

$$I_2 = (\frac{1}{2} + \varepsilon_1 + \frac{1}{2}\eta_2, \frac{3}{2}\varepsilon_1 + \frac{1}{2}\eta_3)$$

 $I_2 == C_2$ yields constraints

$$\begin{aligned} \varepsilon_1 &= \frac{1}{2} + \varepsilon_1 + \frac{1}{2}\eta_2 \Rightarrow \eta_2 = -1 \\ 2\varepsilon_1 &= \frac{3}{2}\varepsilon_1 + \frac{1}{2}\eta_3 \Rightarrow \eta_3 = \varepsilon_1 \end{aligned}$$

Substitute η_2 and η_3 in $O_2 = -\frac{1}{4} - \frac{5}{4}\varepsilon_1 - \eta_2 + \frac{1}{4}\eta_3 + \frac{9}{4}\eta_4$ gives $\llbracket I_2 == C_2 \rrbracket O_2 = \frac{3}{4} - \varepsilon_1 + \frac{9}{4}\eta_4.$

centint

Outline of the talk

- A zonotopic abstract domain
- Summary-based modular analysis
- Experiments

Benchmarks

- sincos: sine and cosine approximations by high order polynomials:
 - iterates on 65 distinct overlapping intervals some computation f involving polynomial approximations of sine and sqrt
 - function f is analyzed twice, and instantiated 63 times
- img_filter: edge detection on a small image:
- filter: recursive order 2 filter with uncertain parameters

	example	sincos	img_filter	filter
	#lines/ $#$ vars	208/135	194/55	96/19
Non-modular	time (s)	3.84	11.8	49
Modular	time(s)	0.79	1.7	10
	instantiations	63/65	18/20	6/8
Ratio	time gain	4.9	6.9	4.9
	accuracy loss	2.23	1	1.27

Benchmarks

- sincos: sine and cosine approximations
- img_filter: edge detection on a small image:
 - iteration of Sobel filters and normalized Gaussian smoothing on a 1D signal of dimension 20
 - called on on 20 classes of signals
 - functions are linear: the summary is exact (accuracy loss=1)
 - only 2 full analyzes of f and 18 instantiations
 - instantiation is fast: time gain of 6.9
- filter: recursive order 2 filter with uncertain parameters

	example	sincos	img_filter	filter
	#lines/ $#$ vars	208/135	194/55	96/19
Non-modular	time (s)	3.84	11.8	49
Modular	time(s)	0.79	1.7	10
	instantiations	63/65	18/20	6/8
Ratio	time gain	4.9	6.9	4.9
	accuracy loss	2.23	1	1.27

E. Goubault, S. Putot and F. Védrine, MEASI, CEA LIST

Benchmarks

- sincos: sine and cosine approximations
- img_filter: edge detection on a small image:
- filter: recursive order 2 filter with uncertain parameters
 - slight non-linearity: small accuracy loss

	example	sincos	img_filter	filter
	#lines/#vars	208/135	194/55	96/19
Non-modular	time (s)	3.84	11.8	49
Modular	time(s)	0.79	1.7	10
	instantiations	63/65	18/20	6/8
Ratio	time gain	4.9	6.9	4.9
	accuracy loss	2.23	1	1.27

Performance

Possibly many noise symbols (though artificial here)

Instantiations of linear cost (vs quadratic monolithic analysis here)

Accuracy: $y1 \in [-6.5, 2.5]$ (modular) vs [-3, 0] (non-modular), and $y2 \in [-4, 4]$ vs [-2, 4].

Conclusion

- Zonotopic abstraction of input-output relationships naturally well suited to modular analysis
- Simple and efficient algorithm: promising results with our prototype on small examples
- Experiments on large industrial test cases:
 - first partly automated experiments (see paper for details)
 - achieved using the interactive version of Fluctuat (see TAPAS'12 presentation)
 - fully automated experiments require combination with modular alias analyses
 - another difficulty is to determine the right level of modularity (many possible levels in some instrumentation software)
 - heuristics to create several summaries (as hinted in the paper) to be developed/experimented