DE LA RECHERCHE À L'INDUSTRIE

Robustness analysis of finite precision implementations

Eric Goubault and Sylvie Putot

LMeASI, CEA LIST | APLAS Conference, Melbourne, December 9, 2013

www.cea.fr

Motivations

Context: automatic validation of numerical programs

- Infer invariant properties both in floating-point and real number semantics
 - Abstract interpretation based static analysis (affine arithmetic/zonotopes)
- Validate finite precision implementations: prove the program computes something close to expected (in real numbers)
 - Bound and propagate rounding errors: accuracy of computations
 - Behaviour of the program (control flow, number of iterations)
- Implemented in our abstract interpreter FLUCTUAT

A difficulty in error analysis: unstable tests

- When finite precision and real control flows are potentially different
- If discontinuity of treatment between branches, error analysis is unsound
- When considering sets of executions, most tests are potentially unstable

We propose here to compute discontinuity errors in unstable tests

- Makes our error analysis sound in presence of unstable tests
- Provides a robustness analysis

Can small uncertainty on inputs cause only small perturbations on the outputs (with different execution paths): notions classical for control systems but not so much for software implementations.

Some recent work in critical embedded sofware:

- Some real cases (cf NASA engineer Bushnell's pres. at NSV 2011 on the F22 raptor crossing int. date line in 2007)
- Continuity in Software Systems [Hamlet 2002]
- Continuity analysis and robustness of programs [Chaudhuri, Gulwani, Lublineramn 2010-2012]
- Robust software synthesis, Symbolic robustness analysis, etc [Majumdar, Render, Tabuada, Saha, 2009-2012]

All tests are unstable, but the implementation is robust, the conditional block does not introduce a discontinuity

Without unstable test analysis, unsound results in Fluctuat:

An unstable test is signalled at the if statement

■ y has real value in [1,1.4531] with an error in [-0.0005312,0.00008592]

Unstable test: consider for instance $r^{x} = 2$ and $f^{x} = 2 + 0.001$

execution in reals $(r^{x} = 2)$ takes the else branch: $r^{y} = 1.4375$,

execution in floats ($f^x = 2 + 0.001$) takes the then branch: $f^y = 1.4145...$

The test introduces a discontinuity $f^y - r^y = -0.023$ around the test condition (x == 2): larger than the error bounds

want to consider discontinuity as a new error term; accurate abstraction ? CEA | APLAS'2013 Conference, Melbourne | p. 5 DE LA RECHERCHE À L'INDUSTR

With unstable test analysis

d main() {			
ouble <u>x</u> , y ;	2,69e-02		
= BUILTIN_DAED_DREAL_WITH_ERROR(1,2,0,0.001);	1,79e-02		
$\frac{ x ^2 + 2 }{ x ^2 + 2 x ^2} = \operatorname{sqrt2}^*(1 + (x /2 - 1) ^*(.5 - 0.125)^*(x /2 - 1));$ $\operatorname{else} \{ x ^2 + (x -1) ^*(.5 + (x -1) ^*(.5 - 0.125));$	8,97e-03		
$y = 1 + (\underline{x} - 1)^{n} (.5 + (\underline{x} - 1)^{n} (125 + (\underline{x} - 1)^{n} .0625)),$	0,00e+00 _	25 5	0
0 0 0 Warnings	Variables / Files	Variable Interval	
Potential overflows :	signgam (integer)	Float :	
	x (double)	1.00000000	1.45362502
	y (double)	Real :	1 45212500
		Global error	1.45312500
Threats :		-3.94114776e-2	3.89556561e-2
Туре		Relative error :	
1 🛆 Unstable test (machine and real value do not take	newnewsqrt.c	-3.94114776e-2 Higher Order error :	3.89556561e-2
		0	0
		At current point (10) : *	
		-0.0389847	0.0389847

Abstraction of real and finite precision computations in FLUCTUAT

- Affine arithmetic and zonotopes
- Extension to the analysis of finite precision implementations
- Test interpretation, unstable test / robustness analysis

Affine Arithmetic (Comba & Stolfi 93)

Affine forms and affine arithmetic

 $\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n, \ x_i \in \mathbb{R}$

where the ε_i are symbolic variables (*noise symbols*), with value in [-1, 1].

Assignment x := [a, b] introduces a noise symbol:

$$\hat{x} = \frac{(a+b)}{2} + \frac{(b-a)}{2}\varepsilon_i$$

Addition/subtraction are exact:

$$\hat{x}+\hat{y}=(x_0+y_0)+(x_1+y_1)\varepsilon_1+\ldots+(x_n+y_n)\varepsilon_n$$

Non linear operations : approximate linear form, new noise term bounding the approximation error (close to Taylor models of low degree)

Geometric concretization as zonotopes in \mathbb{R}^p

$$\hat{x} = 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4$$

$$\hat{y} = 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4$$

Main idea to interpret test, informally

- Affine forms are unchanged, translate the condition on noise symbols
- Equality tests are interpreted by the substitution of one noise symbol of the constraint

Example

```
real x = [0, 10];
real y = 2*x;
if (y \ge 10)
y = x;
```

Affine forms before tests: $x = 5 + 5\varepsilon_1$, $y = 10 + 10\varepsilon_1$

In the if branch $\varepsilon_1 \ge 0$: condition acts on both x and y

Functional interpretation

The test condition leads to a condition on the noise symbols ε_i , that can be interpreted as a restriction to the set of inputs that can lead to an execution satisfying the test condition.

Aim: compute rounding errors and their propagation

- we need the real and floating-point values
- for each variable, we compute $(f^{\times}, r^{\times}, e^{\times})$
- then we will abstract each term (real value and errors)

$$f^{*} = 0.1 + 1.49e^{-9} [1]$$

$$f^{y} = 0.5$$

$$f^{z} = 0.6 + 1.49e^{-9} [1] + 2.23e^{-8} [3]$$

$$f^{t} = 0.06 + 1.04e^{-9} [1] + 2.23e^{-9} [3] - 8.94e^{-10} [4] - 3.55e^{-17} [ho]$$

r X

DE LA RECHERCHE À L'INDUSTR

Cea

Example (Fluctuat)

Mel-

Abstract value at each control point c

For each variable, affine forms for real value and error:

$$f^{x} = (\alpha_{0}^{x} + \bigoplus_{i} \alpha_{i}^{x} \varepsilon_{i}^{r}) + (\underbrace{e_{0}^{x}}_{\text{center of the error}} + \underbrace{\bigoplus_{l} e_{l}^{x} \varepsilon_{l}^{e}}_{\text{uncertainty on error due to point } i$$

$$+ \underbrace{\bigoplus_{i} m_{i}^{x} \varepsilon_{i}^{r}}_{\text{propag of uncertainty on value at pt } i$$

Constraints on noise symbols coming from interpretation of test condition

 ε^r ∈ Φ^x_r for real control flow (test on the r^x: constraints on the ε^r_t)
 (ε^r, ε^e) ∈ Φ^x_f for finite precision control flow (test on the f^x = r^x + e^x: constraints on the ε^r_t and ε^e_t)

Unstable test condition = intersection of constraints $\varepsilon^r \in \Phi_r^X \sqcap \Phi_f^Y$:

- unstable test: for a same execution (same values of the noise symbols ε_i) the control flow is different
- restricts the range of the ε_i : allows us to bound accurately the discontinuity error

Abstract value

An abstract value X, for a program with p variables x_1, \ldots, x_p , is a tuple $X = (R^X, E^X, D^X, \Phi_r^X, \Phi_f^X)$ composed of the following affine sets and constraints, for all $k = 1, \ldots, p$:

$$\left\{ \begin{array}{ll} R^{X} : \ \hat{r}_{k}^{X} &= \ r_{0,k}^{X} + \sum_{i=1}^{n} r_{i,k}^{X} \varepsilon_{i}^{r} & \text{where } \varepsilon^{r} \in \Phi_{r}^{X} \\ E^{X} : \ \hat{e}_{k}^{X} &= \ e_{0,k}^{X} + \sum_{i=1}^{n} e_{i,k}^{i} \varepsilon_{i}^{r} + \sum_{j=1}^{m} e_{n+j,k}^{X} \varepsilon_{j}^{e} & \text{where } (\varepsilon^{r}, \varepsilon^{e}) \in \Phi_{f}^{X} \\ D^{X} : \ \hat{d}_{k}^{X} &= \ d_{0,k}^{X} + \sum_{i=1}^{o} d_{i,k}^{X} \varepsilon_{i}^{d} \\ \hat{f}_{k}^{X} &= \ \hat{r}_{k}^{X} + \hat{e}_{k}^{X} & \text{where } (\varepsilon^{r}, \varepsilon^{e}) \in \Phi_{f}^{X} \end{array} \right.$$

$$\begin{split} E^X & \text{ is the propagated rounding error, } D^X & \text{the propagated discontinuity error} \\ \text{New discontinuity errors computed when joining branches of a possibly} \\ & \text{unstable test} \\ Z &= X \sqcup Y & \text{is } Z = (R^Z, E^Z, D^Z, \Phi_r^X \cup \Phi_r^Y, \Phi_f^X \cup \Phi_f^Y) & \text{such that} \\ & \left\{ \begin{array}{c} (R^Z, \Phi_f^Z \cup \Phi_f^Z) = (R^X, \Phi_r^X \cup \Phi_r^X) \sqcup (R^Y, \Phi_r^Y \cup \Phi_f^Y) \\ (E^Z, \Phi_f^Z) = (E^X, \Phi_f^X) \sqcup (E^Y, \Phi_f^Y) \\ D^Z &= D^X \sqcup D^Y \sqcup (R^X - R^Y, \Phi_f^X \sqcap \Phi_r^Y) \sqcup (R^Y - R^X, \Phi_f^Y \sqcap \Phi_r^X) \end{array} \right. \end{split}$$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

At cpt 1: $\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}$; $\hat{e}_{[1]}^{x} = u$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}; \ \hat{e}_{[1]}^{x} = u$$

Test x \leq 2, real flow: $\Phi_r^{[2]}$: $\hat{r}_{[1]}^x = 2 + \varepsilon_1^r \leq 2$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}; \ \hat{e}_{[1]}^{x} = u$$

$$\begin{array}{l} \text{Real at [2]:} \ (\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]}) \\ \text{Real at [3]:} \ (\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]}) \end{array}$$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}; \ \hat{e}_{[1]}^{x} = u$$

Real at [2]: $(\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]})$ Real at [3]: $(\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]})$

Test x
$$\leq$$
 2, float flow:
 $\Phi_f^{[2]}$: $\hat{r}_{[1]}^x + \hat{e}_{[1]}^x = 2 + \varepsilon_1^r + u \leq 2$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\begin{array}{l} \text{Real at [2]:} \ (\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]}) \\ \text{Real at [3]:} \ (\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]}) \end{array}$$

Error at [2]:
$$\hat{\mathbf{e}}_{[2]}^{y} = \hat{\mathbf{e}}_{[1]}^{x} + \delta \varepsilon_{2}^{e}$$

Error at [3]: $\hat{\mathbf{e}}_{[3]}^{y} = \hat{\mathbf{e}}_{[1]}^{x}$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\begin{array}{l} \text{Real at [2]:} \ (\hat{r}^y_{[2]} = 4 + \varepsilon^r_1, \Phi^{[2]}_r) \\ \text{Real at [3]:} \ (\hat{r}^y_{[3]} = 2 + \varepsilon^r_1, \Phi^{[3]}_r) \end{array}$$

Error at [2]:
$$\hat{e}_{[2]}^y = u + \delta \varepsilon_2^{\epsilon}$$

Error at [3]: $\hat{e}_{[3]}^y = u$

Unstable test, first possibility: $\Phi_r^{[2]} \sqcap \Phi_f^{[3]} : -u < \varepsilon_1^r \le 0$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\begin{array}{l} \text{Real at [2]:} \ (\hat{r}^y_{[2]} = 4 + \varepsilon^r_1, \Phi^{[2]}_r) \\ \text{Real at [3]:} \ (\hat{r}^y_{[3]} = 2 + \varepsilon^r_1, \Phi^{[3]}_r) \end{array} \end{array}$$

$$\begin{array}{l} \text{Error at [2]: } \hat{\mathbf{e}}_{[2]}^{y} = u + \delta \varepsilon_{2}^{e} \\ \text{Error at [3]: } \hat{\mathbf{e}}_{[3]}^{y} = u \end{array} \end{array}$$

Unstable test, second possibility: $\Phi_r^{[3]} \sqcap \Phi_f^{[2]} = \emptyset$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\begin{array}{l} \text{Real at [2]: } (\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]}) \\ \text{Real at [3]: } (\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]}) \end{array}$$

Error at [2]:
$$\hat{\mathbf{e}}_{[2]}^{y} = u + \delta \varepsilon_{2}^{z}$$

Error at [3]: $\hat{\mathbf{e}}_{[3]}^{y} = u$

$$\text{Error at } [4]: \hat{e}_{[2]}^{y} \sqcup \hat{e}_{[3]}^{y} \sqcup \big(\underbrace{\hat{f}_{[3]}^{y} - \hat{r}_{[2]}^{y}}_{\hat{r}_{[3]}^{y} + \hat{e}_{[3]}^{y} - \hat{r}_{[2]}^{y}}, \Phi_{f}^{[3]} \sqcap \Phi_{r}^{[2]} \big) = \hat{e}_{[2]}^{y} \sqcup \hat{e}_{[3]}^{y} + \big(\hat{r}_{[3]}^{y} - \hat{r}_{[2]}^{y}, \Phi_{f}^{[3]} \sqcap \Phi_{r}^{[2]} \big)$$

bourne | p. 14

bourne | p.

Example: sound unstable test analysis

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\begin{array}{l} \text{Real at [2]:} \ (\hat{r}^y_{[2]} = 4 + \varepsilon^r_1, \Phi^{[2]}_r) \\ \text{Real at [3]:} \ (\hat{r}^y_{[3]} = 2 + \varepsilon^r_1, \Phi^{[3]}_r) \end{array} \end{array}$$

Error at [2]:
$$\hat{\mathbf{e}}_{[2]}^{y} = u + \delta \varepsilon_{2}^{z}$$

Error at [3]: $\hat{\mathbf{e}}_{[3]}^{y} = u$

$$\begin{array}{c} \text{Error at } [4] : \underbrace{\hat{e}_{[2]}^{y} \sqcup \hat{e}_{[3]}^{y}}_{\hat{e}_{[4]}^{y}} + \underbrace{(\hat{r}_{[3]}^{y} - \hat{r}_{[2]}^{y}, \Phi_{f}^{[3]} \sqcap \Phi_{r}^{[2]})}_{\hat{d}_{[4]}^{y}} = u + \delta \varepsilon_{2}^{e} - 2\chi_{[-u,0]}(\varepsilon_{1}^{r}) \\ \text{CEA} \mid \text{ APLAS'2013 Conference, Mel-$$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

Error at [4]:
$$\underbrace{\hat{e}_{[2]}^{\nu} \sqcup \hat{e}_{[3]}^{\nu}}_{\hat{e}_{[4]}^{\nu}} + \underbrace{(\hat{r}_{[3]}^{\nu} - \hat{r}_{[2]}^{\nu}, \Phi_{r}^{[3]} \sqcap \Phi_{r}^{[2]})}_{\hat{d}_{[4]}^{\nu}} = \underbrace{u + \delta \varepsilon_{2}^{e}}_{\hat{e}_{[4]}^{\nu}} + \underbrace{-2\chi_{[-u,0]}(\varepsilon_{1}^{r})}_{\hat{d}_{[4]}^{\nu}}$$
Real value $\hat{r}_{[4]}^{\gamma} = 3 + \varepsilon_{4}^{r} \in [2, 4]$
Float value $\hat{r}_{[4]}^{\gamma} = \hat{r}_{[4]}^{\gamma} + \hat{e}_{[4]}^{\gamma} = 3 + \varepsilon_{4}^{r} + u + \delta \varepsilon_{2}^{e} \in [2 + u - \delta, 4 + u + \delta]$

bourne | p. 14

Abstract value

An abstract value X, for a program with p variables x_1, \ldots, x_p , is a tuple $X = (R^X, E^X, D^X, \Phi_r^X, \Phi_f^X)$ composed of the following affine sets and constraints, for all $k = 1, \ldots, p$:

$$\left\{ \begin{array}{ll} R^{X} : \ \hat{r}_{k}^{X} &= \ r_{0,k}^{X} + \sum_{i=1}^{n} r_{i,k}^{X} \varepsilon_{i}^{r} & \text{where } \varepsilon^{r} \in \Phi_{r}^{X} \\ E^{X} : \ \hat{e}_{k}^{X} &= \ e_{0,k}^{X} + \sum_{i=1}^{n} e_{i,k}^{X} \varepsilon_{i}^{r} + \sum_{j=1}^{m} e_{n+j,k}^{X} \varepsilon_{j}^{e} & \text{where } (\varepsilon^{r}, \varepsilon^{e}) \in \Phi_{f}^{X} \\ D^{X} : \ \hat{d}_{k}^{X} &= \ d_{0,k}^{X} + \sum_{i=1}^{o} d_{i,k}^{X} \varepsilon_{i}^{d} & \\ \hat{f}_{k}^{X} &= \ \hat{r}_{k}^{X} + \hat{e}_{k}^{X} & \text{where } (\varepsilon^{r}, \varepsilon^{e}) \in \Phi_{f}^{X} \end{array} \right.$$

$$\begin{split} E^X & \text{ is the propagated rounding error, } D^X & \text{the propagated discontinuity error} \\ \text{New discontinuity errors computed when joining branches of a possibly} \\ & \text{unstable test} \\ Z &= X \sqcup Y & \text{is } Z = (R^Z, E^Z, D^Z, \Phi_r^X \cup \Phi_r^Y, \Phi_f^X \cup \Phi_f^Y) & \text{such that} \\ & \left\{ \begin{array}{c} (R^Z, \Phi_r^Z \cup \Phi_f^Z) = (R^X, \Phi_r^X \cup \Phi_r^X) \sqcup (R^Y, \Phi_r^Y \cup \Phi_f^Y) \\ (E^Z, \Phi_f^Z) = (E^X, \Phi_f^X) \sqcup (E^Y, \Phi_f^Y) \\ D^Z &= D^X \sqcup D^Y \sqcup (R^X - R^Y, \Phi_f^X \sqcap \Phi_r^Y) \sqcup (R^Y - R^X, \Phi_f^Y \sqcap \Phi_r^X) \end{array} \right. \end{split}$$

DE LA RECHERCHE À L'INDUSTR

Householder algorithm for square root

1 #include "daed_builtins.h"	8.45e-07	
3 #define EPS 0.00000001 /* 10^-8 */		
4 int main 0		
5{	6,33e-07	
b float xn, xnp1, residu, Input, Output, should be zero;		
7 int i:	4.225.07	
8 <u>Input</u> = FBETWEEN(16.0, 16.002);	4,22e-07	
9 $xn = 1.0/lnput; xnpl = xn;$		
$\frac{\text{residu}}{\text{i} = 0} = 2.0^{\text{LPS}}(\underline{xn} + \underline{xnp1})/(\underline{xn} + \underline{xnp1});$	2.11e-07	
while (fabs(residu) > _EPS) {		
xnp1 = xn * (1.875 +		
<u>lnput*xn*xn*(-1.25+0.375*lnput*xn*xn));</u>	0,00e+0 <u>0</u>	
$\frac{residu}{residu} = 2.0^{(xnp1-xn)/(xn+xnp1)};$	V T	25 50
.6 <u>i++;</u>	Variables / Files	Variable Interval
.7 }	Input (float)	Float :
8 Output = 1.0 / xnp1; 9 should be zero = Output cart(Input);	Output (float)	-1.18123876e-6 1.18123956e-
$\frac{1}{2}$ return 0:	i (integer)	Real :
1] OOO Warnings	main (integer)	-1.02630258e-8 1.02636675e-
2 Potential overflows :	should be zero (float)	-1.17097598e-6 1.17097576e-
Error at top in i	signgam (integer)	Relative error :
Value at top in i	Householder sart c	-00 +0
	householder_sqrt.c	Higher Order error :
		0
Threats :		At current point (17) : "
Threats : Type		0 179276 07 0 179276 0
Threats : Type 1 Unstable test (machine and real value do not take the si		-9.17837e-07 9.17837e-0
Trreats : Type 1 Unstable test (machine and real value do not take the si 2 Unstable test (machine and real value do not take the si		-9.17837e-07 9.17837e-0

- Tractable discontinuity analysis implemented in FLUCTUAT (making it sound even when tests are unstable)
- More applications, in particular to robustness analysis in control
- Potential links with constraint-based approaches to the verification of finite-precision implementations such as, e. g.
 O. Ponsini, C. Michel, M. Rueher: Refining Abstract Interpretation Based Value Analysis with Constraint Programming Techniques. CP 2012

Come and see more about FLUCTUAT in the poster and demo session !

