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Motivations

Context: automatic validation of numerical programs

Infer invariant properties both in floating-point and real number semantics
Abstract interpretation based static analysis (affine arithmetic/zonotopes)

Validate finite precision implementations: prove the program computes
something close to expected (in real numbers)

Bound and propagate rounding errors: accuracy of computations
Behaviour of the program (control flow, number of iterations)

Implemented in our abstract interpreter FLUCTUAT

A difficulty in error analysis: unstable tests

When finite precision and real control flows are potentially different

If discontinuity of treatment between branches, error analysis is unsound

When considering sets of executions, most tests are potentially unstable

We propose here to compute discontinuity errors in unstable tests

Makes our error analysis sound in presence of unstable tests

Provides a robustness analysis
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Linked to program robustness & continuity analysis

Can small uncertainty on inputs cause only small perturbations on the outputs
(with different execution paths): notions classical for control systems but not
so much for software implementations.

Some recent work in critical embedded sofware:

Some real cases (cf NASA engineer Bushnell’s pres. at NSV 2011 on the
F22 raptor crossing int. date line in 2007)

Continuity in Software Systems [Hamlet 2002]

Continuity analysis and robustness of programs [Chaudhuri, Gulwani,
Lublineramn 2010-2012]

Robust software synthesis, Symbolic robustness analysis, etc [Majumdar,
Render, Tabuada, Saha, 2009-2012]
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A typical example of unstable tests: affine interpolators

All tests are unstable, but the implementation is robust, the conditional block
does not introduce a discontinuity
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But discontinuities also actually occur (sqrt approx.)

#d e f i n e s q r t 2 1.414213538169860839843750
d o u b l e x , y ; x = DREAL WITH ERROR ( 1 , 2 , 0 , 0 . 0 0 1 ) ;
i f ( x>2)

y = s q r t 2 ∗(1+( x /2−1)∗(.5−0.125∗( x /2−1))) ;
e l s e

y = 1+(x−1)∗(.5+( x−1)∗(−.125+(x−1 )∗ . 0 6 2 5 ) ) ;

Without unstable test analysis, unsound results in Fluctuat:

An unstable test is signalled at the if statement

y has real value in [1,1.4531] with an error in [-0.0005312,0.00008592]

Unstable test: consider for instance r x = 2 and f x = 2 + 0.001

execution in reals (r x = 2) takes the else branch: r y = 1.4375,

execution in floats (f x = 2 + 0.001) takes the then branch: f y = 1.4145...

The test introduces a discontinuity f y − r y = −0.023 around the test
condition (x == 2): larger than the error bounds

want to consider discontinuity as a new error term; accurate abstraction ?
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With unstable test analysis
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Outline of the talk

Abstraction of real and finite precision computations in FLUCTUAT
Affine arithmetic and zonotopes
Extension to the analysis of finite precision implementations

Test interpretation, unstable test / robustness analysis
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Affine Arithmetic (Comba & Stolfi 93)

Affine forms and affine arithmetic
x̂ = x0 + x1ε1 + . . .+ xnεn, xi ∈ R

where the εi are symbolic variables (noise symbols), with value in [−1, 1].

Assignment x := [a, b] introduces a noise symbol:

x̂ =
(a + b)

2
+

(b − a)

2
εi .

Addition/subtraction are exact:

x̂ + ŷ = (x0 + y0) + (x1 + y1)ε1 + . . .+ (xn + yn)εn

Non linear operations : approximate linear form, new noise term bounding the
approximation error (close to Taylor models of low degree)

Geometric concretization as zonotopes in Rp

x̂ = 20 −4ε1 +2ε3 +3ε4

ŷ = 10 −2ε1 +ε2 −ε4
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y
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Test interpretation

Main idea to interpret test, informally

Affine forms are unchanged, translate the condition on noise symbols

Equality tests are interpreted by the substitution of one noise symbol of
the constraint

Example

r e a l x = [ 0 , 1 0 ] ;
r e a l y = 2∗x ;
i f ( y >= 10)

y = x ;

Affine forms before tests: x = 5 + 5ε1, y = 10 + 10ε1

In the if branch ε1 ≥ 0: condition acts on both x and y

Functional interpretation

The test condition leads to a condition on the noise symbols εi , that can be
interpreted as a restriction to the set of inputs that can lead to an execution
satisfying the test condition.
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FLUCTUAT: concrete semantics for finite precision analysis

Aim: compute rounding errors and their propagation
we need the real and floating-point values
for each variable, we compute (f x , rx , ex )
then we will abstract each term (real value and errors)

f l o a t x , y , z ;
x = 0 . 1 ; // [ 1 ]
y = 0 . 5 ; // [ 2 ]
z = x+y ; // [ 3 ]
t = x∗ z ; // [ 4 ]

f x = 0.1 + 1.49e−9 [1]

f y = 0.5

f z = 0.6 + 1.49e−9 [1] + 2.23e−8 [3]

f t = 0.06 + 1.04e−9 [1] + 2.23e−9 [3]− 8.94e−10 [4]− 3.55e−17 [ho]
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Example (Fluctuat)
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Abstract domain in Fluctuat

Abstract value at each control point c

For each variable, affine forms for real value and error:

f x = (αx
0 +

⊕
i

αx
i ε

r
i )

︸ ︷︷ ︸
real value

+( ex0︸︷︷︸
center of the error

+
⊕
l

exl ε
e
l︸ ︷︷ ︸

uncertainty on error due to point l

+
⊕
i

mx
i ε

r
i︸ ︷︷ ︸

propag of uncertainty on value at pt i

)

Constraints on noise symbols coming from interpretation of test condition
εr ∈ ΦX

r for real control flow (test on the rx : constraints on the εri )

(εr , εe) ∈ ΦX
f for finite precision control flow (test on the f x = rx + ex :

constraints on the εri and εel )

Unstable test condition = intersection of constraints εr ∈ ΦX
r u ΦY

f :

unstable test: for a same execution (same values of the noise symbols εi )
the control flow is different
restricts the range of the εi : allows us to bound accurately the
discontinuity error
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Formally, sound abstraction (with discontinuity errors)

Abstract value
An abstract value X , for a program with p variables x1, . . . , xp, is a tuple
X = (RX ,EX ,DX ,ΦX

r ,Φ
X
f ) composed of the following affine sets and

constraints, for all k = 1, . . . , p:
RX : r̂Xk = rX0,k +

∑n
i=1 r

X
i,k ε

r
i where εr ∈ ΦX

r

EX : êXk = eX0,k +
∑n

i=1 e
X
i,k ε

r
i +

∑m
j=1 e

X
n+j,k ε

e
j where (εr , εe) ∈ ΦX

f

DX : d̂X
k = dX

0,k +
∑o

i=1 d
X
i,k ε

d
i

f̂ Xk = r̂Xk + êXk where (εr , εe) ∈ ΦX
f

EX is the propagated rounding error, DX the propagated discontinuity error

New discontinuity errors computed when joining branches of a possibly
unstable test
Z = X t Y is Z = (RZ ,EZ ,DZ ,ΦX

r ∪ ΦY
r ,Φ

X
f ∪ ΦY

f ) such that
(RZ ,ΦZ

r ∪ ΦZ
f ) = (RX ,ΦX

r ∪ ΦX
f ) t (RY ,ΦY

r ∪ ΦY
f )

(EZ ,ΦZ
f ) = (EX ,ΦX

f ) t (EY ,ΦY
f )

DZ = DX t DY t (RX − RY ,ΦX
f u ΦY

r ) t (RY − RX ,ΦY
f u ΦX

r )
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Example: sound unstable test analysis

x := [1,3] + u; // [1]

if (x ≤ 2)

y = x+2; // [2]

else

y = x; // [3]

// [4]

At cpt 1: r̂ x[1] = 2 + εr1; êx[1] = u

εr1

-1 0 1
0

1

2

3

4

5

−u

x

y

r̂ x[1]

f̂ x[1]

r̂ y[2]

r̂ y[3]

f̂ y[2]
f̂ y[3]

Φ
[2]
r : εr1 ≤ 0 Φ

[3]
r : εr1 > 0

Φ
[2]
f : εr1 ≤ −u Φ

[3]
f : εr1 > −u

Φ
[2]
r u Φ

[3]
f : −u < εr1 ≤ 0
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Real at [2]: (r̂ y[2] = 4 + εr1,Φ
[2]
r )
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Φ
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Φ
[2]
r u Φ

[3]
f : −u < εr1 ≤ 0
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r̂
y
[3]

+ê
y
[3]

−r̂
y
[2]

,Φ
[3]
f u Φ

[2]
r ) = êy[2] t êy[3] + (r̂ y[3] − r̂ y[2],Φ

[3]
f u Φ

[2]
r )
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[3]
f : εr1 > −u

Φ
[2]
r u Φ

[3]
f : −u < εr1 ≤ 0

CEA | APLAS’2013 Conference, Mel-
bourne | p. 14



Example: sound unstable test analysis

x := [1,3] + u; // [1]

if (x ≤ 2)

y = x+2; // [2]

else

y = x; // [3]

// [4]

Real at [2]: (r̂ y[2] = 4 + εr1,Φ
[2]
r )

Real at [3]: (r̂ y[3] = 2 + εr1,Φ
[3]
r )

Error at [2]: êy[2] = u + δεe2
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[3]
f u Φ[2]

r )︸ ︷︷ ︸
d̂
y
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else
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[3]
f u Φ[2]

r )︸ ︷︷ ︸
d̂
y
[4]

= u + δεe2︸ ︷︷ ︸
ê
y
[4]

+−2χ[−u,0](ε
r
1)︸ ︷︷ ︸

d̂
y
[4]

Real value r̂ y[4] = 3 + εr4 ∈ [2, 4]

Float value f̂ y[4] = r̂ y[4] + êy[4] = 3 + εr4 + u + δεe2 ∈ [2 + u − δ, 4 + u + δ]

εr1

-1 0 1
0

1

2

3

4

5

−u

y

r̂ y[2]

r̂ y[3]
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Back to the definitions

Abstract value
An abstract value X , for a program with p variables x1, . . . , xp, is a tuple
X = (RX ,EX ,DX ,ΦX

r ,Φ
X
f ) composed of the following affine sets and

constraints, for all k = 1, . . . , p:
RX : r̂Xk = rX0,k +

∑n
i=1 r

X
i,k ε

r
i where εr ∈ ΦX

r

EX : êXk = eX0,k +
∑n

i=1 e
X
i,k ε

r
i +

∑m
j=1 e

X
n+j,k ε

e
j where (εr , εe) ∈ ΦX

f

DX : d̂X
k = dX

0,k +
∑o

i=1 d
X
i,k ε

d
i

f̂ Xk = r̂Xk + êXk where (εr , εe) ∈ ΦX
f

EX is the propagated rounding error, DX the propagated discontinuity error

New discontinuity errors computed when joining branches of a possibly
unstable test
Z = X t Y is Z = (RZ ,EZ ,DZ ,ΦX

r ∪ ΦY
r ,Φ

X
f ∪ ΦY

f ) such that
(RZ ,ΦZ

r ∪ ΦZ
f ) = (RX ,ΦX

r ∪ ΦX
f ) t (RY ,ΦY

r ∪ ΦY
f )

(EZ ,ΦZ
f ) = (EX ,ΦX

f ) t (EY ,ΦY
f )

DZ = DX t DY t (RX − RY ,ΦX
f u ΦY

r ) t (RY − RX ,ΦY
f u ΦX

r )
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Householder algorithm for square root
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Conclusion

Tractable discontinuity analysis implemented in FLUCTUAT (making it
sound even when tests are unstable)

More applications, in particular to robustness analysis in control

Potential links with constraint-based approaches to the verification of
finite-precision implementations such as, e. g.
O. Ponsini, C. Michel, M. Rueher: Refining Abstract Interpretation Based
Value Analysis with Constraint Programming Techniques. CP 2012

Come and see more about FLUCTUAT in the poster and demo session !
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