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Habilitation à Diriger les Recherches | Saclay Nanoinnov, December 13, 2012

CEA | | p. 1



During the last ten years...

Some steps

Starting point (E. Goubault, SAS 2001): bound and propagate rounding
errors (intervals) and indicate provenance

hired Jan. 01 (PhD Num. Analysis): first implement these ideas (ESOP’02)

Zonotopic abstract domains
first ideas for the error quite early (Dagstuhl Seminar 2002)
first focus on the real value (SAS 2006, arxiv 2008, arxiv 2009)
back to errors (VMCAI 2011, much sooner in Fluctuat...)
extensions (SAS 2007, Computing 2012)

Meanwile fixpoint computation (CAV 2005), development of FLUCTUAT

Environment

Academic projects: IST Daedalus (2000-2002), ANR Eva-Flo (2003-2005),
ANR ASOPT (2009-2011), ANR CPP (2009-2012), ANR DEFIS
(2012-2015) Digiteo PASO (2009-2011), SANSCRIT (2010-2013)

most of them: interactions between program analysis and numerical
computation, optimisation, control, probabilities

Industrial collaborations: many projects and some publications (FMICS
2007, FMICS 2009, DASIA 2009)
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Automatic validation of numerical programs and systems

What is correction for numerical computations?

No run-time error (division by 0, overflow, etc)

The program computes a result close to what is expected
accuracy (and behaviour) of finite precision computations
method error

Context: safety-critical programs

Typically flight control or industrial installation control (signal processing,
instrumentation software)

Sound and automatic methods

Guaranteed methods, that prove good behaviour or else try to give
counter-examples

Automatic methods, given a source code, and sets of (possibly uncertain)
inputs and parameters

Abstract interpretation based static analysis
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Set-based methods and Abstract Interpretation

Automatic invariant synthesis

Program seen as system of equations X n+1 = F (X n)
Based on a notion of control points in the program
Equations describe how values of variables are collected at each control
point, for all possible executions (collecting semantics)

Example

i n t x =[−100 ,50] ; [ 1 ]
w h i l e [ 2 ] ( x < 100)

[ 3 ] x=x +1; [ 4 ]
[ 5 ]


x1 = [−100, 50]
x2 = x1 ∪ x4

x3 = ]−∞, 99] ∩ x2

x4 = x3 + [1, 1]
x5 = [100,+∞[∩x2
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Set-based methods and Abstract Interpretation

Automatic invariant synthesis

Program seen as a system of equations X n+1 = F (X n)

Want to compute reachable or invariant sets at control points

Least fixpoint computation on partially ordered structure
classically computed as the limit of the Kleene iteration

X 0 = ⊥,X 1 = F (X 0), . . . ,X k+1 = X k ∪ F (X k)

or policy iteration (Newton-like method)

Generally not computable

Sound abstractions heavily relying on set-based methods

Choose a computable abstraction that defines an over or
under-approximation of set of values

Need a partially ordered structure, with join and meet operators

Transfer concrete fixpoint computation in the abstract world
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Outline

Affine sets: zonotopic abstraction of real computations

A word on fixpoint computations

Extensions of the zonotopic approach

Analyzing finite precision computations: Fluctuat
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Affine Arithmetic (Comba & Stolfi 93)

Affine forms

Affine form for variable x:

x̂ = x0 + x1ε1 + . . .+ xnεn, xi ∈ R

where the εi are symbolic variables (noise symbols), with value in [−1, 1].

Sharing εi between variables expresses implicit dependency

Interval concretization of affine form x̂ :[
x0 −

n∑
i=0

|xi |, x0 +
n∑

i=0

|xi |
]

Geometric concretization as zonotopes in Rp

x̂ = 20 −4ε1 +2ε3 +3ε4

ŷ = 10 −2ε1 +ε2 −ε4

x

y

10 15 20 25 30
5

10

15
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Affine arithmetic

Assignment x := [a, b] introduces a noise symbol:

x̂ =
(a + b)

2
+

(b − a)

2
εi .

Addition/subtraction are exact:

x̂ + ŷ = (x0 + y0) + (x1 + y1)ε1 + . . .+ (xn + yn)εn

Non linear operations : approximate linear form, new noise term bounding
the approximation error

Close to Taylor models of low degree (large ranges for static analysis)
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Numerical abstract domain (in short!)

Concretization-based analysis

Machine-representable abstract values X (affine sets)

A concretization function γf defining the set of concrete values
represented by an abstract value

A partial order on these abstract values, induced by γf :
X v Y ⇐⇒ γf (X ) ⊆ γf (Y )

Abstract transfer functions

Arithmetic operations: F is a sound abstraction of f iff

∀x ∈ γf (X ), f (x) ∈ γf (F (X ))

Set operations: join (∪), meet (∩), widening
no least upper bound / greatest lower bound on affine sets
(minimal) upper bounds / over-approximations of the intersection ...

and ... hopefully accurate and effective to compute!!!
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Affine sets as an abstract domain (Arxiv 2008 & 2009)

Two kinds of noise symbols

Input noise symbols (εi ): created by uncertain inputs

Perturbation noise symbols (ηj): created by uncertainty in analysis

Perturbed affine sets X = (CX ,PX ) x̂1

x̂2

. . .
x̂p

 = tCX

 1
ε1

. . .
εn

+ tPX

 η1

η2

. . .
ηm


Central part links the current values of the program variables to the initial values
of the input variables (linear functional)

Perturbation part encodes the uncertainty in the description of values of program
variables due to non-linear computations (multiplication, join etc.)

Zonotopes define input-output relations (parameterization by the εi )

Want an order that preserves these input-output relations
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A simple example: functional interpretation

r e a l x = [ 0 , 1 0 ] ;
r e a l y = x∗x − x ;

x̂

ŷ

Abstraction of function x → y = x2 − x as

y = 32.5 + 45ε1 + 12.5η1
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A simple example: functional interpretation

r e a l x = [ 0 , 1 0 ] ;
r e a l y = x∗x − x ;

x̂

ŷ

Abstraction of function x → y = x2 − x as

y = 32.5 + 45ε1 + 12.5η1

= −12.5 + 9x + 12.5η1

(since x = 5 + 5ε1)
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Functional order relation

Concretization in terms of sets of functions from Rn to Rp:

γf (X ) =

{
f : Rn → Rp | ∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m, f (ε) = tCX

(
1
ε

)
+ tPX η

}
.

Equivalent to the geometric ordering on augmented space Rp+n:
zonotopes enclosing current values of variables + their initial values εi

γ(X̃ ) ⊆ γ(Ỹ ), where X̃ =

 (
0n
In×n

)
CX

0m×n PX


Implies the geometric ordering in Rp

Computable inclusion test:

X v Y ⇐⇒ sup
u∈Rp

(
‖(CY − CX )u‖1 + ‖PXu‖1 − ‖PY u‖1

)
≤ 0

Example

x1 = 2 + ε1, x2 = 2− ε1

x1 and x2 are incomparable
x̂

ε
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(
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≤ 0

Example

x1 = 2 + ε1, x2 = 2− ε1 (geometric
concretization [1, 3])

x1 and x2 are incomparable

x̂

ε
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Functional order relation

Concretization in terms of sets of functions from Rn to Rp:

γf (X ) =
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f : Rn → Rp | ∀ε ∈ [−1, 1]n, ∃η ∈ [−1, 1]m, f (ε) = tCX

(
1
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)
+ tPX η

}
.
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γ(X̃ ) ⊆ γ(Ỹ ), where X̃ =

 (
0n
In×n

)
CX

0m×n PX


Implies the geometric ordering in Rp

Computable inclusion test:

X v Y ⇐⇒ sup
u∈Rp

(
‖(CY − CX )u‖1 + ‖PXu‖1 − ‖PY u‖1

)
≤ 0

Example
x1 = 2 + ε1, x2 = 2− ε1 , x3 = 2 + η1

(geometric concretization [1, 3])

x1 and x2 are incomparable , both are
included in x3.

x̂

ε
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Set operations on affine sets / zonotopes

The choice of “home-made” functional join and meet operations

Keep the parameterization by the εi

These operations should not be expensive

A lot of litterature on zonotopes

Control theory and hybrid systems analysis: same problem of intersection
of zonotopes with guards (Girard, Le Guernic etc)

But these methods are geometrical

Still, could be used on the perturbation part

Now: our join operator (2006-present, with E. Goubault)

Join on coefficients of the forms (interval coefficients): no!

Central form plus deviation (SAS 2006): γ(x̂ ∪ ŷ) in general larger than
γ(x̂) ∪ γ(ŷ), bad for fixpoint computation

Arxiv 2008 and 2009: the componentwise upper bound presented here
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Component-wise upper bound

(
x̂ = 3 + ε1 + 2ε2

û = 0 + ε1 + ε2

)
∪
(

ŷ = 1− 2ε1 + ε2

û = 0 + ε1 + ε2

)
=

(
x̂ ∪ ŷ = 2 + ε2 + 3η1

û = 0 + ε1 + ε2

)

x̂ , ŷ

û

Construction (cost O(n × p))

Keep “minimal common dependencies”

zi = argmin
xi∧yi≤r≤xi∨yi

|r |, ∀i ≥ 1
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Component-wise upper bound

(
x̂ = 3 + ε1 + 2ε2

û = 0 + ε1 + ε2

)
∪
(

ŷ = 1− 2ε1 + ε2

û = 0 + ε1 + ε2

)
=

(
x̂ ∪ ŷ = 2 + ε2 + 3η1

û = 0 + ε1 + ε2

)

x̂∪ŷ

x̂ , ŷ

û

Construction (cost O(n × p))

Keep “minimal common dependencies”

zi = argmin
xi∧yi≤r≤xi∨yi

|r |, ∀i ≥ 1

For each dimension, concretization is the interval union of the
concretizations: γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ)
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Fixpoint computation with componentwise join (arxiv 2008,
with E. Goubault)

General result on recursive linear filters, pervasive in embedded programs:

xk+n+1 =
n∑

i=1

aixk+i +
n+1∑
j=1

bjek+j , e[∗] = input(m,M);

Suppose this concrete scheme has bounded outputs (zeros of
xn −

∑n−1
i=0 ai+1x

i have modules stricty lower than 1).

Then there exists q such that the Kleene abstract scheme “unfolded
modulo q” converges towards a finite over-approximation of the outputs

X̂i = X̂i−1 ∪ f q(Ei , . . . ,Ei−k , X̂i−1, . . . , X̂i−k)

in finite time, potentially with a widening partly losing dependency
information

The abstract scheme is a perturbation (by the join operation) of the
concrete scheme
Uses the stability property of our join operator: for each dimension
γ(x̂ ∪ ŷ) = γ(x̂) ∪ γ(ŷ)
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Some results with the APRON library (K. Ghorbal’s Taylor1+
abstract domain, CAV 2009)

without widening (for p = 5 and p = 16)
filter o2 fixpoint t(s) filter o8 fixpoint t(s)
Boxes > 0.12 Boxes > 0.41
Octagons > 2.4 Octagons > 450
Polyhedra [−1.3,2.82] 0.53 Polyhedra abort >24h
T.1+(5) [−8.9,10.6] 0.18 T.1+(5) > 360
T.1+(16) [−5.3,6.95] 0.13 T.1+(16) > 942

with widening after 10 Kleene iterations (for p = 5 and p = 20)
filter o2 fixpoint t(s) filter o8 fixpoint t(s)
Boxes > <0.01 Boxes > <0.01
Octagons > 0.02 Octagons > 2.56
Polyhedra > 0.59 Polyhedra abort >24h
T.1+(5) [−8.9,10.6] 0.1 T.1+(5) [−8.9,10.6] 0.1
T.1+(20) [−5.4,7.07] 0.2 T.1+(20) [−5.4,7.07] 0.2
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Improved join (NSAD 2012, with T. Le Gall, E. Goubault)

Compute and preserve relations between variables and noise symbols

Compute k < p independent affine relations common to the 2 abstract
values joined (solving a linear system)

Componentwise join on p − k components

Global join for the k remaining components using the relations

mub on the p − k components ⇒ mub on all components (else ub)

Example

(
x̂1 = 2 + ε1

x̂2 = 2 + ε2

)
∪
(

ŷ1 = 4 + ε1

ŷ2 = 4 + ε2

)
γ(X )

γ(Y )

x1

x2

1 3 50

1

3

5
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Improved join (NSAD 2012, with T. Le Gall, E. Goubault)

Compute and preserve relations between variables and noise symbols

Compute k < p independent affine relations common to the 2 abstract
values joined (solving a linear system)

Componentwise join on p − k components

Global join for the k remaining components using the relations

mub on the p − k components ⇒ mub on all components (else ub)

Example(
x̂1 = 2 + ε1

x̂2 = 2 + ε2

)
∪
(

ŷ1 = 4 + ε1

ŷ2 = 4 + ε2

)
Componentwise:(

ẑ1 = 3 + ε1 + η1

ẑ2 = 3 + ε2 + η2

)
γ(X )

γ(Y )

γ(Z)

x1

x2

1 3 50

1

3

5
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Improved join (NSAD 2012, with T. Le Gall, E. Goubault)

Compute and preserve relations between variables and noise symbols

Compute k < p independent affine relations common to the 2 abstract
values joined (solving a linear system)

Componentwise join on p − k components

Global join for the k remaining components using the relations

mub on the p − k components ⇒ mub on all components (else ub)

Example(
x̂1 = 2 + ε1

x̂2 = 2 + ε2

)
∪
(

ŷ1 = 4 + ε1

ŷ2 = 4 + ε2

)
Relation-preserving: x1 − x2 = ε1 − ε2(

ŵ1 = 3 + ε1 + η1

ŵ2 = 3 + ε2 + η1

) γ(X )

γ(Y )

γ(W )

x1

x2

1 3 50

1

3

5
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Example(
x̂1 = 2 + ε1

x̂2 = 2 + ε2

)
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(

ŷ1 = 4 + ε1

ŷ2 = 4 + ε2

)
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γ(Y )
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x1

x2

1 3 50

1

3

5

Future work: imprecise relations
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Fixpoint computation: policy iteration

Policy iteration: Newton-like method to replace the widening process

Kleene iteration with widening can be inefficient and/or inaccurate
especially for bounds on rounding errors (no narrowing)

Policy iteration introduced for stochastic control problems (Howard 60)

Pointed out to our attention by S. Gaubert and proposed together for
static analysis on intervals (CAV 2005)

selection principle: fixpoint problem can be reduced to computing the inf of
fixpoint of simpler problems
decreasing iteration from post-fixpoints: can stop at any time
often faster and more accurate than Kleene iteration, but complexity not
well known (exponential worst case?)

For relational domains (Adje-Gaubert-Goubault-Taly-Zennou, 2007-2012)

Dual method by Gawlitza and Seidl (2007-2012)

Policy iteration and zonotopes ?

Mainly future work, 2 approaches investigated (with intern M. Buchet and
T. Le Gall): policies on the argmin operator (join) or on the constraints
on noise symbols (meet)
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Intersections (K. Ghorbal’s PhD thesis, CAV 2010)

Main idea to interpret test, informally

Translate the condition on noise symbols: constrained affine sets

Abstract domain for the noise symbols: intervals, octagons, etc.

Equality tests are interpreted by the substitution of one noise symbol of
the constraint (cf summary instantiation for modular analysis)

More general constraints in the future ?

Example

r e a l x = [ 0 , 1 0 ] ;
r e a l y = 2∗x ;
i f ( y >= 10)

y = x ;

Affine forms before tests: x = 5 + 5ε1, y = 10 + 10ε1

In the if branch ε1 ≥ 0: condition acts on both x and y

(Minimal) upper bound computation on constrained affine sets is difficult
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Modular analysis (SAS 2012, with F. Védrine, E. Goubault)

Remember: example of functional abstraction

r e a l x = [ 0 , 1 0 ] ;
r e a l y = x∗x − x ;

x̂

ŷ

Abstraction of function x → y = x2 − x as

y = 32.5 + 45ε1 + 12.5η1

= −12.5 + 9x + 12.5η1

Almost modular by construction!
But valid only for inputs in [0,10] ⇒ partition of contexts though a
summary-based algorithm.
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Summary-based modular analysis

A summary of a program function is a pair of zonotopes (I ,O)

I abstracts the calling context, O the output

Both zonotopes abstract functions of the inputs of the program (linear
form of the εi )

Output O can be instantiated for a particular calling context C ⊆ I
(constraints on the noise symbols that define a restriction of the function)

Summary instantiation: [[I == C ]]O

Write the constraint I == C in the space of noise symbols:

(c I0i − cC0i ) +
n∑

r=1

(c Iri − cCri )εr +
m∑
r=1

(pI
ri − pC

ri )ηr = 0 (i = 1, . . . , p)

We derive relations of the form (by Gauss elimination):

ηki+1 = Ri (ηki , . . . , η1, εn, . . . , ε1) (i = 0, . . . , r − 1)

We eliminate ηk1 , . . . , ηkr in O using the relations above
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Example: summary-based analysis

( 0 ) mult ( r e a l a , r e a l b ) { r e t u r n a ∗( b−2); }
( 1 ) x := [ −1 , 1 ] ; // x = e p s 1
( 2 ) r e a l y1 = mult ( x+1, x ) ;
( 3 ) r e a l y2 = mult ( x , 2∗x ) ;

I1

C2

−2 −1 0 1 2

−2

−1

0

1

2

a

b

O1

−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

ε1

y

Summary construction
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Example: summary-based analysis

( 0 ) mult ( r e a l a , r e a l b ) { r e t u r n a ∗( b−2); }
( 1 ) x := [ −1 , 1 ] ; // x = e p s 1
( 2 ) r e a l y1 = mult ( x+1, x ) ;
( 3 ) r e a l y2 = mult ( x , 2∗x ) ;

I2

I1

C2

−2 −1 0 1 2

−2

−1

0

1

2

a

b

O2

−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

ε1

y

Summary construction
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Example: summary-based analysis

( 0 ) mult ( r e a l a , r e a l b ) { r e t u r n a ∗( b−2); }
( 1 ) x := [ −1 , 1 ] ; // x = e p s 1
( 2 ) r e a l y1 = mult ( x+1, x ) ;
( 3 ) r e a l y2 = mult ( x , 2∗x ) ;

I2

I1

C2

−2 −1 0 1 2

−2

−1

0

1

2

a

b

O2

−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

ε1

y

Summary instantiation to context C2
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Affine sets: some current and future variations

Keep same parameterization x =
∑

i xiεi but with

Interval coefficients xi : generalized affine sets for under-approximation
under-approximation: sets of values of the outputs, that are sure to be
reached for some inputs in the specified ranges
interval coefficients xi , noise symbols in generalized intervals (εi = [−1, 1]
or ε∗i = [1,−1]), Kaucher arithmetic extends classical interval arithmetic
(SAS 2007, with E. Goubault)
extensions (higher order forms, under-approximations of discrete values,
interval methods of Goldsztejn/Jaulin, application to robust control): O.
Mullier’s phD thesis (with E. Goubault, M. Kieffer)

Noise symbols εi being no longer defined in intervals:
probabilistic affine forms: εi take values in p-boxes (Computing 2012, with
O. Bouissou, E. Goubault, J. Goubault-Larrecq)
ellipsoids (clear potential for program invariants): ‖ε‖2 ≤ 1 (instead of
‖ε‖∞ ≤ 1) ?

But also, polynomial/rational invariants (extensions of changes of bases
by Sankaranarayanan for instance)
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Generalized affine forms, modal intervals

Mean-value theorem (à la Goldsztejn 2005)
Let f : Rn → R differentiable, (t1, . . . , tn) a point in [−1, 1]n and ∆i such that{

∂f

∂εi
(ε1, . . . , εi , ti+1, . . . , tn), εi ∈ [−1, 1]

}
⊆ ∆i.

Then

f̃ (ε1, . . . , εn) = f (t1, . . . , tn) +
n∑

i=1

∆i(εi − ti ),

is interpretable in the following way :

if f̃ (ε∗1 , . . . , ε
∗
n ), computed with Kaucher arithmetic, is an improper interval,

then pro f̃ (ε∗1 , . . . , ε
∗
n ) is an under-approx of f (ε1, . . . , εn).

f̃ (ε1, . . . , εn) is an over-approx of f (ε1, . . . , εn).

Generalized affine forms

Affine forms with interval coefficients, defined on the εi (no ηj symbols)

Under-approximation by over-approximation of dependencies

Joint use of under-/over-approximation: quality of analysis results

Extract scenarios giving extreme values
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Example

f (x) = x2 − x when x ∈ [2, 3] (real result [2, 6])

Affine form

x = 2.5 + 0.5ε1, f ε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1)

Bounds on partial derivative

∂f ε

∂ε1
(ε1) = 2 ∗ 0.5 ∗ (2.5 + 0.5ε1)− 0.5 ⊆ [1.5, 2.5]

Mean value theorem with t1 = 0

f̃ ε(ε1) = 3.75 + [1.5, 2.5]ε1

Under-approximating concretization
3.75 + [1.5, 2.5][1,−1] = 3.75 + [1.5,−1.5] = [5.25, 2.25]
Over-approximating concretization
3.75 + [1.5, 2.5][−1, 1] = 3.75 + [−2.5, 2.5] = [1.25, 6.25]

Affine arithmetic (over-approximation)

x2 − x = [3.75, 4] + 2ε1 (concretization [1.75, 6])
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Square-root algorithm (Householder method)

d o u b l e Input , x , xp1 , r e s i d u e , s h o u l d b e z e r o ;
d o u b l e EPS = 0 . 0 0 0 0 2 ;

I n p u t = BUILTIN DAED DBETWEEN ( 1 6 . 0 , 2 0 . 0 ) ;
x = 1 . 0 / I n p u t ; xp1 = x ; r e s i d u e = 2 . 0∗EPS ;
w h i l e ( f a b s ( r e s i d u e ) > EPS) {

xp1 = x ∗(1.875+ I n p u t ∗x∗x ∗(−1.25+0.375∗ I n p u t ∗x∗x ) ) ;
r e s i d u e = 2 . 0∗ ( xp1−x ) / ( x+xp1 ) ;
x = xp1 ;

}
s h o u l d b e z e r o = x∗x−1.0/ I n p u t ;

With 32 subdivisions of the input
Stopping criterion of the Householder algorithm is satisfied after 5
iterations :

[0, 0] ⊆ residue(x4, x5) ⊆ [−1.44e−5, 1.44e−5]

Tight enclosure of the iterate :

[0.22395, 0.24951] ⊆ x5 ⊆ [0.22360, 0.25000]

Functional proof :

[0, 0] ⊆ shouldbezero ⊆ [−1.49e−6, 1.49e−6]
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Combining deterministic and probabilistic methods

Discrete p-boxes or Dempster-Shafer structures
Generalize probability distributions and interval computations: less
pessimistic than intervals but still guaranteed
Represent sets of probability distributions: between an upper and a lower
Cumulative Distribution Function P(X ≤ x)

−1 −0.5 0.25 0.5 1 2

1

Encode as much deterministic dependencies as possible by affine
arithmetic

because arithmetic on p-boxes/DS not very efficient
associate a DS structure to each noise symbol
both more accurate and faster than direct DS arithmetic:
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Example: recursive filter with independent inputs in [-1,1]

Prove that dangerous worst case occur with very low probability

Deterministic analysis (left): outputs in [-3.25,3.25] (exact)

Mixed probabilistic/deterministic analysis (right): outputs in [-3.25,3.25],
and in [-1,1] with very strong probability

Some current work

Set operations (extending the deterministic ones)

Handling dependency information between noise symbols

Efficient rounding error computation
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Static analysis of numerical programs: FLUCTUAT

Validate finite precision implementations

Prove that the program computes something close to what is expected (in real
numbers)

Accuracy of results

Behaviour of the program (control flow, number of iterations)

Validate algorithms

Bound when possible the method/approximation error

Check functional properties in real-number semantics

Ideally, find good match between method and implementation errors
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Floating-point numbers (defined by the IEEE 754 norm)

Normalized floating-point numbers

(−1)s1.x1x2 . . . xn × 2e (radix 2 in general)

implicit 1 convention (x0 = 1)
n = 23 for simple precision, n = 52 for double precision
exponent e is an integer represented on k bits (k = 8 for simple precision,
k = 11 for double precision)

Denormalized numbers (gradual underflow),

(−1)s0.x1x2 . . . xn × 2emin

Consequences and difficulties:
limited range and precision: potentially inaccurate results, run-time errors
no associativity, representation error for harmless-looking reals such as 0.1
re-ordering by the compiler, use of registers with different precision, etc
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Concrete semantics

Aim: compute rounding errors and their propagation
we need the floating-point values
relational (thus accurate) analysis more natural on real values
for each variable, we compute (f x , rx , ex )
then we will abstract each term (real value and errors)

f l o a t x , y , z ;
x = 0 . 1 ; // [ 1 ]
y = 0 . 5 ; // [ 2 ]
z = x+y ; // [ 3 ]
t = x∗ z ; // [ 4 ]

f x = 0.1 + 1.49e−9 [1]

f y = 0.5

f z = 0.6 + 1.49e−9 [1] + 2.23e−8 [3]

f t = 0.06 + 1.04e−9 [1] + 2.23e−9 [3]− 8.94e−10 [4]− 3.55e−17 [ho]
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Example (Fluctuat)
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Towards an abstract model

IEEE 754 norm on f.p. numbers specifies the rounding error:

Elementary rounding error when rounding r x to ↑◦ r x :

∃(δr > 0, δa > 0), |r x− ↑◦ r x | ≤ max(δr | ↑◦ r x |, δa)

The f.p. result of arithmetic elementary operations +,−,×, /,√ is the
rounded value of the real result

unit in the Last Place ulp(x) = distance between two consecutive
floating-point numbers around x = maximal rounding error around x

ulp(1) = 2−23 ∼ 1.19200928955 ∗ 10−7

rounding error of elementary operation always less than the ulp of the result
also more refined properties, such as Sterbenz lemma (if x and y are two
float such that y

2
≤ x ≤ y , then f.p. operation x − y is exact)

Abstraction: for each variable x , a triplet (f x , r x , ex)
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Latest abstract domain in Fluctuat

Abstract value

For each variable:
Interval fx = [f x , f x ] bounds the finite prec value, (f x , f x ) ∈ F× F,
Affine forms for real value and error; for simplicity no η symbols

f x = (αx
0 +

⊕
i

αx
i ε

r
i )

︸ ︷︷ ︸
real value

+( ex0︸︷︷︸
center of the error

+
⊕
l

exl ε
e
l︸ ︷︷ ︸

uncertainty on error due to point l

+
⊕
i

mx
i ε

r
i︸ ︷︷ ︸

propag of uncertainty on value at pt i

)

Constraints on noise symbols (interval + equality constraints)
for finite precision control flow
for real control flow
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Test interpretation

Stable test assumption (old version)

Control flow of the program is same for the finite precision and real values
of the program

If found not to be the case: unstable test warning

Joining branches:
join values and errors coming from the two branches
in case of unstable test, possibly unsound error bounds

Sound unstable test analysis (new version ... November 2012!)

Tests interpreted over real and float values: two sets of constraints on
noise symbols

Joining branches
join fp and real values from the branches
errors: join error computed in the two branches with, when it exists
(unstable test), the difference between real value in one branch and float
value in the other branch for the same execution (ie for same values of the
εi = intersections of the constraints for these two branches)

In the line of robustness/continuity analysis of Chaudhuri, Gulwani and al.
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Test interpretation: example of unstable test
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The static analyzer FLUCTUAT

The Fluctuat team

E. Goubault, S. Putot (2001-2012), M. Martel (2001-2005, user interface and

Fluctuat Assembler), F. Védrine (2008-2012), K. Tekkal (2008-2011, Digiteo

OMTE then start-up incubation), T. Le Gall (2012)

Continuous support by Airbus and IRSN, more occasional by other users

Is/has been used for a wide variety of codes (automotive, nuclear industry,
aeronautics, aerospace) of size up to about 50000 LOCs

Assertions in the program analyzed

Hypotheses on the environment of the program

Local partitioning and collecting strategies

Exploitation of results

Warnings: unstable tests, run-time errors

Identifying problems and refining results: worst case scenarios, symbolic
execution, subdivisions

Library and new interactive version (F. Védrine)
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Second order filters

Filters CEA | Habilitation à Diriger les Recherches | p. 38



Back to the Householder scheme

Householder CEA | Habilitation à Diriger les Recherches | p. 39



Around FLUCTUAT

First extension to the analysis of hybrid systems by interaction with the
ODE guaranteed solver GrkLib (HybridFluctuat, CAV 2009, with O.
Bouissou, E. Goubault, K. Tekkal, F. Védrine)

First interface with Esterel’s SCADE (with library version of Fluctuat)

(Present/Future) Interaction with constraint solvers
first demonstration of refinement of Fluctuat’s result (Ponsini, Michel,
Rueher 2011-2012)
natural for us because increasing use of constraints on noise symbols (and
we could provide more for non linear operations)

(Present/Future) Floating-point to fixed point automatic conversion (ANR
DEFIS project 2012-2015, first steps in 2005 with intern J. Mascunan)

(Future) Interaction with provers, Frama-C platform
ACSL language to exchange information on real, float and errors
provide provers with loop invariants
use locally refined results and properties
towards formally proved abstract domain implementations ? (cf D.
Pichardie)
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Conclusion and Perpectives

Some highlights in the near future

Under-approximations (O. Mullier’s PhD thesis)

Fixpoint computations and zonotopes (if possible in Fluctuat): policy
iteration, mix with ellipsoids ?

Keep the line of numerically-oriented static analysis

Natural application is industrial safety-critical control-command software
needs driven by the users (modularity, interaction with other tools etc)

Extension to safety-critical control systems (medical instrumentation?)

Long term goal: programs from scientific computing
as a complement to existing sensitivity and uncertainty propagation analyses
(Chaos polynomial, Cestac method)
specific problems (large arrays)
parallelism and reordering of arithmetic operations
link with mathematical studies of schemes in finite precision (Wilkinson,
Meurant, Demmel etc), view as perturbed schemes
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