Iterative refinement: how to use it to "verify" a computed result?

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 5668 CNRS - ENS de Lyon - INRIA -UCBL) - Université de Lyon

NSV-3, 15 July 2010

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed r

Agenda

What is iterative refinement

How to use iterative refinement to verify a computed result?

Influence of the computing precision

Conclusion and future work

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed r

Agenda

What is iterative refinement

How to use iterative refinement to verify a computed result?

Influence of the computing precision

Conclusion and future work

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed

< ∃ →

What is iterative refinement

Compute a solution \hat{x} of the problem at hand.

Due to floating-point computations and roundoff errors, \hat{x} is not the exact solution x of the problem. There is an error $e = x - \hat{x}$.

For some problems, the error e is a solution of the same problem with different constants.

Iterative refinement:

- 1. solve the original problem: compute \hat{x}
- 2. solve the problem having e as solution: compute \hat{e}
- 3. correct the computed solution: $x' \leftarrow \hat{x} + \hat{e}$

Usually, x' is a more accurate solution than \hat{x} .

What is iterative refinement

How to use iterative refinement to verify a computed result? Influence of the computing precision Conclusion and future work

Example: summation $s = \sum_{i=1}^{n} x_i$

Let us denote by $\hat{s}_i = fl(x_i + \hat{s}_{i-1})$ and $\hat{s}_1 = x_1$, $\varepsilon_i = (x_i + \hat{s}_{i-1}) - fl(x_i + \hat{s}_{i-1})$: roundoff error of the *i*th addition.

The total error
$$e = s - \hat{s} = \sum_{i=2}^{n} \varepsilon_i$$

The error is the solution of a summation problem.

Algorithm:

- 1. compute \hat{s}_i and ε_i using TwoSum
- 2. compute $\hat{e} = \sum \varepsilon_i$

3.
$$s' = \operatorname{fl}(\hat{s}_n + \hat{e})$$

cf. Pichat (1972) and Neumaier (1974).

Example: solving a linear system Ax = b

Solve Ax = b: computed solution \hat{x} .

The error $e = x - \hat{x}$ satisfies $Ae = Ax - A\hat{x} = b - A\hat{x}$. **Residual** $r := b - A\hat{x}$ The error satisfies Ae = r.

Iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual $r = b A\hat{x}$
- 3. compute \hat{e} approximate solution of Ae = r
- 4. correct the solution: $x' = \hat{x} + \hat{e}$

(Wilkinson, 1948)

伺 ト く ヨ ト く ヨ ト

Example: the wave equation, a linear PDE

Equation:

$$\frac{\partial^2 u(x,t)}{\partial t^2} - c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = s(x,t).$$

Cf. talk by Sylvie Boldo:

The error satisfies the same equation as the sought function u.

Iterative refinement could be:

- 1. compute \hat{u} approximate solution of the wave equation
- compute ê approximate solution of the wave equation (with proper initial/boundary values)
- 3. correct the solution: $u' = \hat{u} + \hat{e}$

Example: solving f(x) = 0

Computed solution \hat{x} .

The error $e = x - \hat{x}$ can be deduced from $f(x) = 0 = f(\hat{x}) + (x - \hat{x})f'(\hat{x}) + O(e^2)$ $\Rightarrow e \simeq -f(\hat{x})/f'(\hat{x})$

The error e does not satisfy the same equation as x... but let's use its approximation!

Iterative refinement:

- 1. compute \hat{x} approximate solution of f(x) = 0
- 2. compute $\hat{e} = -f(\hat{x})/f'(\hat{x})$ approximation of e
- 3. correct the solution:

 $x' = \hat{x} + \hat{e} = \hat{x} - f(\hat{x})/f'(\hat{x})$

(Newton-Raphson, 1669-1690-1740)

Image: Image:

Example: solving f(x) = 0

Computed solution \hat{x} .

 \Rightarrow

The error $e = x - \hat{x}$ can be deduced from

$$f(x) = 0 = f(\hat{x}) + (x - \hat{x})f'(\hat{x}) + \mathcal{O}(e^2)$$

= $e \simeq -f(\hat{x})/f'(\hat{x})$

The error e does not satisfy the same equation as x... but let's use its approximation!

Iterative refinement:

- 1. compute \hat{x} approximate solution of f(x) = 0
- 2. compute $\hat{e} = -f(\hat{x})/f'(\hat{x})$ approximation of e
- 3. correct the solution:

$$x' = \hat{x} + \hat{e} = \hat{x} - f(\hat{x})/f'(\hat{x})$$

(Newton-Raphson, 1669-1690-1740)

Example: optimisation min f(x)

The exact solution x satisfies f'(x) = 0.

Same problem as before... Computed solution \hat{x} .

The error $e = x - \hat{x}$ is approximated by $e \simeq -f'(\hat{x})/f''(\hat{x})$.

The computed solution is corrected:

$$x' = \hat{x} + e = \hat{x} - f'(\hat{x})/f''(\hat{x})$$

This is the **steepest descent method**.

START

x

Agenda

What is iterative refinement

How to use iterative refinement to verify a computed result?

Influence of the computing precision

Conclusion and future work

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed

How to use iterative refinement to "verify" a computed result?

In the computer arithmetic community, verify means

- establish a pen-and-paper proof (using the specifications of floating-point arithmetic...)
- compute an enclosure of the (unknown) exact result

but usually, no computer-proof-checked proof,

or not yet.

4 B 6 4 B 6

How to use iterative refinement to "verify" a computed result?

In the computer arithmetic community, verify means

- establish a pen-and-paper proof (using the specifications of floating-point arithmetic...)
- compute an enclosure of the (unknown) exact result

but usually, no computer-proof-checked proof,

or not yet.

How to use iterative refinement to "verify" a computed result?

In the computer arithmetic community, verify means

- establish a pen-and-paper proof (using the specifications of floating-point arithmetic...)
- compute an enclosure of the (unknown) exact result

but usually, no computer-proof-checked proof,

or not yet.

There is no such thing as a free beer as a bug free computation interval arithmetic to contain the results

(Moore 1966, Kulisch 1983, Neumaier 1990, Rump 1994, Alefeld and Mayer 2000...)

Principle

Numbers are replaced by intervals. π replaced by [3.14159, 3.14160]

For instance, the content of my wallet is between 20 and 30 £, \in [20, 30] £.

The "Thou shalt not lie" principle

Interval arithmetic computes an enclosure of the (unknown) exact result.

This is considered as **verified computation**.

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed

Interval arithmetic in a nutshell

$$\begin{matrix} [10,20] + [5,10] = [15,30] \\ [-2,3] + [5,7] = [3,10] \end{matrix}$$

[-3,2] * [-3,2] = [-6,9] differs from $[-3,2]^2 = [0,9]$

[-3,2]/[0.5,1] = [-6,4]

 $X \diamond Y = \{x \diamond y \mid x \in X, y \in Y\}$

exp[-2,3] = [exp(-2), exp(3)]as exp is an increasing function.

 $sin[\pi/3,\pi] = [0,1]$ beware, sin is non monotonic.

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed res

There is no such thing as a free beer as a bug free computation interval arithmetic to contain the errors

Notation: interval quantities are **boldface**.

Computing an approximate Veri sum: 1.

1. compute $\mathbf{s_i} = x_i + \mathbf{s_{i-1}}$

 $\Rightarrow s \in \mathbf{s_n}$

- Verifying the sum:
 - 1. compute $\hat{s}_i = fl(x_i + \hat{s}_{i-1})$ and ε_i using TwoSum

A 35 A 35 A

2. compute
$$\mathbf{e} = \sum [\varepsilon_i]$$

$$\Rightarrow$$
 $s \in \hat{s}_n + \mathbf{e}$

Width of $e \simeq 2^{-53}$ width of s_n .

Verifying the solution of f(x) = 0: interval Newton algorithm

Newton-Raphson:

- 1. compute \hat{x} approximate solution of f(x) = 0
- 2. compute $\hat{e} = -f(\hat{x})/f'(\hat{x})$ approximation of e
- 3. correct the solution: $x' = \hat{x} + \hat{e} = \hat{x} f(\hat{x})/f'(\hat{x})$

Interval Newton-Raphson:

- 1. compute x current iterate, enclosing the solution of f(x) = 0
- 2. choose any $\hat{x} \in \mathbf{x}$
- 3. compute $\mathbf{e} = -f(\hat{x})/f'(\mathbf{x})$ enclosing the error
- 4. correct the solution: $\mathbf{x}' = \hat{x} + \mathbf{e} = \hat{x} f(\hat{x})/f'(\mathbf{x})$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Verifying the solution of f(x) = 0: interval Newton algorithm

Newton-Raphson:

- 1. compute \hat{x} approximate solution of f(x) = 0
- 2. compute $\hat{e} = -f(\hat{x})/f'(\hat{x})$ approximation of e
- 3. correct the solution: $x' = \hat{x} + \hat{e} = \hat{x} f(\hat{x})/f'(\hat{x})$

Interval Newton-Raphson:

- 1. compute x current iterate, enclosing the solution of f(x) = 0
- 2. choose any $\hat{x} \in \mathbf{x}$
- 3. compute $\mathbf{e} = -f(\hat{x})/f'(\mathbf{x})$ enclosing the error
- 4. correct the solution: $\mathbf{x}' = \hat{x} + \mathbf{e} = \hat{x} f(\hat{x})/f'(\mathbf{x})$

イロト イポト イヨト イヨト 二日

Verifying the solution of Ax = b

Iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual $r = b A\hat{x}$
- 3. compute \hat{e} approximate solution of Ae = r
- 4. correct the solution: $x' = \hat{x} + \hat{e}$

Interval iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual **r** enclosing $b A\hat{x}$
- 3. compute \mathbf{e}' , enclosing solution of $A\mathbf{e} = \mathbf{r}$
- 4. correct the solution: $x' = \hat{x} + \operatorname{mid}(\mathbf{e}')$, $\mathbf{e}'' = \mathbf{e}' \operatorname{mid}(\mathbf{e}')$

Difficulty: computing e' is an iterative process, the determination of the starting point which encloses the error is pot obvious, $z \rightarrow \infty$

Verifying the solution of Ax = b

Iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual $r = b A\hat{x}$
- 3. compute \hat{e} approximate solution of Ae = r
- 4. correct the solution: $x' = \hat{x} + \hat{e}$

Interval iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual **r** enclosing $b A\hat{x}$
- 3. compute \mathbf{e}' , enclosing solution of $A\mathbf{e} = \mathbf{r}$
- 4. correct the solution: $x' = \hat{x} + \operatorname{mid}(\mathbf{e}'), \ \mathbf{e}'' = \mathbf{e}' \operatorname{mid}(\mathbf{e}')$

Difficulty: computing e' is an iterative process, the determination of the starting point which encloses the error is pot obvious, $z \rightarrow \infty$

Verifying the solution of Ax = b

Iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual $r = b A\hat{x}$
- 3. compute \hat{e} approximate solution of Ae = r
- 4. correct the solution: $x' = \hat{x} + \hat{e}$

Interval iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual **r** enclosing $b A\hat{x}$
- 3. compute \mathbf{e}' , enclosing solution of $A\mathbf{e} = \mathbf{r}$
- 4. correct the solution: $x' = \hat{x} + \operatorname{mid}(\mathbf{e}'), \ \mathbf{e}'' = \mathbf{e}' \operatorname{mid}(\mathbf{e}')$

Difficulty: computing e' is an iterative process, the determination of the starting point which encloses the error is not obvious.

Agenda

What is iterative refinement

How to use iterative refinement to verify a computed result?

Influence of the computing precision

Conclusion and future work

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed

< ∃ →

Influence of the computing precision

Verifying the solution of Ax = b

Interval iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual **r** enclosing $b A\hat{x}$
- 3. compute \mathbf{e}' , enclosing solution of $A\mathbf{e} = \mathbf{r}$
- 4. correct the solution: $x' = \hat{x} + \operatorname{mid}(\mathbf{e}'), \ \mathbf{e}'' = \mathbf{e}' \operatorname{mid}(\mathbf{e}')$

Residual $r = b - A\hat{x}$ is subject to cancellation, it should be computed in higher precision.

Mixed precision iterative refinement for Ax = b

Mixed precision (interval) iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b
- 2. compute residual **r** enclosing $b A\hat{x}$ in higher precision
- 3. compute \mathbf{e}' , enclosing solution of $A\mathbf{e} = \mathbf{r}$
- 4. correct the solution: $x' = \hat{x} + \operatorname{mid}(\mathbf{e}')$, $\mathbf{e}'' = \mathbf{e}' \operatorname{mid}(\mathbf{e}')$

Modified mixed precision iterative refinement for Ax = b

Proposal: compute also \hat{x} in extended precision.

Modified mixed precision interval iterative refinement:

- 1. compute \hat{x} approximate solution of Ax = b in higher **precision**
- 2. compute residual **r** enclosing $b A\hat{x}$ in higher precision
- 3. compute \mathbf{e}' , enclosing solution of $A\mathbf{e} = \mathbf{r}$
- 4. correct the solution: $x' = \hat{x} + \text{mid}(\mathbf{e}')$, $\mathbf{e}'' = \mathbf{e}' \text{mid}(\mathbf{e}')$ in higher precision.

inspired from Langou, Langou, Luszczek, Kurzak, Buttari and Dongarra (2006) and Demmel, Hida, Kahan, Li, Mukherjee and Riedy (ACM TOMS 32(2), 2006).

Modified mixed precision iterative refinement for Ax = b: experimental results

Comparison between:

- MatLab x = A b (non verified)
- verifylss: certified implementation by Rump, in IntLab
- certifylss single: residual computed using twice the computing precision, solution computed using the computing precision
- certifylss double: residual computed using twice the computing precision, solution computed using twice the computing precision

・ 同 ト ・ ヨ ト ・ ヨ ト

Modified mixed precision iterative refinement for Ax = b: experimental results

Precision of the solution in function of the condition number of A.

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed res

Modified mixed precision iterative refinement for Ax = b: experimental results

Computing time in function of the condition number of A.

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed res

Increasing the computing precision for *x* theoretical results

Let us iterate this refinement: $x_{i+1} = x_i + \operatorname{mid}(\mathbf{e}_i)$.

Following Higham, one can prove that:

$$|x - x_{i+1}| = G_i |x - x_i| + g_i$$

where

$$G_i \leq 2^{-53} \cdot |A^{-1}| \cdot W + 2 \cdot 2^{-53} \cdot (I + 2^{-53} \cdot |A^{-1}| \cdot W) \cdot |A^{-1}| \cdot |A|$$
and

$$g_i \leq 2n \cdot 2^{-106} (I + 2^{-53} \cdot |A^{-1}| \cdot W) \cdot |A^{-1}| \cdot |A| \cdot |x| + 2^{-106} \cdot |x|.$$

 G_i is a contraction: at each step, one gets a more accurate result. g_i indicates the limit accuracy: here twice the computing precision.

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed res

A I > A I > A

Increasing the computing precision for *x* theoretical results

Let us iterate this refinement: $x_{i+1} = x_i + \operatorname{mid}(\mathbf{e}_i)$.

Following Higham, one can prove that:

$$|x - x_{i+1}| = G_i |x - x_i| + g_i$$

where $G_i \leq 2^{-53} \cdot |A^{-1}| \cdot W + 2 \cdot 2^{-53} \cdot (I + 2^{-53} \cdot |A^{-1}| \cdot W) \cdot |A^{-1}| \cdot |A|$ and

$$g_i \leq 2n \cdot 2^{-106} (I + 2^{-53} \cdot |A^{-1}| \cdot W) \cdot |A^{-1}| \cdot |A| \cdot |x| + 2^{-106} \cdot |x|.$$

 G_i is a contraction: at each step, one gets a more accurate result. g_i indicates the limit accuracy: here twice the computing precision.

Agenda

What is iterative refinement

How to use iterative refinement to verify a computed result?

Influence of the computing precision

Conclusion and future work

Hong Diep Nguyen and Nathalie Revol INRIA - LIP (UMR 566 Iterative refinement: how to use it to "verify" a computed

< ∃ →

Conclusion

Summary:

- iterative refinement: when the problem is close to linear, the error is a solution to a problem similar to the original one;
- solving this problem allows to correct the computed solution and iterating the refinement allows to get the maximal accuracy;
- interval analysis makes it possible to verify the computed solution.

Conclusion and future work

What remains to be done:

- implement all these techniques;
- understand how more efficient techniques relate (or not) to iterative refinement;
- check the pen-and-paper proof using a proof-checker.

We (numerical analysts, computer arithmeticians) need you (experts in theorem-proving).

Maybe you (experts in theorem-proving) need us (numerical analysts, computer arithmeticians) to establish the proofs in the first place?

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion and future work

What remains to be done:

- implement all these techniques;
- understand how more efficient techniques relate (or not) to iterative refinement;
- check the pen-and-paper proof using a proof-checker.

We (numerical analysts, computer arithmeticians) need you (experts in theorem-proving).

Maybe you (experts in theorem-proving) need us (numerical analysts, computer arithmeticians) to establish the proofs in the first place?

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion and future work

What remains to be done:

- implement all these techniques;
- understand how more efficient techniques relate (or not) to iterative refinement;
- check the pen-and-paper proof using a proof-checker.

We (numerical analysts, computer arithmeticians) need you (experts in theorem-proving).

Maybe you (experts in theorem-proving) need us (numerical analysts, computer arithmeticians) to establish the proofs in the first place?

A B + A B +