
The Toolkit for Accurate Scientific Software

Stephen F. Siegel, Timothy Zirkel, Yi Wei

Verified Software Laboratory
Department of Computer and Information Sciences

University of Delaware
Newark, DE, USA

Third International Workshop on Numerical Software Verification
Edinburgh, Scotland

15 Jul 2010



Problem Tool Overview Semantics Symbolic Representations Evaluation

Post & Votta, Physics Today, 2005

Computers have become indispensable to scientific re-
search. They are essential for collecting and analyzing

experimental data, and they have largely replaced pencil
and paper as the theorist’s main tool. Computers let theo-
rists extend their studies of physical, chemical, and bio-
logical systems by solving difficult nonlinear problems in
magnetohydrodynamics; atomic, molecular, and nuclear
structure; fluid turbulence; shock hydrodynamics; and cos-
mological structure formation.

Beyond such well-established aids to theorists and ex-
perimenters, the exponential growth of computer power is
now launching the new field of computational science.
Multidisciplinary computational teams are beginning to
develop large-scale predictive simulations of highly com-
plex technical problems. Large-scale codes have been cre-
ated to simulate, with unprecedented fidelity, phenomena
such as supernova explosions (see figures 1 and 2), inertial-
confinement fusion, nuclear explosions (see the box on
page 38), asteroid impacts (figure 3), and the effect of space
weather on Earth’s magnetosphere (figure 4).

Computational simulation has the potential to join
theory and experiment as a third powerful research
methodology. Although, as figures 1–4 show, the new dis-
cipline is already yielding important and exciting results,
it is also becoming all too clear that much of computational
science is still troublingly immature. We point out three
distinct challenges that computational science must meet
if it is to fulfill its potential and take its place as a fully
mature partner of theory and experiment:
! the performance challenge—producing high-perform-
ance computers,
! the programming challenge—programming for complex
computers, and
! the prediction challenge—developing truly predictive
complex application codes.

The performance challenge requires that the expo-
nential growth of computer performance continue, yield-
ing ever larger memories and faster processing. The pro-
gramming challenge involves the writing of codes that can

efficiently exploit the capacities of the
increasingly complex computers. The
prediction challenge is to use all that
computing power to provide answers
reliable enough to form the basis for
important decisions.

The performance challenge is
being met, at least for the next 10
years. Processor speed continues to in-

crease, and massive parallelization is augmenting that
speed, albeit at the cost of increasingly complex computer
architectures. Massively parallel computers with thou-
sands of processors are becoming widely available at rela-
tively low cost, and larger ones are being developed.

Much remains to be done to meet the programming
challenge. But computer scientists are beginning to de-
velop languages and software tools to facilitate program-
ming for massively parallel computers.

The most urgent challenge
The prediction challenge is now the most serious limiting
factor for computational science. The field is in transition
from modest codes developed by small teams to much more
complex programs, developed over many years by large
teams, that incorporate many strongly coupled effects
spanning wide ranges of spatial and temporal scales. The
prediction challenge is due to the complexity of the newer
codes, and the problem of integrating the efforts of large
teams. This often results in codes that are not sufficiently
reliable and credible to be the basis of important decisions
facing society. The growth of code size and complexity, and
its attendant problems, bears some resemblance to the
transition from small to large scale by experimental
physics in the decades after World War II.

A comparative case study of six large-scale scientific
code projects, by Richard Kendall and one of us (Post),1 has
yielded three important lessons. Verification, validation,
and quality management, we found, are all crucial to the
success of a large-scale code-writing project. Although
some computational science projects—those illustrated by
figures 1–4, for example—stress all three requirements,
many other current and planned projects give them insuf-
ficient attention. In the absence of any one of those re-
quirements, one doesn’t have the assurance of independ-
ent assessment, confirmation, and repeatability of results.
Because it’s impossible to judge the validity of such results,
they often have little credibility and no impact.

Part of the problem is simply that it’s hard to decide
whether a code result is right or wrong. Our experience as
referees and editors tells us that the peer review process in
computational science generally doesn’t provide as effective
a filter as it does for experiment or theory. Many things that
a referee cannot detect could be wrong with a computa-
tional-science paper. The code could have hidden defects, it
might be applying algorithms improperly, or its spatial or
temporal resolution might be inappropriately coarse.

© 2005 American Institute of Physics, S-0031-9228-0501-020-3 January 2005    Physics Today 35

Douglass Post is a computational physicist at Los Alamos Na-
tional Laboratory and an associate editor-in chief of Computing
in Science and Engineering. Lawrence Votta is a Distinguished
Engineer at Sun Microsystems Inc in Menlo Park, California. He
has been an associate editor of IEEE Transactions on Software
Engineering.

The field has reached a threshold at which better organization
becomes crucial. New methods of verifying and validating
complex codes are mandatory if computational science is to
fulfill its promise for science and society.

Douglass E. Post and Lawrence G. Votta

Computational Science Demands
a New Paradigm

“. . .diligence and alertness are far from a
guarantee that the code is free of defects. Better
verification techniques are desperately needed.”

2 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Greg Wilson, American Scientist, 2009

…the whole point
 of science is to be
able to prove that

your answers
are valid…

Survey of ∼ 2000 Scientists

Top 3 topics about which
respondents felt they did not

know as much as they should:

1. software construction

2. verification

3. testing

3 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Les Hatton, IEEE Computer, 2007

Many scientific results are corrupted,
perhaps fatally so, by undiscovered mistakes

in the software used to calculate and
present those results.

4 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Hatton & Roberts: average distance from mean

5 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Goals of TASS

1. verification & debugging of programs used in computational science

2. High Performace Computing
• parallel programs: Message Passing Interface (MPI)

3. automatic (mostly)
• produce useful results with no effort
• more effort (code annotations) → stronger results

4. functional equivalence for real arithmetic

5. verify generic safety propeties

6. support real code, including standard libraries

7. good engineering:
• usability, documentation, open-source, automated testing, clear module

boundaries, well-documented interfaces, easily extended/modified

Version 1.0 available now: http://vsl.cis.udel.edu/tass

6 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software

http://vsl.cis.udel.edu/tass


Problem Tool Overview Semantics Symbolic Representations Evaluation

Goals of TASS

1. verification & debugging of programs used in computational science

2. High Performace Computing
• parallel programs: Message Passing Interface (MPI)

3. automatic (mostly)
• produce useful results with no effort
• more effort (code annotations) → stronger results

4. functional equivalence for real arithmetic

5. verify generic safety propeties

6. support real code, including standard libraries

7. good engineering:
• usability, documentation, open-source, automated testing, clear module

boundaries, well-documented interfaces, easily extended/modified

Version 1.0 available now: http://vsl.cis.udel.edu/tass

6 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software

http://vsl.cis.udel.edu/tass


Problem Tool Overview Semantics Symbolic Representations Evaluation

Some Related Work

1. Cadar, Dunbar, Engler, KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs SOSDI 2008

2. Barrett, Fang, Goldberg, Hu, Pnueli, Zuck, TVOC: A Translation
Validator for Optimizing Compilers, CAV 2005

3. Beyer, Henzinger, Jhala, Majumdar, The Software Model Checker
Blast: Applications to Software Engineering, IJSTTT 2007

4. Boldo, Filliâtre, Formal Verification of Floating-Point Programs,
ARITH-18 2007 (Caduceus)

5. Vakkalanka, Sharma, Gopalakrishnan, ISP: A Tool for Model Checking
MPI Programs, PPoPP 2008

7 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

TASS: Properties Verified

1. functional equivalence

2. absence of user-specified assertion violations

3. freedom from deadlock

4. absence of buffer overflows (MPI, pointer arithmetic, array indexing,
. . .)

5. no reading uninitialized variables

6. no division by zero

7. proper use of malloc/free

8. absence of memory leaks

9. proper use of MPI_Init, MPI_Finalize, . . .

10. (ordinary) loop invariants

11. loop joint invariants

8 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

TASS: Input Language

• currently: a subset of C99 + MPI + pragmas

• including

1. functions
2. types: real, integer, boolean, arrays, structs, pointers, functions
3. dynamic allocation (malloc/free)
4. &, *, pointer arithmetic
5. assert

#pragma TASS assert forall {int j | 0 <= j && j < n} a[j] == 1;

• excluding (for now)

1. bit-wise operations
2. nested scopes
3. support for many standard libraries (math.h,. . . )

9 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

TASS: Restrictions

• small configurations
• small number of processes, bounds on inputs, etc.
• but: exhaustive exploration of all possible behaviors within the bounds

• limits on input language

• does not deal with floating-point issues (currently)

• limits due to automated theorem proving
• theorem prover(s) might not be able to prove valid assertions
• but: TASS is conservative: reports anything that could possibly be

wrong
• categorizes errors: proveable, maybe, etc.

10 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

TASS Tool Chain

TASS Model 
Extractor

spec.c
specification source

impl.c
implementation source

arguments
number processes, etc.

spec_model.xml
TASS IR

impl_model.xml
TASS IR

TASS 
Comparator

Theorem 
Prover 
CVC3

“functionally
equivalent”

counterexample
trace

TASS Front 
End

spec_ast.xml
annotated AST

impl_ast.xml
annotated AST

11 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Basic Techniques used by TASS

• symbolic execution

• state space exploration (“model checking”)
• MPI-specific “partial order reduction” techniques to reduce the number

of states explored

• comparative symbolic execution
• Siegel, Mironova, Avrunin, Clarke, Using model checking with symbolic

execution to verify parallel numerical programs, ISSTA 2006

12 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

“Bias in occurrence of message orderings: BG/L”

R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski

Improving distributed memory applications testing by message perturbation

PADTAD’06 (slide from presentation)
13 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Symbolic execution

• J.C. King, Symbolic execution and program testing, CACM 1976

• addresses the problem of sampling the inputs
• many test cases can be grouped together into a single test

• useful for sequential as well as parallel programs

• useful for reasoning about numerical properties

• can be automated

14 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Theorem Proving Considered Difficult (James Iry)

Q: How many Coq 
programmers does it 
take to change a 
lightbulb?

A: Are you kidding? It takes 2 
post-docs six months just to 
prove that the bulb and the 
socket are both threaded in the 
same direction.

15 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Symbolic execution

Input: symbolic constants x0, x1, . . .
Output: symbolic expressions in the xi

+

0.0 ∗

x0 x4

+

∗

x1 x6

=

+

+ ∗

0.0 ∗ x1 x6

x0 x4

0.0 + (x0x4) + x1x6 = (0.0 + (x0x4)) + x1x6

16 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

• how do you execute a conditional statement?!
• if (x0 6= 0) {. . .} else {. . .}

• add a boolean-value symbolic variable p
• initially, p ← true

• make a nondeterministic choice between true and false branch
• if you choose the true branch, update path condition:

• p ← p ∧ x0 6= 0

• if you choose the false branch, update path condition:
• p ← p ∧ x0 = 0

• p encodes the condition on the input that had to be true in order for
control to have followed the current path

• now use a model checker to explore all possible nondeterministic
choices

• every time p is updated, invoke an automated theorem prover to check
that p is satisfiable
• if not, you are on an infeasible path: backtrack immediately

17 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

• how do you execute a conditional statement?!
• if (x0 6= 0) {. . .} else {. . .}

• add a boolean-value symbolic variable p
• initially, p ← true

• make a nondeterministic choice between true and false branch
• if you choose the true branch, update path condition:

• p ← p ∧ x0 6= 0

• if you choose the false branch, update path condition:
• p ← p ∧ x0 = 0

• p encodes the condition on the input that had to be true in order for
control to have followed the current path

• now use a model checker to explore all possible nondeterministic
choices

• every time p is updated, invoke an automated theorem prover to check
that p is satisfiable
• if not, you are on an infeasible path: backtrack immediately

17 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

• how do you execute a conditional statement?!
• if (x0 6= 0) {. . .} else {. . .}

• add a boolean-value symbolic variable p
• initially, p ← true

• make a nondeterministic choice between true and false branch
• if you choose the true branch, update path condition:

• p ← p ∧ x0 6= 0

• if you choose the false branch, update path condition:
• p ← p ∧ x0 = 0

• p encodes the condition on the input that had to be true in order for
control to have followed the current path

• now use a model checker to explore all possible nondeterministic
choices

• every time p is updated, invoke an automated theorem prover to check
that p is satisfiable
• if not, you are on an infeasible path: backtrack immediately

17 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

• how do you execute a conditional statement?!
• if (x0 6= 0) {. . .} else {. . .}

• add a boolean-value symbolic variable p
• initially, p ← true

• make a nondeterministic choice between true and false branch
• if you choose the true branch, update path condition:

• p ← p ∧ x0 6= 0

• if you choose the false branch, update path condition:
• p ← p ∧ x0 = 0

• p encodes the condition on the input that had to be true in order for
control to have followed the current path

• now use a model checker to explore all possible nondeterministic
choices

• every time p is updated, invoke an automated theorem prover to check
that p is satisfiable
• if not, you are on an infeasible path: backtrack immediately

17 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

• how do you execute a conditional statement?!
• if (x0 6= 0) {. . .} else {. . .}

• add a boolean-value symbolic variable p
• initially, p ← true

• make a nondeterministic choice between true and false branch
• if you choose the true branch, update path condition:

• p ← p ∧ x0 6= 0

• if you choose the false branch, update path condition:
• p ← p ∧ x0 = 0

• p encodes the condition on the input that had to be true in order for
control to have followed the current path

• now use a model checker to explore all possible nondeterministic
choices

• every time p is updated, invoke an automated theorem prover to check
that p is satisfiable
• if not, you are on an infeasible path: backtrack immediately

17 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

• how do you execute a conditional statement?!
• if (x0 6= 0) {. . .} else {. . .}

• add a boolean-value symbolic variable p
• initially, p ← true

• make a nondeterministic choice between true and false branch
• if you choose the true branch, update path condition:

• p ← p ∧ x0 6= 0

• if you choose the false branch, update path condition:
• p ← p ∧ x0 = 0

• p encodes the condition on the input that had to be true in order for
control to have followed the current path

• now use a model checker to explore all possible nondeterministic
choices

• every time p is updated, invoke an automated theorem prover to check
that p is satisfiable
• if not, you are on an infeasible path: backtrack immediately

17 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Result of symbolic execution for Gaussian elimination

Program transforms a matrix to its reduced row-echelon form:

x =

(
x0 x1

x2 x3

)
→ y =

(
y0 y1

y2 y3

)

y =



(
0 0
0 0

)
if x0 = 0 ∧ x2 = 0 ∧ x1 = 0 ∧ x3 = 0(

0 1
0 0

)
if x0 = 0 ∧ x2 = 0 ∧ x1 = 0 ∧ x3 6= 0(

0 1
0 0

)
if x0 = 0 ∧ x2 = 0 ∧ x1 6= 0(

1 x3/x2

0 0

)
if x0 = 0 ∧ x2 6= 0 ∧ x1 = 0(

1 0
0 1

)
if x0 = 0 ∧ x2 6= 0 ∧ x1 6= 0(

1 x1/x0

0 0

)
if x0 6= 0 ∧ x3 − x2(x1/x0) = 0(

1 0
0 1

)
if x0 6= 0 ∧ x3 − x2(x1/x0) 6= 0

18 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Result of symbolic execution for Gaussian elimination

Program transforms a matrix to its reduced row-echelon form:

x =

(
x0 x1

x2 x3

)
→ y =

(
y0 y1

y2 y3

)

y =



(
0 0
0 0

)
if x0 = 0 ∧ x2 = 0 ∧ x1 = 0 ∧ x3 = 0(

0 1
0 0

)
if x0 = 0 ∧ x2 = 0 ∧ x1 = 0 ∧ x3 6= 0(

0 1
0 0

)
if x0 = 0 ∧ x2 = 0 ∧ x1 6= 0(

1 x3/x2

0 0

)
if x0 = 0 ∧ x2 6= 0 ∧ x1 = 0(

1 0
0 1

)
if x0 = 0 ∧ x2 6= 0 ∧ x1 6= 0(

1 x1/x0

0 0

)
if x0 6= 0 ∧ x3 − x2(x1/x0) = 0(

1 0
0 1

)
if x0 6= 0 ∧ x3 − x2(x1/x0) 6= 0

18 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Structure of the State of a TASS Model

State

Shared
Variables

Input
Variables

Output
Variables

Path
Condition

Procs Messages

0 1 n-1… 0 1 m-1…

Stack Global 
Variables

Frame 0 Frame 1 …

Local 
Variables Location

Frame k-1

21 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Function Body: Guarded Transition System

1

2

3 45

6

7

guard
transformation

22 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Statement Types
statement type example guard example transformation

ASSIGN true x [i ]← (y ∗ z)/7.2
NOOP x 6= y + z identity
SEND nfull(source, dest) send(source, dest, tag, data)
RECV · · · · · ·
ASSERT
ASSUME
INVOKE
RETURN

23 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Execution Semantics of a TASS Model

• defined as a state transition system

• the set of states is defined as above

• given a state s, the set of transitions enabled from s is determined as
follows:
• let pc be the path condition in s
• for each process p:
• look at current location l of p in s
• for each statement (guard, transformation) departing from l :
• let q be the result of evaluating guard at s
• if p ∧ q is satisfiable then there is a transition from s to a new state s ′

• the path condition in s ′ is p ∧ q and the rest of the state is determined
by applying transformation to s.

24 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Symbolic Representations: Canonical Forms

• two symbolic expressions are equivalent if given any assignment of
concrete values to symbolic constants, both expressions evaluate to the
same concrete value

• if a state s ′ is obtained from s by replacing symbolic expressions with
equivalence symbolic expressions
• s and s ′ represent the same set of concrete states
• say s and s ′ are equivalent

• so the components of the state may be considered as equivalence
classes of symbolic expressions

• the ability to recognize that two expressions are equivalent can
therefore reduce the number of states searched

• this is facilitated by placing every expression into a canonical form
• boolean-valued: conjunctive normal form
• integer-valued: polynomial form
• real-valued: rational form

25 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Canonical Form: Integer Expressions

• a symbolic expression x of integer type is an integer primitive if x has
one of the following forms:
• a symbolic constant X ,
• an array read expression e1[e2],
• a record member read expression e1.e2

• an evaluated uninterpreted function expression f (e1, . . . , en),
• . . . (any operation other than ∗, +, −)

• any expression formed from numeric primitives and concrete integers
using ∗, +, − can be written as a polynomial:∑

i1,...,in

λi1,...,inx
i1
1 · · · x

in
n

where the λi1,...,in are concrete integers.

• a total order can be placed on the primitives
• . . .yiedling a total order on monic monomials

• arrange terms in order of increasing monics for the “canonical form”
26 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Canonical Form: Real Expressions

• a real primitive is defined similarly

• any expression formed from real primitives and concrete rational
numbers using ∗, +, −, and / can be written as a rational function

f (x)

g(x)

where f (x) and g(x) are polynomials in the primitives and g is monic.

• a factorization is associated to each polynomial

• common factors are canceled when dividing

27 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software



Problem Tool Overview Semantics Symbolic Representations Evaluation

Evaluation
program bounds nprocs time (s) states values messages proofs
adder n ≤ 100 10 11.1 23936 17580 873 500
adder n ≤ 100 30 135.6 40096 18381 2523 500
laplace nx ≤ 5 ∧ ny ≤ 7 ∧ B ≤ 3 12 131.2 73499 22136 1419 269
laplace nx ≤ 6 ∧ ny ≤ 8 ∧ B ≤ 3 3 1649.1 61935 26955 856 509
diffusion nx ≤ 10 ∧ nt ≤ 4 7 543.3 3746952 14717 1590 98
diffusion nx ≤ 16 ∧ nt ≤ 4 8 5523.9 27151911 33556 3255 152
diffusion nx ≤ 20 ∧ nt ≤ 6 6 755.3 2735221 78478 6230 236
matrix l ≤ 3 ∧m ≤ 6 ∧ n ≤ 3 3 4.2 39785 21769 600 121
matrix l ≤ 4 ∧m ≤ 8 ∧ n ≤ 4 4 91.0 977112 390024 2208 219
matrix l ≤ 5 ∧m ≤ 5 ∧ n ≤ 5 5 1761.6 17317811 5050494 3448 215

28 S.F.Siegel � NSV-3 2010 � Toolkit for Accurate Scientific Software


	The Problem
	Tool Overview
	Semantics
	Symbolic Representations
	Evaluation

