The Toolkit for Accurate Scientific Software

Stephen F. Siegel, Timothy Zirkel, Yi Wei

Verified Software Laboratory
Department of Computer and Information Sciences
University of Delaware
Newark, DE, USA

Third International Workshop on Numerical Software Verification
Edinburgh, Scotland
15 Jul 2010

Problem Tool Overview Semantics Symbolic Representations Evaluation

Post & Votta, Physics Today, 2005

Computational Science Demands
a New Paradigm

The field has reached a threshold at which better organization ~ efficiently exploit the capacities of the

f] g increasingly complex computers. The

becomes crucial. New methods of verifying and validating prediction challenge is to use all that

complex codes are mandatory if computational science is to computing power to provide answers

fulfill its promise for science and society. reliable enough to form the basis for
important decisions.

The performance challenge is

Douglass E. Post and Lawrence G. Votta being met, at least for the next 10

years. Processor speed continues to in-

Computers have become indispensable to scientific re- crease, and massive parallelization is augmenting that

search. They are essential for collecting and analyzing speed, albeit at the cost of increasingly complex computer

experimental data, and they have largely replaced pencil architectures. Massively parallel computers with thou-

and paper as the theorist’s main tool. Computers let theo- sands of processors are becoming widely available at rela-

“...diligence and alertness are far from a
guarantee that the code is free of defects. Better
verification techniques are desperately needed.”

2 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Greg Wilson, American Scientist, 2009

..the whole point
of science is to be
able fo prove that
your answers
are valid...

Survey of ~ 2000 Scientists

Top 3 topics about which
respondents felt they did not
know as much as they should:

1. software construction
2. verification

3. testing

3 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations

Les Hatton, IEEE Computer, 2007

Many scientific results are corrupted,
perhaps fatally so, by undiscovered mistakes
in the software used to calculate and
present those resulfs.

4 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Evaluation

Problem Tool Overview Semantics Symbolic Representations Evaluation

Hatton & Roberts: average distance from mean

40
» — Company 1
35 ® - Company 2
4— Company 3
30
4 — Company4
<«- Company 5
25
3 | Company 6
8
& 204 ®— Company7
o
°
& A XK Company 8
154
» - Company 9
104
54
0- T T T T
1 2 3 4 6 7 8 9 10 1 13 14
Processing Coordinates

5 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Goals of TASS

1. verification & debugging of programs used in computational science

2. High Performace Computing
o parallel programs: Message Passing Interface (MPI)

3. automatic (mostly)

e produce useful results with no effort
o more effort (code annotations) — stronger results

functional equivalence for real arithmetic
verify generic safety propeties

support real code, including standard libraries

No ok

good engineering:
e usability, documentation, open-source, automated testing, clear module
boundaries, well-documented interfaces, easily extended/modified

6 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

http://vsl.cis.udel.edu/tass

Problem Tool Overview Semantics Symbolic Representations Evaluation

Goals of TASS

1. verification & debugging of programs used in computational science

2. High Performace Computing
o parallel programs: Message Passing Interface (MPI)

3. automatic (mostly)

e produce useful results with no effort
o more effort (code annotations) — stronger results

functional equivalence for real arithmetic
verify generic safety propeties

support real code, including standard libraries

No ok

good engineering:
e usability, documentation, open-source, automated testing, clear module
boundaries, well-documented interfaces, easily extended/modified

Version 1.0 available now: http://vsl.cis.udel.edu/tass

6 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

http://vsl.cis.udel.edu/tass

Problem Tool Overview Semantics Symbolic Representations Evaluation

Some Related Work

1. Cadar, Dunbar, Engler, KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs SOSDI 2008

2. Barrett, Fang, Goldberg, Hu, Pnueli, Zuck, TVOC: A Translation
Validator for Optimizing Compilers, CAV 2005

3. Beyer, Henzinger, Jhala, Majumdar, The Software Model Checker
BrasT: Applications to Software Engineering, [JSTTT 2007

4. Boldo, Filliatre, Formal Verification of Floating-Point Programs,
ARITH-18 2007 (Caduceus)

5. Vakkalanka, Sharma, Gopalakrishnan, ISP: A Tool for Model Checking
MPI Programs, PPoPP 2008

7 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

TASS: Properties Verified

functional equivalence
absence of user-specified assertion violations

freedom from deadlock

B e =

absence of buffer overflows (MPI, pointer arithmetic, array indexing,
no reading uninitialized variables

no division by zero

proper use of malloc/free

absence of memory leaks

© ©° N o o

proper use of MPI_Init, MPI_Finalize, ...
10. (ordinary) loop invariants

11. loop joint invariants

8 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

TASS: Input Language

e currently: a subset of C99 + MPI + pragmas
e including

1. functions

2. types: real, integer, boolean, arrays, structs, pointers, functions
3. dynamic allocation (malloc/free)
4. &, *, pointer arithmetic
5. assert

#pragma TASS assert forall {int j | 0 <= j && j < n} alj]l == 1;

e excluding (for now)

1. bit-wise operations
2. nested scopes
3. support for many standard libraries (math.h,...)

9 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

TASS: Restrictions

small configurations

e small number of processes, bounds on inputs, etc.
e but: exhaustive exploration of all possible behaviors within the bounds

limits on input language

does not deal with floating-point issues (currently)

limits due to automated theorem proving

e theorem prover(s) might not be able to prove valid assertions

e but: TASS is conservative: reports anything that could possibly be
wrong

e categorizes errors: proveable, maybe, etc.

10 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Tool Overview

TASS Tool Chain

specification source
spec.c

implementation source
impl.c

N7

annotated AST
spec_ast.xml

annotated AST
impl_ast.xml

number processes, efc.
arguments

11 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

TASS IR
spec_model.xml

TASS Model
Extractor

TASS IR
impl_model.xml

TASS
Comparator

\

Theorem
Prover
CvC3

“functionally
equivalent”

counterexample
trace

Problem Tool Overview Semantics Symbolic Representations Evaluation

Basic Techniques used by TASS

e symbolic execution
e state space exploration (“model checking")

e MPI-specific “partial order reduction” techniques to reduce the number
of states explored

e comparative symbolic execution

e Siegel, Mironova, Avrunin, Clarke, Using model checking with symbolic
execution to verify parallel numerical programs, ISSTA 2006

12 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Tool Overview

“Bias in occurrence of message orderings: BG/L"

+ F oA o+

s

B e + o
3124567 FWHW#W%WW #MHW*’*’M B

2453761 - HHE ek M b AR
2315487 had e B
2134567 b
1423765 i -
1234567 ! ! ! !
0 2000 4000 8000 8000 10000 12000 14000 18000 18000 20000
Co Mode Virtual Node Mode

R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski
Improving distributed memory applications testing by message perturbation
PADTAD'06 (slide from presentation)

13 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Symbolic execution

J.C. King, Symbolic execution and program testing, CACM 1976
e addresses the problem of sampling the inputs
e many test cases can be grouped together into a single test

o useful for sequential as well as parallel programs
o useful for reasoning about numerical properties

e can be automated

14 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview

Theorem Proving Considered Difficult (James Iry)

Q: How many Coq
programmers does it
take to change a
lightbulb?

Semantics

Symbolic Representations

Fle Edt_Navigaon Ty Tacics Templtes Queres Comile Windows_tiolp

B 0DF20Q

[Ecmancasorer]
plus_comm =
fun n m : nat =>
nat_ind (fun nO : nat => n0 + m = m + n0)
(plus_n_0 m)
(fun (y : nat) (H: y+m=m+y) =>
eq_ind (S (m + y))
(fun n0 : nat => S (v + m) = n0)
(f_equal S H)
(m +Svy)
(plus_n_Sm m y)) n
: forall nm : nat, n +m=m+ n
e e 100 1| Codesianed

"N\ A: Are you kidding? It takes 2

post-docs six months just to
prove that the bulb and the

socket are both threaded in the

same direction.

15 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Evaluation

Problem Tool Overview Semantics Symbolic Representations Evaluation

Symbolic execution

Input: symbolic constants xp, x1, . ..
Output: symbolic expressions in the x;

/N /\ N
AN - /N N\
cajal

0.0 + (XOX4) + X1X6 = (00 + (XOX4)) + X1 X6

16 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

e how do you execute a conditional statement?!

o if (xo#0){...} else {...}

17 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

e how do you execute a conditional statement?!
o if (xo#0){...} else {...}

e add a boolean-value symbolic variable p
e initially, p < true

17 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

e how do you execute a conditional statement?!
o if (xo#0){...} else {...}
e add a boolean-value symbolic variable p
e initially, p < true
e make a nondeterministic choice between true and false branch
e if you choose the true branch, update path condition:
e p+—pAxo#0
e if you choose the false branch, update path condition:
® p+—pAx=0

17 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

how do you execute a conditional statement?!
o if (xo#0){...} else {...}

add a boolean-value symbolic variable p
e initially, p < true

e make a nondeterministic choice between true and false branch
e if you choose the true branch, update path condition:
e p+—pAxo#0
e if you choose the false branch, update path condition:
® p+—pAx=0
e p encodes the condition on the input that had to be true in order for
control to have followed the current path

17 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

how do you execute a conditional statement?!
o if (xo#0){...} else {...}
e add a boolean-value symbolic variable p
e initially, p < true
e make a nondeterministic choice between true and false branch
e if you choose the true branch, update path condition:
e p+—pAxo#0
e if you choose the false branch, update path condition:
® p+—pAx=0
e p encodes the condition on the input that had to be true in order for
control to have followed the current path

e now use a model checker to explore all possible nondeterministic
choices

17 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

The path condition

how do you execute a conditional statement?!
o if (xo#0){...} else {...}
e add a boolean-value symbolic variable p
e initially, p < true
e make a nondeterministic choice between true and false branch
e if you choose the true branch, update path condition:
e p+—pAxo#0
e if you choose the false branch, update path condition:
® p+—pAx=0
e p encodes the condition on the input that had to be true in order for
control to have followed the current path

e now use a model checker to explore all possible nondeterministic
choices

e every time p is updated, invoke an automated theorem prover to check
that p is satisfiable

e if not, you are on an infeasible path: backtrack immediately
17 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Result of symbolic execution for Gaussian elimination

Program transforms a matrix to its reduced row-echelon form:

x:(xo Xl) . y:<yo y1>
X2 X3 Y2 y3

18 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Result of symbolic execution for Gaussian elimination

Program transforms a matrix to its reduced row-echelon form:

x:(xo X1> . y:(yo y1>
X2 X3 Y2 y3

(88) ifxg=0Ax=0Ax1=0Ax3=0
(83) fxo=0Axx=0Ax1=0Ax3#0
(85) ifxo=0Ax=0AXx1 #0

y=1<(r2e) ifxo=0Ax#0Ax =0
(39) ifxo=0Ax#0Ax #0
((I)Xl(/)xo) if X0 # 0 A x3 —x2(x1/x0) =0
L(39) ifxo#0Ax—x(x/x0) # 0

18 SF.Siegel o NSV-3 2010 & Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations
Structure of the State of a TASS Model

Shared

Variables

S

Input Output Path
Variables Variables Condition

| Frame 0 | |Frame1 | I:rame k-1|

Variables

21 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Evaluation

Problem Tool Overview Semantics Symbolic Representations

Function Body: Guarded Transition System

\

] guard A
O transformation

22 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Evaluation

Semantics

Statement Types

statement type example guard example transformation

ASSIGN true x[i] + (y x2)/7.2

NOOP X#y+z identity

SEND nfull(source, dest) send(source, dest, tag, data)
RECV . .

ASSERT

ASSUME

INVOKE

RETURN

23 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Execution Semantics of a TASS Model

e defined as a state transition system

e the set of states is defined as above

e given a state s, the set of transitions enabled from s is determined as
follows:

e let pc be the path condition in s

for each process p:

look at current location / of pin's

for each statement (guard, transformation) departing from /:

let g be the result of evaluating guard at s

if p A g is satisfiable then there is a transition from s to a new state s’
the path condition in s’ is p A g and the rest of the state is determined
by applying transformation to s.

24 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Symbolic Representations: Canonical Forms

e two symbolic expressions are equivalent if given any assignment of
concrete values to symbolic constants, both expressions evaluate to the
same concrete value

e if a state s’ is obtained from s by replacing symbolic expressions with
equivalence symbolic expressions

e s and s’ represent the same set of concrete states
e say s and s’ are equivalent

e so the components of the state may be considered as equivalence
classes of symbolic expressions

e the ability to recognize that two expressions are equivalent can
therefore reduce the number of states searched

e this is facilitated by placing every expression into a canonical form

e boolean-valued: conjunctive normal form
e integer-valued: polynomial form
e real-valued: rational form

25 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Canonical Form: Integer Expressions

e a symbolic expression x of integer type is an integer primitive if x has
one of the following forms:

a symbolic constant X,

e an array read expression e;[e;],

e a record member read expression e;.e;

e an evaluated uninterpreted function expression f(ey, ..., e,),

e ... (any operation other than %, 4+, —)

e any expression formed from numeric primitives and concrete integers
using *, 4+, — can be written as a polynomial:

: . il PN in
§ :)\’17-~~7’nX1 Xn
Myeeesin

where the)\; _; are concrete integers.

7’”
e a total order can be placed on the primitives
e ...yiedling a total order on monic monomials

e arrange terms in order of increasing monics for the “canonical form”
26 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Problem Tool Overview Semantics Symbolic Representations Evaluation

Canonical Form: Real Expressions

e a real primitive is defined similarly

e any expression formed from real primitives and concrete rational
numbers using x, +, —, and / can be written as a rational function

where f(x) and g(x) are polynomials in the primitives and g is monic.
e a factorization is associated to each polynomial

e common factors are canceled when dividing

27 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

Evaluation

Evaluation

program bounds nprocs time (s) states values
adder n <100 10 11.1 23936 17580
adder n <100 30 135.6 40096 18381
laplace n<5An, <7TANB<3 12 131.2 73499 22136
laplace n<6An, <8AB <3 3 1649.1 61935 26955

543.3 3746952 14717
5523.9 27151911 33556
755.3 2735221 78478
4.2 39785 21769
91.0 977112 390024
1761.6 17317811 5050494

diffusion n, <10An; <4
diffusion n, <16An; <4
diffusion n, <20An: <6
matrix I <3Am<6An<3
matrix I<4Am<8AN<4
matrix I<5Am<5An<bH

B~ W oo~

28 S.F.Siegel © NSV-3 2010 ¢ Toolkit for Accurate Scientific Software

	The Problem
	Tool Overview
	Semantics
	Symbolic Representations
	Evaluation

