A Taylor Function Calculus for Hybrid System Analysis

Validation in Coq

P. Collins¹ M. Niqui¹ N. Revol²

¹CWI

²INRIA, LIP, Université de Lyon

3rd NSV Workshop, July 15, 2010

Outline

- Motivation and Background
- **Numerals**
- **Taylor Models**
- Conclusion & Further Work

Verification of Hybrid Systems.

• Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Verification of Hybrid Systems.

Ariadne: Tool for analysis of nonlinear hybrid systems.

http://trac.parades.rm.cnr.it/ariadne/

Main steps:

- Computing the flow of a differential equations $\dot{x} = f(x)$
- Computing an outer-approximation of an enclosure on a grid.

These operations must be performed *rigorously* and *efficiently*.

Ariadne

- implemented in (C++)
- kernel is generic!, there are theories for floats, reals and continuous functions.
- theories still work without full implementation.

To get *validated* results:

- verify the kernel
 - primitives for function calculus
 - algorithms for reachability analysis
- verify the result of each calculation.

We use the Cog system.

Ariadne

- implemented in (C++)
- kernel is generic!, there are theories for floats, reals and continuous functions.
- theories still work without full implementation.

To get *validated* results:

- verify the kernel
 - primitives for function calculus
 - algorithms for reachability analysis
- verify the result of each calculation.

We use the Cog system.

Ariadne

- implemented in (C++)
- kernel is generic!, there are theories for floats, reals and continuous functions.
- theories still work without full implementation.

To get *validated* results:

- verify the kernel
 - primitives for function calculus
 - algorithms for reachability analysis
- verify the result of each calculation.

We use the Cog system.

Validating Ariadne

Validating Ariadne

Taylor Models (TM)

Approximate functions using their Taylor expansion.

$$f \colon [-1,1] \longrightarrow \mathbb{R}$$
 approximated by $T_f \colon [-1,1] \longrightarrow \mathbb{R}$

Taylor Models (TM)

Approximate functions using their Taylor expansion.

 $f \colon [-1,1] \longrightarrow \mathbb{R}$ approximated by $T_f \colon [-1,1] \longrightarrow \mathbb{R}$

Each polynomial *T* approximates a family of functions.

Verifying TM

- TM using constructive reals in Coq Zumkeller
- TM using rational intervals in PVS Cháves-Daumas
- Ohebyshev models in HOL+Coq ... Joldes, Mayero

We implement a *basic calculus* of Taylor models with coefficients from an *abstract data-type* **F**.

Verifying TM

- TM using constructive reals in Coq Zumkeller
- TM using rational intervals in PVS Cháves-Daumas
- Ohebyshev models in HOL+Coq ... Joldes, Mayero

We implement a basic calculus of Taylor models with coefficients from an *abstract data-type* **F**.

F: the minimum interface with respect to which we have a basic Taylor model calculus.

It covers Floats (various base/precision), arbitrary precision, exact etc.

Numerals

F: Type

Constant:

0_F: **F**

Operations:

$$\begin{array}{ll} -\colon \mathsf{F} \longrightarrow \mathsf{F} & \textit{opposite} \\ |_|\colon \mathsf{F} \longrightarrow \mathsf{F} & \textit{abs. value} \\ \oplus_{u}, \oplus_{d}, \oplus_{n} \colon \mathsf{F} \to \mathsf{F} \longrightarrow \mathsf{F} & \textit{rounded addition} \\ \otimes_{u}, \otimes_{d}, \otimes_{n} \colon \mathsf{F} \to \mathsf{F} \longrightarrow \mathsf{F} & \textit{rounded multiplication} \end{array}$$

Injection

 $\bar{}: \mathbf{F} \longrightarrow \mathbb{R}$

Numerals

Axioms:

- $\overline{0_F} = 0$
- $\forall z$, $\overline{-z} = -\overline{z}$
- $\forall z$, $\overline{|z|} = |\overline{z}|$
- $\bullet \ \forall z_0z_1, \ |\overline{z_0\oplus_n z_1} \left(\overline{z_0} + \overline{z_1}\right)| \leq |\overline{z_0\oplus_u z_1} \left(\overline{z_0} + \overline{z_1}\right)|$
- $\forall z_0 z_1, |\overline{z_0 \oplus_n z_1} (\overline{z_0} + \overline{z_1})| \le |(\overline{z_0} + \overline{z_1}) \overline{z_0 \oplus_d z_1}|$
- $\forall z_0 z_1, \ \overline{z_0 \oplus_d z_1} \leq \overline{z_0} + \overline{z_1} \leq \overline{z_0 \oplus_u z_1}$
- $\forall z_0 z_1, |\overline{z_0 \otimes_n z_1} (\overline{z_0} \cdot \overline{z_1})| \leq |\overline{z_0 \otimes_u z_1} (\overline{z_0} \cdot \overline{z_1})|$
- $\forall z_0 z_1, \ |\overline{z_0 \otimes_n z_1} (\overline{z_0} \cdot \overline{z_1})| \leq |(\overline{z_0} \cdot \overline{z_1}) \overline{z_0 \otimes_d z_1}|$
- $\forall z_0 z_1, \ \overline{z_0 \otimes_d z_1} \leq \overline{z_0} \cdot \overline{z_1} \leq \overline{z_0 \otimes_u z_1}$

Axiomatisation

- · Formalised in Coq
- Instantiations not needed in our work
- Possible instances
 - Coq's (unbound) Floats Daumas-Rideau-Théry, Boldo
 - Subsets of \mathbb{F}_{32} , \mathbb{F}_{64} (normalised, no NaN, $\pm \infty$ etc.)
 - p-adics
 - Q
 - R (axiomatic, non-constructive)
 - Constructive exact reals
 - Singleton {0} (in fact finite groups!)

Axiomatisation

\blacksquare Axioms for \oplus

- $\forall z_0 z_1$, $|\overline{z_0 \oplus_n z_1} (\overline{z_0} + \overline{z_1})| \leq |\overline{z_0 \oplus_u z_1} (\overline{z_0} + \overline{z_1})|$
- $\bullet \ \forall z_0z_1, \ |\overline{z_0\oplus_n z_1} \left(\overline{z_0} + \overline{z_1}\right)| \leq |\left(\overline{z_0} + \overline{z_1}\right) \overline{z_0\oplus_d z_1}|$

can be replaced by either of

- 3 alternatively we could define

$$z_0 \oplus_u z_1 := \inf\{z \in \mathbf{F} | \overline{z_0} + \overline{z_1} \leq z\}$$

and require that the infimum exists.

Axiomatisation

We can add similar axiom schema for *composite* operations. (eg. fusedMultiplyAdd xy+z):

For $*: \mathbb{R} \times \cdots \times \mathbb{R} \longrightarrow \mathbb{R}$ we can add

$$\circledast_{u.d.n} : \mathbf{F} \times \cdots \times \mathbf{F} \longrightarrow \mathbf{F}$$

satisfying

$$\bullet \ \circledast_d(z_0,\ldots,z_k) \leq *(\overline{z_0},\ldots,\overline{z_k}) \leq \circledast_u(z_0,\ldots,z_k)$$

$$\bullet \ | \circledast_n (z_0, \ldots, z_k) - *(\overline{z_0}, \ldots, \overline{z_k}) | \leq | \circledast_{u,d} (z_0, \ldots, z_k) - *(\overline{z_0}, \ldots, \overline{z_k}) |$$

Verifying TM

- TM using constructive reals in Coq Zumkeller
- TM using rational intervals in PVS Cháves-Daumas
- Ohebyshev models in HOL+Coq ... Joldes, Mayero

We implement a <u>basic calculus</u> of Taylor models with coefficients from an abstract data-type \mathbf{F} .

Taylor Models with Floating point Coefficients

Analysed by Revol–Makino–Berz for COSY system.

Tedious because of several layers of rounding and truncation. TM: pair of polynomial T and ε *error*.

Taylor Models with Floating point Coefficients

TM: pair of polynomial T and ε the error.

For exact Taylor models ε denotes truncation error.

- If \hat{T} is obtained from T with floating point rep. for coefficients, there is rounding error $|T(x) \hat{T}(x)|$.
- ② If $z \in \mathbf{F}$, then $\hat{T}(\bar{z})$ can be calculated
 - exactly, or
 - using operations on F setra rounding error.

Ideally, If T models $f: \mathbb{R} \longrightarrow \mathbb{R}$ we should have

TM over F in Coq

• Let *p* be a sparse polynomial over **F**, eg.

$$p(x) := a_0 x^{n_0} + a_1 x^{n_1} + \cdots + a_k x^{n_k}$$

where $n_i < n_{i+1}$ and $a_i \in \mathbf{F}$.

 \bullet $\varepsilon \in \mathbf{F}$

 $\langle p, \varepsilon \rangle$ is a Taylor model.

 $TM_{\mathbf{F}}$ is the type of Taylor models over \mathbf{F} .

TM over F in Coq

 $\langle \boldsymbol{p}, \varepsilon \rangle \models_{\boldsymbol{r}} f$ if:

$$\forall z \in [-1,1], |p(\bar{z}) - f(\bar{z})| \leq \varepsilon$$
.

Let $E: TM_{\mathbf{F}} \times \mathbf{F} \longrightarrow \mathbf{F}$, E is an *evaluation* if

$$\forall \langle \boldsymbol{p}, \, \varepsilon \rangle \forall \bar{\boldsymbol{z}} \in [-1, 1], |\overline{\boldsymbol{E}(\langle \boldsymbol{p}, \, \varepsilon \rangle, \bar{\boldsymbol{z}})} - \boldsymbol{f}(\bar{\boldsymbol{z}})| \leq \varepsilon \ .$$

Currently Ariadne has a concrete evaluation (eval).

 $\langle p, \varepsilon \rangle \models f \text{ models } f \text{ if for each } z \text{ with } \bar{z} \in [-1, 1]$

Scalar multiplication

• If $\langle p, \varepsilon \rangle \models_r f, c \in \mathbf{F}$ then

$$\langle c \otimes_n p, \varepsilon' \rangle \models_r \bar{c}f$$

where

$$\varepsilon' := |c| \otimes_u \varepsilon \oplus_u \bigoplus_{i=0}^k c \otimes_u a_i \ominus_u c \otimes_d a_i$$

and
$$p(x) = a_0 x^{n_0} + a_1 x^{n_1} + \cdots + a_k x^{n_k}$$

Addition

• If $\langle p_0, \varepsilon_0 \rangle \models_r f_0$, $\langle p_1, \varepsilon_1 \rangle \models_r f_1$ then

$$\langle p_0 \oplus_n p_1, \varepsilon' \rangle \models_r f_0 + f_1$$

where

$$\varepsilon' := \varepsilon_0 \oplus_u \varepsilon_1 \oplus_u \bigoplus_{n_i = m_j} a_i \otimes_u b_j \ominus a_i \otimes_d b_j$$

and
$$p_0(x) = a_0 x^{n_0} + a_1 x^{n_1} + \dots + a_k x^{n_k}$$
, $p_1(x) = b_0 x^{m_0} + b_1 x^{m_1} + \dots + b_k x^{m_l}$

We can find ε for the following operations:

- *monomial* product; if $\langle p, \varepsilon \rangle \models_r f$ then $\langle xp, \varepsilon \rangle \models_r xf(x)$
- *multiplication*; if $\langle p_0, \varepsilon_0 \rangle \models_r f_0, \langle p_1, \varepsilon_1 \rangle \models_r f_1$ then

$$\langle p_0 \otimes_n p_1, \varepsilon' \rangle \models_r f_0 f_1$$

Suppose $\langle p, \varepsilon \rangle \models f, c \in \mathbf{F}$, then we can find ε' s.t.

$$\langle c \otimes_n p, \varepsilon' \rangle \models \bar{c}f$$

But we need to amend the axiomatisation.

Add constants 1_{F} , $\varepsilon_{m} \in F$, let $2_{F} := 1_{F} \oplus_{u} 1_{F}$, and add axioms

- \bullet $\overline{1_F} = 1$
- $0 < \overline{\varepsilon_m}$
- $\bullet \ |\overline{z_0 \otimes_n z_1} \overline{z_0} \times \overline{z_1}| \leq |\overline{z_0 \otimes_n z_1}| \otimes_n 2_{\textbf{F}} \otimes_n \varepsilon_m$

Intended meaning: ε_m is some value > 2ulp.

 \blacksquare For addition we need axioms for \oplus .

Formal Proofs

```
TaylorModel r(x.argument size());
Term xterm=x.begin(); Term yterm=y.begin();
 while (xterm!=x.end() && vterm!=v.end()) {
         if (xterm.key == yterm.key) {
                   Float u = add up(xterm.value,yterm.value);
                   Float 1 = add down(xterm.value, yterm.value);
                   r.error = add up(r.error,sub up(u,1)/2);
                   r.new term( xterm.key,
                                        add near(xterm.value, vterm.value) );
                   ++xterm; ++yterm;
           } else if(xterm.key<yterm.key) {
                   r.new term( xterm ); ++xterm;
           } else if(yterm.key<xterm.key) {
                   r.new term( yterm ); ++yterm;
 r->error = add up(r.error, x.error, y.error);
 return r:
                                                                                                                                                      The state of the s
                                                                                                                                                  Bee
```

TaylorModel operator+(TaylorModel x, TaylorModel v) {

20 lines of C++

Control of the Contro

370 lines of Coq 230 spec (60%) 140 proof (40%)

Extending the TM_F Calculus?

division to be added to the axiomatisation for **F**.

- NaN and $+\infty$ will be added.
- Operations and axioms to be updated on $\mathbf{F} + \{NaN, \pm \infty\}$.
- anti-differentiation of Taylor models is possible using integer division.

Further Parametrisation?

To 'future-proof' the framework ideally we have to develop

- Polynomials: a minimal interface covering
 - representation: sparse, incremental sparse, . . .
 - evaluation: ordinary, Horner, . . .
 - calibration: sweeping the truncation error
- Function Models: a type for approx. of continuous functions.

Further Parametrisation?

To 'future-proof' the framework ideally we have to develop

- Polynomials: a minimal interface covering
- Function Models: a type for approx. of continuous functions.

The minimal interface should cover

- evaluation on floats, intervals and real numbers
- composition of approximations
- composition of a computable function and an approximation.

Good for transcendental functions.