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Motivation

N\
\
\

Main steps:

@ Computing the flow of a differential equations x = f(x)
@ Computing an outer-approximation of an enclosure on a grid.

These operations must be performed rigorously and efficiently.
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Ariadne

@ implemented in (C++)

@ kernel is generic!, there are theories for floats, reals and
continuous functions.

@ theories still work without full implementation.

To get validated results:
@ verify the kernel

@ verify the result of each calculation.

b4
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Ariadne

@ implemented in (C++)

@ kernel is generic!, there are theories for floats, reals and
continuous functions.

@ theories still work without full implementation.

To get validated results:

@ verify the kernel

» primitives for function calculus
» algorithms for reachability analysis

g We use the Coq system.
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Validating Ariadne

Floats
p-adic
Rationals
© Reals

@ Polynomials
@ Taylor Model
@ Power Series

Validated
Hyb. Sys.
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Taylor Models (TM)

Approximate functions using their Taylor expansion.

f: [-1,1] — R approximated by T;: [-1,1] — R

f(x)
()
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Taylor Models (TM)
Approximate functions using their Taylor expansion.
f: [-1,1] — R approximated by T;: [-1,1] — R

Each polynomial T approximates a family of functions.

f(x)
T(x)
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Verifying TM

@ TM using constructive reals in Coq Zumkeller
© TM using rational intervals in PVS Chaves—Daumas
© Chebyshev models in HOL+Coq ... Joldes, Mayero

We implement a basic calculus of Taylor models with coefficients from
an abstract data-type F.
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Verifying TM

We implement a basic calculus of Taylor models with coefficients from
an abstract data-type F.

F: the minimum interface with respect to which we have a basic Taylor
model calculus.

It covers Floats (various base/precision), arbitrary precision, exact etc.
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Numerals

F: Type

Constant:

Operations:

Og: F

—F—F opposite
||:F—F abs. value
By, Py, Bn: F—F —F rounded addition
Qu, g, n: F—+F —F rounded multiplication
Injection
F—R
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Numerals

Axioms:

® V2oz1, |20 ®nz1 — (20 +Z1)| < [20 By 21 — (20 + Z1)|
° V2021, |20®n21 — (20 +21)| < (20 + Z1) — 20 Dy 24|
o V2021, Z0Dg2z1 <20+ 21 < 20 Du Zy

® Y202y, |20®@nZ1 — (20 Z7)| < |20 ®uZ1 — (20 - Z1)|

° VZyzy, |20®@nz1 — (Z0-Z1)| < [(Z0 - Z1) — 20 ®q Z1]
o V20z1, Z0®q2Z1 <2021 < 20 Qu Z
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Axiomatisation

e Formalised in Coq
e Instantiations not needed in our work

e Possible instances
@ Cog’s (unbound) Floats Daumas—Rideau—Théry, Boldo
@ Subsets of 3o, Fg4 (normalised, no NaN, +oc etc.)
@ p-adics
°Q
@ R (axiomatic, non-constructive)
@ Constructive exact reals
@ Singleton {0} (in fact finite groups!)
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Axiomatisation

> Axioms for @

o V2021, [20©n2z1 — (20 +21)| < |20 Buz1 — (20 + Z1)]
o V2021, |20 ®n2z1 — (20 +21)| < [(Z0 +27) — 20 Dy 21|

can be replaced by either of

@ V2021, [20Tn 2 — (20 +77)| < (BRI %)
Q Vzz1z, Z®nz1 — (20 +2) < |2 (D + 7))

© alternatively we could define
Zoduz1:=inf{zeF|lzp+21 < z}

and require that the infimum exists.
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Axiomatisation

= We can add similar axiom schema for composite operations. (eg.
fusedMultiplyAdd xy-+2):

For+: R x -.- x R — R we can add

®u7d7n:Fx---><F—>F

satisfying
° ®d(207---»zk) < *(Z_Oaaz_k) < ®u(207---»zk)
o |®n(207'"7Zk)_*(z_07"'7z_k)| S |®U,d(207"'7zk)_*(z_07"'az_k)|
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Verifying TM

We implement a basic calculus of Taylor models with coefficients from
an abstract data-type F.
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Taylor Models with Floating point Coefficients

Analysed by Revol-Makino—Berz for COSY system.
Tedious because of several layers of rounding and truncation.

TM: pair of polynomial T and ¢ error.

T(x)+e

f(x)
T(x)

T(x)-e
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Taylor Models with Floating point Coefficients

TM: pair of polynomial T and ¢ the error.

For exact Taylor models ¢ denotes truncation error.

@ |If T is obtained from T with roaEing point rep. for coefficients,
there is rounding error | T(x) — T(x)].

Q If z € F, then T(2) can be calculated
» exactly, or

» using operations on F = extra rounding error.
Ideally, If T models f: R — R we should have

€
e Ny

1 / A
f(Z) TR eval(T,z)

Taylor + Floats in Coq
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TM over F in Coq

@ Let p be a sparse polynomial over F, eg.

p(x) = apx™ + a;x™ + - + ax"

where n; < nj,1 and a; € F.

@ccF
(p, €) is a Taylor model.

TME is the type of Taylor models over F.
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TM over F in Coq
(p, &) k= fif:

vz e[-1,1],p(2) - f(2)] <& .

Let E: TMg x F — F, E is an evaluation if

v<pa €>V2 € [_171]7 ‘E(<p7 €>72) - f(z)’ <e.
Currently Ariadne has a concrete evaluation (eval).

(p, £) = f models f if for each z with z € [-1,1]

€
e Ny

L |
1 A A
f(Z) TZ) eval(T,>2)

Taylor + Floats in Coq NSV-3
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TME calculus

Scalar multiplication
@ If (p, e) = f, c € F then

(c@np, &) = Cf

where

K
g :=|c|®uedy @C®Uaieuc®da"
i=0
and p(x) = apx"™ + a;x™ + -+ + a X"«
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TME calculus

Addition
o If (po, c0) = fo, (p1, €1) =/ fi then
(o ®np1, ) =r fo+ 1o

where

e =g Dueq By @ ai®ubj9‘ai®dbj

ni=m;

and po(x) = apx™ + a1 x™ + - - + aggx* |
P1(x) = box™ + by x™ 4 -+ + byx™
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TME calculus

We can find ¢ for the following operations:

@ monomial product; if (p, €) =, f then (xp, €) =, xf(x)
@ multiplication; if (pg, o) =r fy, (P1, €1) =r f1 then

(Po ®n p1, €'Y ¢ fofy
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TME calculus

Suppose (p, ¢) = f, ¢ € F, then we can find ¢’ s.t.
(c@np, e) = cf
But we need to amend the axiomatisation.

Add constants 1g,en, € F, let 2g:=1 @&, 1F, and add axioms

oﬂ:1
e 0<zy

® (20 ®n2z1 — 20 x Z1| < |20 ®n Z1| ®n 2F ®nem

Intended meaning: ¢, is some value > 2ulp.

1= For addition we need axioms for @.

Taylor + Floats in Coq NSV-3 22/25



Formal Proofs

TaylorModel operator+(TaylorModel x, TaylorModel y) {
TaylorModel r(x.argument size());
Term xterm=x.begin(); Term yterm=y.begin();
vhile (xterm!=x.end() & yterm!=y.end()) {
if (xterm.key == yterm.key) {
Float u = add up(xterm.value,yterm.value); H
Float 1 = add down(xterm.value,ytern.value); 20 |IneS Of C++
r.error = add up(r.error,sub up(u,1)/2);
r.new term( xterm.key,
add near(xterm.value, yterm.value) );
++xterm; ++yterm;
else if (xterm.key<yterm.key) {
r.new term( xterm ); ++xterm;
else if(yterm.key<xterm.key) {
r.new term( yterm ); ++yterm;
¥
¥
r->error = add up(r.error, x.error, y.error);
return r;

e

370 lines of Coq

230 spec (60%
140 proof (40%

Taylor + Floats in Coq NSV-3 23/25



Extending the TMg Calculus?

division to be added to the axiomatisation for F.

@ NaN and +oco will be added.
@ Operations and axioms to be updated on F + {NaN, £occ}.

@ anti-differentiation of Taylor models is possible using integer
division.

Taylor + Floats in Coq NSV-3 24/25



Further Parametrisation?

To ‘future-proof’ the framework ideally we have to develop

@ Polynomials: a minimal interface covering

» representation: sparse, incremental sparse, . ..
» evaluation: ordinary, Horner, . ..
» calibration: sweeping the truncation error
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Further Parametrisation?

To ‘future-proof’ the framework ideally we have to develop

@ Polynomials: a minimal interface covering

@ Function Models: a type for approx. of continuous functions.

The minimal interface should cover

» evaluation on floats, intervals and real numbers
» composition of approximations
» composition of a computable function and an approximation.

1 Good for transcendental functions.
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