
Third International Workshop on Numerical Software Verification

Formal verification of numerical programs:
from C annotated programs to Coq proofs

Sylvie Boldo

INRIA Saclay - Île-de-France

July 15th, 2010

Thanks to

the organizers !

all collaborators of these works
I F. Clément
I J.-C. Filliâtre
I G. Melquiond
I T. Nguyen

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 2 / 41

Thanks to

the organizers !

all collaborators of these works
I F. Clément
I J.-C. Filliâtre
I G. Melquiond
I T. Nguyen

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 2 / 41

Motivations

Numerical Software Verification

⇒ software with floating-point computations

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 3 / 41

Motivations

Numerical Software Verification

⇒ software with floating-point computations

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 3 / 41

Floating-point number

This is only a string of bits.

11100011010010011110000111000000

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 4 / 41

Floating-point number

This is only a string of bits.

11100011010010011110000111000000

We interpret it depending on the respective values of s (sign), e (exponent)
and f (fraction).

1 11000110 10010011110000111000000

1 11000110 10010011110000111000000
s e f

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 4 / 41

Floating-point number

We associate a real value :

1 11000110 10010011110000111000000
s e f
↓ ↓ ↓

(−1)s× 2e−B × 1 • f

(−1)1× 2198−127 ×1.100100111100001110000002

−254 × 206727 ≈ −3.724× 1021

except for the special values of e : ±0, ±∞, NaN, subnormals.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 5 / 41

Floating-point number

We associate a real value :

1 11000110 10010011110000111000000
s e f
↓ ↓ ↓

(−1)s× 2e−B × 1 • f

(−1)1× 2198−127 ×1.100100111100001110000002

−254 × 206727 ≈ −3.724× 1021

except for the special values of e : ±0, ±∞, NaN, subnormals.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 5 / 41

Floating-point number repartition

0 R

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 6 / 41

Floating-point number repartition

0 R

subnormals

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 6 / 41

Floating-point number repartition

0 R

subnormals binade (common exponent)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 6 / 41

Floating-point operations

Thanks to the IEEE-754 standard, the computed results of +,−,×, /,√

should be the same as if they were first computed with infinite precision
and then rounded.

⇒ computations with 3 more bits (see J. Coonen)

⇒ mathematical properties such that :
when a real value fits exactly in a floating-point number in a given format,
then it is exactly computed.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 7 / 41

Floating-point operations

Thanks to the IEEE-754 standard, the computed results of +,−,×, /,√

should be the same as if they were first computed with infinite precision
and then rounded.

⇒ computations with 3 more bits (see J. Coonen)

⇒ mathematical properties such that :
when a real value fits exactly in a floating-point number in a given format,
then it is exactly computed.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 7 / 41

Motivations

Numerical Software Verification

Critical C code ↪→ formal proof

⇒ high guarantee

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 8 / 41

Motivations

Numerical Software Verification

Critical C code ↪→ formal proof

⇒ high guarantee

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 8 / 41

Related work

static analyzers
I Astrée
I Fluctuat

specification languages
I JML

formal proofs about floating-point arithmetic
I trigonometric functions (HOL Light)
I verification of the FPU (ACL2)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 9 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← Human

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← Human

Coq ← Human

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← Human

Coq ← Human

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← Human

Coq ← Human

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Coq ← Human

Coq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Coq ← Human

Coq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Coq ← Human

Coq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Coq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 10 / 41

Plan

1 Motivations

2 Tools
Formal proof
Frama-C/Jessie/Why

3 Examples

4 Conclusions

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 11 / 41

Formal proof

Certified formal proof

The proof is checked in its deep details until the computer agrees with it.

We often use formal proof checkers, meaning programs that only check a
proof (they may also generate easy demonstrations).

Therefore the checker is a very short program (de Bruijn criteria : the
correctness of the system as a whole depends on the correctness of a very
small ”kernel”).

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 12 / 41

The Coq proof assistant (http://coq.inria.fr)

Based on the Curry-Howard isomorphism.
(equivalence between proofs and λ-terms)

Few automations.

Comprehensive libraries, including on Z and R.

Coq kernel mechanically checks each step of each proof.

The method is to apply successively tactics (theorem application,
rewriting, simplifications. . .) to transform or reduce the goal down to
the hypotheses.

The proof is handled starting from the conclusion.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 13 / 41

http://coq.inria.fr

Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent)

(n, e) ∈ Z2

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 14 / 41

Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent)
associated to a real value.

(n, e) ∈ Z2 ↪→ n × βe ∈ R

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 14 / 41

Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent)
associated to a real value.

(n, e) ∈ Z2 ↪→ n × βe ∈ R

1.000102 E 4 7→ (1000102,−1)2 ↪→ 17

IEEE-754 significant of 754R real value

⇒ normal floats, subnormal floats, overflow.

Many floats may represent the same real value, but we can exhibit a canon-
ical representation.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 14 / 41

Example using Coq 8.2

Theorem Rle Fexp eq Zle :

forall x y :float, (x <= y)%R ->

Fexp x = Fexp y -> (Fnum x <= Fnum y)%Z.

intros x y H’ H’0.

apply le IZR.

apply (Rle monotony contra exp radix)

with (z := Fexp x); auto with real arith.

pattern (Fexp x) at 2 in |- *; rewrite H’0; auto.

Qed.

With keywords, stating of the theorem, tactics and names of used theorems.

Theorem (Rle Fexp eq Zle)

If two floats x = (nx , ex) and y = (ny , ey) verifies x ≤ y, and ex = ey , then
nx ≤ ny .

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 15 / 41

Example using Coq 8.2

Theorem Rle Fexp eq Zle :

forall x y :float, (x <= y)%R ->

Fexp x = Fexp y -> (Fnum x <= Fnum y)%Z.

intros x y H’ H’0.

apply le IZR.

apply (Rle monotony contra exp radix)

with (z := Fexp x); auto with real arith.

pattern (Fexp x) at 2 in |- *; rewrite H’0; auto.

Qed.

With keywords, stating of the theorem, tactics and names of used theorems.

Theorem (Rle Fexp eq Zle)

If two floats x = (nx , ex) and y = (ny , ey) verifies x ≤ y, and ex = ey , then
nx ≤ ny .

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 15 / 41

Plan

1 Motivations

2 Tools
Formal proof
Frama-C/Jessie/Why

3 Examples

4 Conclusions

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 16 / 41

Frama-C/Jessie/Why

Frama-C is a framework dedicated to the analysis of the source code
of software written in C.

Available plugins :

I value analysis
I Jessie, the deductive verification plug-in

(based on weakest precondition computation techniques)
I . . .

Free softwares in CAML available at http://frama-c.com/ and
http://why.lri.fr/.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 17 / 41

http://frama-c.com/
http://why.lri.fr/

Frama-C/Jessie/Why

Frama-C is a framework dedicated to the analysis of the source code
of software written in C.

Available plugins :

I value analysis
I Jessie, the deductive verification plug-in

(based on weakest precondition computation techniques)
I . . .

Free softwares in CAML available at http://frama-c.com/ and
http://why.lri.fr/.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 17 / 41

http://frama-c.com/
http://why.lri.fr/

Frama-C/Jessie/Why

Frama-C is a framework dedicated to the analysis of the source code
of software written in C.

Available plugins :
I value analysis

I Jessie, the deductive verification plug-in
(based on weakest precondition computation techniques)

I . . .

Free softwares in CAML available at http://frama-c.com/ and
http://why.lri.fr/.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 17 / 41

http://frama-c.com/
http://why.lri.fr/

Frama-C/Jessie/Why

Frama-C is a framework dedicated to the analysis of the source code
of software written in C.

Available plugins :
I value analysis
I Jessie, the deductive verification plug-in

(based on weakest precondition computation techniques)

I . . .

Free softwares in CAML available at http://frama-c.com/ and
http://why.lri.fr/.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 17 / 41

http://frama-c.com/
http://why.lri.fr/

Frama-C/Jessie/Why

Frama-C is a framework dedicated to the analysis of the source code
of software written in C.

Available plugins :
I value analysis
I Jessie, the deductive verification plug-in

(based on weakest precondition computation techniques)
I . . .

Free softwares in CAML available at http://frama-c.com/ and
http://why.lri.fr/.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 17 / 41

http://frama-c.com/
http://why.lri.fr/

Frama-C/Jessie/Why

Frama-C is a framework dedicated to the analysis of the source code
of software written in C.

Available plugins :
I value analysis
I Jessie, the deductive verification plug-in

(based on weakest precondition computation techniques)
I . . .

Free softwares in CAML available at http://frama-c.com/ and
http://why.lri.fr/.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 17 / 41

http://frama-c.com/
http://why.lri.fr/

Frama-C/Jessie/Why

ACSL-annotated C program

Frama-C/Jessie plug-in

WHY verification condition generator

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 18 / 41

Frama-C/Jessie/Why

ACSL-annotated C program

Frama-C/Jessie plug-in

WHY verification condition generator

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 18 / 41

Frama-C/Jessie/Why

ACSL-annotated C program

Frama-C/Jessie plug-in

WHY verification condition generator

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 18 / 41

ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 19 / 41

ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 19 / 41

ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 19 / 41

ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 19 / 41

ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 19 / 41

ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 19 / 41

ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part

the value that would have been obtained with exact computations,
x → xe exact part

the value that we ideally wanted to compute
x → xm model part

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 20 / 41

ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part

the value that would have been obtained with exact computations,
x → xe exact part

the value that we ideally wanted to compute
x → xm model part

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 20 / 41

ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part

the value that would have been obtained with exact computations,
x → xe exact part

the value that we ideally wanted to compute
x → xm model part

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 20 / 41

ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part 1+x+x*x/2

the value that would have been obtained with exact computations,
x → xe exact part 1 + x + x2

2

the value that we ideally wanted to compute
x → xm model part exp(x)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 20 / 41

ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part 1+x+x*x/2

the value that would have been obtained with exact computations,
x → xe exact part 1 + x + x2

2

the value that we ideally wanted to compute
x → xm model part exp(x)

⇒ easy to split into method error and rounding error

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 20 / 41

ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part 1+x+x*x/2

the value that would have been obtained with exact computations,
x → xe exact part 1 + x + x2

2

the value that we ideally wanted to compute
x → xm model part exp(x)

⇒ easy to split into method error and rounding error

For a float f, we have macros such as \rounding error(f) and
\exact(f), while f (as a real) is its floating-point value.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 20 / 41

Pragmas

Several pragmas corresponding to different formalization for floating-point
numbers.

defensive (default pragma) : IEEE roundings occur. We prove that
no exceptional behavior may happen (Overflow, NaN creation. . .)

math : all computations are exact.

full : IEEE roundings occur. Exceptional behaviors may happen.

multi-rounding : we may have any hardware and compiler
(80-bit extended registers, FMA)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 21 / 41

Pragmas

Several pragmas corresponding to different formalization for floating-point
numbers.

defensive (default pragma) : IEEE roundings occur. We prove that
no exceptional behavior may happen (Overflow, NaN creation. . .)

math : all computations are exact.

full : IEEE roundings occur. Exceptional behaviors may happen.

multi-rounding : we may have any hardware and compiler
(80-bit extended registers, FMA)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 21 / 41

Pragmas

Several pragmas corresponding to different formalization for floating-point
numbers.

defensive (default pragma) : IEEE roundings occur. We prove that
no exceptional behavior may happen (Overflow, NaN creation. . .)

math : all computations are exact.

full : IEEE roundings occur. Exceptional behaviors may happen.

multi-rounding : we may have any hardware and compiler
(80-bit extended registers, FMA)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 21 / 41

Pragmas

Several pragmas corresponding to different formalization for floating-point
numbers.

defensive (default pragma) : IEEE roundings occur. We prove that
no exceptional behavior may happen (Overflow, NaN creation. . .)

math : all computations are exact.

full : IEEE roundings occur. Exceptional behaviors may happen.

multi-rounding : we may have any hardware and compiler
(80-bit extended registers, FMA)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 21 / 41

Plan

1 Motivations

2 Tools
Formal proof
Frama-C/Jessie/Why

3 Examples

4 Conclusions

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 22 / 41

Examples

All examples use Frama-C Boron and Why 2.26.

All proof obligations are proved using Coq.
(except 2 inequalities in the last example).

Code & proofs available on
http://www.lri.fr/~sboldo/research.html.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 23 / 41

http://www.lri.fr/~sboldo/research.html

Examples

All examples use Frama-C Boron and Why 2.26.

All proof obligations are proved using Coq.
(except 2 inequalities in the last example).

Code & proofs available on
http://www.lri.fr/~sboldo/research.html.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 23 / 41

http://www.lri.fr/~sboldo/research.html

Examples

All examples use Frama-C Boron and Why 2.26.

All proof obligations are proved using Coq.
(except 2 inequalities in the last example).

Code & proofs available on
http://www.lri.fr/~sboldo/research.html.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 23 / 41

http://www.lri.fr/~sboldo/research.html

Sterbenz

Theorem (Sterbenz)

If x and y are FP numbers in a given precision such that

y

2
≤ x ≤ 2y ,

then x − y fits in a FP number in the same precision and is therefore
computed without error.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 24 / 41

Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;

@ ensures \result == x-y;

@*/

f l o a t S t e r b e n z (f l o a t x , f l o a t y) {
return x−y ;

}

Exact subtraction
1 PO : exact subtraction

1 PO : no overflow

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 25 / 41

Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;

@ ensures \result == x-y;

@*/

f l o a t S t e r b e n z (f l o a t x , f l o a t y) {
return x−y ;

}

Exact subtraction

1 PO : exact subtraction

1 PO : no overflow

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 25 / 41

Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;

@ ensures \result == x-y;

@*/

f l o a t S t e r b e n z (f l o a t x , f l o a t y) {
return x−y ;

}

Exact subtraction

1 PO : exact subtraction

1 PO : no overflow

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 25 / 41

Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;

@ ensures \result == x-y;

@*/

f l o a t S t e r b e n z (f l o a t x , f l o a t y) {
return x−y ;

}

Exact subtraction

1 PO : exact subtraction

1 PO : no overflow

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 25 / 41

Veltkamp/Dekker

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Idea :
split your floats in 2, multiply all the parts, add them in the correct order.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 26 / 41

Veltkamp/Dekker

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Idea :
split your floats in 2, multiply all the parts, add them in the correct order.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 26 / 41

Veltkamp : how to split a floating-point number

Let C = 227 + 1 for double precision numbers.

27 bits

x

227 × x+

p = ◦(x × C)

q = ◦(x − p)

x1 = p + q

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 27 / 41

Dekker : how to get the error of the multiplication

x1 × y1

r1 = ◦(x × y)

x1 × y2

t2 = t1 + x1 × y2

x2 × y1

x2 × y2

r2 = t3 + x2 × y2

t1 = x1 × y1 − r

t3 = t2 + x2 × y1

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 28 / 41

Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result);

@*/

double Dekker (double x , double y , double xy) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[. . .]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41

Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result);

@*/

double Dekker (double x , double y , double xy) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[. . .]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41

Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result);

@*/

double Dekker (double x , double y , double xy) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[. . .]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41

Veltkamp/Dekker – program
xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result);

@*/

double Dekker (double x , double y , double xy) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[. . .]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41

Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result);

@*/

double Dekker (double x , double y , double xy) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[. . .]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41

Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow

Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result);

@*/

double Dekker (double x , double y , double xy) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[. . .]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41

Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow

Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result);

@*/

double Dekker (double x , double y , double xy) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[. . .]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41

Accurate discriminant

It is pretty hard to compute b2 − ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b2 − a ∗ c within 2 ulps.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 30 / 41

Accurate discriminant

It is pretty hard to compute b2 − ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b2 − a ∗ c within 2 ulps.

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 30 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result);

@ */

double d i s c r i m i n a n t (double a , double b , double c) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f (p+q <= 3∗ f a b s (p−q))
d=p−q ;

e l s e {
dp=Dekker (b , b , p) ;
dq=Dekker (a , c , q) ;
d=(p−q)+(dp−dq) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 31 / 41

Wave equation resolution scheme

∂2u(x , t)

∂t2
− c2∂

2u(x , t)

∂x2
= s(x , t)

↪→

x

t

xj+1xj−1 xj

tk

tk−1

tk−2

uk
j − 2uk−1

j + uk−2
j

∆t2
− c2

uk−1
j+1 − 2uk−1

j + uk−1
j−1

∆x2
= sk−1

j

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 32 / 41

Wave equation resolution scheme

∂2u(x , t)

∂t2
− c2∂

2u(x , t)

∂x2
= s(x , t)

↪→

x

t

xj+1xj−1 xj

tk

tk−1

tk−2

uk
j − 2uk−1

j + uk−2
j

∆t2
− c2

uk−1
j+1 − 2uk−1

j + uk−1
j−1

∆x2
= sk−1

j

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 32 / 41

Wave equation resolution scheme

∂2u(x , t)

∂t2
− c2∂

2u(x , t)

∂x2
= s(x , t)

↪→

x

t

xj+1xj−1 xj

tk

tk−1

tk−2

uk
j − 2uk−1

j + uk−2
j

∆t2
− c2

uk−1
j+1 − 2uk−1

j + uk−1
j−1

∆x2
= sk−1

j

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 32 / 41

Wave equation resolution scheme – program

Space loop

Time loop

Loop invariant

Loop invariant

Main computations

double ∗∗ f o r w a r d p r o p (i n t ni , i n t nk , double dx , double dt ,
double v , double xs , double l) {

double ∗∗p ; i n t i , k ; double a1 , a , dp ;

a1 = dt / dx∗v ; a = a1∗a1 ;

[. . .] // i n i t i a l i z a t i o n s o f p [. . .] [0] and p [. . .] [1]

/* propagation = time loop */

/*@ loop invariant 1 <= k <= nk && analytic_error(p,ni ,ni,k,a);

@ loop variant nk -k; */

f o r (k=1; k<nk ; k++) {
p [0] [k+1] = 0 . ;

/* time iteration = space loop */

/*@ loop invariant 1 <= i <= ni && analytic_error(p,ni ,i-1,k+1,a);

@ loop variant ni -i; */

f o r (i =1; i<n i ; i ++) {
dp = p [i +1] [k] − 2 .∗ p [i] [k] + p [i −1] [k] ;
p [i] [k+1] = 2 .∗ p [i] [k] − p [i] [k−1] + a∗dp ;

}
p [n i] [k+1] = 0 . ;

}
r e t u r n p ;

}

Accumulation of
rounding errors

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 33 / 41

Wave equation resolution scheme – program

Space loop

Time loop

Loop invariant

Loop invariant

Main computations

double ∗∗ f o r w a r d p r o p (i n t ni , i n t nk , double dx , double dt ,
double v , double xs , double l) {

double ∗∗p ; i n t i , k ; double a1 , a , dp ;

a1 = dt / dx∗v ; a = a1∗a1 ;

[. . .] // i n i t i a l i z a t i o n s o f p [. . .] [0] and p [. . .] [1]

/* propagation = time loop */

/*@ loop invariant 1 <= k <= nk && analytic_error(p,ni ,ni,k,a);

@ loop variant nk -k; */

f o r (k=1; k<nk ; k++) {
p [0] [k+1] = 0 . ;

/* time iteration = space loop */

/*@ loop invariant 1 <= i <= ni && analytic_error(p,ni ,i-1,k+1,a);

@ loop variant ni -i; */

f o r (i =1; i<n i ; i ++) {
dp = p [i +1] [k] − 2 .∗ p [i] [k] + p [i −1] [k] ;
p [i] [k+1] = 2 .∗ p [i] [k] − p [i] [k−1] + a∗dp ;

}
p [n i] [k+1] = 0 . ;

}
r e t u r n p ;

}

Accumulation of
rounding errors

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 33 / 41

Wave equation resolution scheme – program

Space loop

Time loop

Loop invariant

Loop invariant

Main computations

double ∗∗ f o r w a r d p r o p (i n t ni , i n t nk , double dx , double dt ,
double v , double xs , double l) {

double ∗∗p ; i n t i , k ; double a1 , a , dp ;

a1 = dt / dx∗v ; a = a1∗a1 ;

[. . .] // i n i t i a l i z a t i o n s o f p [. . .] [0] and p [. . .] [1]

/* propagation = time loop */

/*@ loop invariant 1 <= k <= nk && analytic_error(p,ni ,ni,k,a);

@ loop variant nk -k; */

f o r (k=1; k<nk ; k++) {
p [0] [k+1] = 0 . ;

/* time iteration = space loop */

/*@ loop invariant 1 <= i <= ni && analytic_error(p,ni ,i-1,k+1,a);

@ loop variant ni -i; */

f o r (i =1; i<n i ; i ++) {
dp = p [i +1] [k] − 2 .∗ p [i] [k] + p [i −1] [k] ;
p [i] [k+1] = 2 .∗ p [i] [k] − p [i] [k−1] + a∗dp ;

}
p [n i] [k+1] = 0 . ;

}
r e t u r n p ;

}

Accumulation of
rounding errors

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 33 / 41

Wave equation resolution scheme – program

Space loop

Time loop

Loop invariant

Loop invariant

Main computations

double ∗∗ f o r w a r d p r o p (i n t ni , i n t nk , double dx , double dt ,
double v , double xs , double l) {

double ∗∗p ; i n t i , k ; double a1 , a , dp ;

a1 = dt / dx∗v ; a = a1∗a1 ;

[. . .] // i n i t i a l i z a t i o n s o f p [. . .] [0] and p [. . .] [1]

/* propagation = time loop */

/*@ loop invariant 1 <= k <= nk && analytic_error(p,ni ,ni,k,a);

@ loop variant nk -k; */

f o r (k=1; k<nk ; k++) {
p [0] [k+1] = 0 . ;

/* time iteration = space loop */

/*@ loop invariant 1 <= i <= ni && analytic_error(p,ni ,i-1,k+1,a);

@ loop variant ni -i; */

f o r (i =1; i<n i ; i ++) {
dp = p [i +1] [k] − 2 .∗ p [i] [k] + p [i −1] [k] ;
p [i] [k+1] = 2 .∗ p [i] [k] − p [i] [k−1] + a∗dp ;

}
p [n i] [k+1] = 0 . ;

}
r e t u r n p ;

}

Accumulation of
rounding errors

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 33 / 41

Wave equation resolution scheme – program

Space loop

Time loop

Loop invariant

Loop invariant

Main computations

double ∗∗ f o r w a r d p r o p (i n t ni , i n t nk , double dx , double dt ,
double v , double xs , double l) {

double ∗∗p ; i n t i , k ; double a1 , a , dp ;

a1 = dt / dx∗v ; a = a1∗a1 ;

[. . .] // i n i t i a l i z a t i o n s o f p [. . .] [0] and p [. . .] [1]

/* propagation = time loop */

/*@ loop invariant 1 <= k <= nk && analytic_error(p,ni ,ni,k,a);

@ loop variant nk -k; */

f o r (k=1; k<nk ; k++) {
p [0] [k+1] = 0 . ;

/* time iteration = space loop */

/*@ loop invariant 1 <= i <= ni && analytic_error(p,ni ,i-1,k+1,a);

@ loop variant ni -i; */

f o r (i =1; i<n i ; i ++) {
dp = p [i +1] [k] − 2 .∗ p [i] [k] + p [i −1] [k] ;
p [i] [k+1] = 2 .∗ p [i] [k] − p [i] [k−1] + a∗dp ;

}
p [n i] [k+1] = 0 . ;

}
r e t u r n p ;

}

Accumulation of
rounding errors

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 33 / 41

Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ pk
i has error 2k2−53.

We define εki as the signed rounding error made at step (i , k).

The predicate analytic error(x,t) is defined in Coq as :
For all steps (i , k) that are under (x , t),

|εki | ≤ 78× 2−52

pk
i − exact(pk

i) =
k∑

l=0

l∑
j=−l

αl
j ε

k−l
i+j , with known αl

j

∣∣∣pk
i − exact

(
pk
i

)∣∣∣ ≤ 85× 2−53 × (k + 1)× (k + 2)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 34 / 41

Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ pk
i has error 2k2−53.

We define εki as the signed rounding error made at step (i , k).

The predicate analytic error(x,t) is defined in Coq as :
For all steps (i , k) that are under (x , t),

|εki | ≤ 78× 2−52

pk
i − exact(pk

i) =
k∑

l=0

l∑
j=−l

αl
j ε

k−l
i+j , with known αl

j

∣∣∣pk
i − exact

(
pk
i

)∣∣∣ ≤ 85× 2−53 × (k + 1)× (k + 2)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 34 / 41

Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ pk
i has error 2k2−53.

We define εki as the signed rounding error made at step (i , k).

The predicate analytic error(x,t) is defined in Coq as :
For all steps (i , k) that are under (x , t),

|εki | ≤ 78× 2−52

pk
i − exact(pk

i) =
k∑

l=0

l∑
j=−l

αl
j ε

k−l
i+j , with known αl

j

∣∣∣pk
i − exact

(
pk
i

)∣∣∣ ≤ 85× 2−53 × (k + 1)× (k + 2)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 34 / 41

Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ pk
i has error 2k2−53.

We define εki as the signed rounding error made at step (i , k).

The predicate analytic error(x,t) is defined in Coq as :
For all steps (i , k) that are under (x , t),

|εki | ≤ 78× 2−52

pk
i − exact(pk

i) =
k∑

l=0

l∑
j=−l

αl
j ε

k−l
i+j , with known αl

j

∣∣∣pk
i − exact

(
pk
i

)∣∣∣ ≤ 85× 2−53 × (k + 1)× (k + 2)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 34 / 41

Wave equation resolution scheme – proof

33 proof obligations for the behavior
(assertions, loop invariants, post-conditions. . .)

84 proof obligations for the safety
(loop variants, Overflow, pointer dereferencing. . .)

2 admits corresponding to the boundedness of the exact(pk
i)

(by scheme properties)

26000 lines of Coq (including less than 3700 lines of proof)

(Note that the method error proof was presented at ITP on July 11th)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 35 / 41

Wave equation resolution scheme – proof

33 proof obligations for the behavior
(assertions, loop invariants, post-conditions. . .)

84 proof obligations for the safety
(loop variants, Overflow, pointer dereferencing. . .)

2 admits corresponding to the boundedness of the exact(pk
i)

(by scheme properties)

26000 lines of Coq (including less than 3700 lines of proof)

(Note that the method error proof was presented at ITP on July 11th)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 35 / 41

Wave equation resolution scheme – proof

33 proof obligations for the behavior
(assertions, loop invariants, post-conditions. . .)

84 proof obligations for the safety
(loop variants, Overflow, pointer dereferencing. . .)

2 admits corresponding to the boundedness of the exact(pk
i)

(by scheme properties)

26000 lines of Coq (including less than 3700 lines of proof)

(Note that the method error proof was presented at ITP on July 11th)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 35 / 41

Wave equation resolution scheme – proof

33 proof obligations for the behavior
(assertions, loop invariants, post-conditions. . .)

84 proof obligations for the safety
(loop variants, Overflow, pointer dereferencing. . .)

2 admits corresponding to the boundedness of the exact(pk
i)

(by scheme properties)

26000 lines of Coq (including less than 3700 lines of proof)

(Note that the method error proof was presented at ITP on July 11th)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 35 / 41

Plan

1 Motivations

2 Tools
Formal proof
Frama-C/Jessie/Why

3 Examples

4 Conclusions

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 36 / 41

Conclusion : advantages

Very high guarantee

not only rounding errors :

I all other errors such as pointer dereferencing or division by zero
I link with mathematical properties
I any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 37 / 41

Conclusion : advantages

Very high guarantee

not only rounding errors :

I all other errors such as pointer dereferencing or division by zero
I link with mathematical properties
I any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 37 / 41

Conclusion : advantages

Very high guarantee

not only rounding errors :
I all other errors such as pointer dereferencing or division by zero

I link with mathematical properties
I any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 37 / 41

Conclusion : advantages

Very high guarantee

not only rounding errors :
I all other errors such as pointer dereferencing or division by zero
I link with mathematical properties

I any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 37 / 41

Conclusion : advantages

Very high guarantee

not only rounding errors :
I all other errors such as pointer dereferencing or division by zero
I link with mathematical properties
I any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 37 / 41

Conclusion : advantages

Very high guarantee

not only rounding errors :
I all other errors such as pointer dereferencing or division by zero
I link with mathematical properties
I any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 37 / 41

Conclusion : limits (1/2)

long and tedious

for example Gappa (G. Melquiond)

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 38 / 41

Conclusion : limits (1/2)

long and tedious ⇒ automations !

for example Gappa (G. Melquiond)

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 38 / 41

Conclusion : limits (1/2)

long and tedious ⇒ automations !

for example Gappa (G. Melquiond)

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 38 / 41

Conclusion : limits (1/2)

long and tedious ⇒ automations !

for example Gappa (G. Melquiond)

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

⇒ Use automatic provers to prove part of the verification conditions

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 38 / 41

Conclusion : limits (1/2)

long and tedious ⇒ automations !

for example Gappa (G. Melquiond)

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

⇒ Use automatic provers to prove part of the verification conditions
⇒ Use Gappa inside Coq to ease proofs

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 38 / 41

Conclusion : limits (2/2)

We assume all double operations are direct 64-bit roundings.

On recent processors, we have x86 extended registers (80-bit long)
and FMA (◦(ax + b) with one single rounding).

How does we know how the program was compiled and what will be
the result ?

Solution 1 : cover all cases.
The result of an operation is a real near the correct result (it covers,
64-bit, 80-bit, double roundings and all uses of FMA)
pragma multi-rounding

Less precise, but always correct !

Solution 2 : look into the assembly. . .

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 39 / 41

Conclusion : limits (2/2)

We assume all double operations are direct 64-bit roundings.

On recent processors, we have x86 extended registers (80-bit long)
and FMA (◦(ax + b) with one single rounding).

How does we know how the program was compiled and what will be
the result ?

Solution 1 : cover all cases.
The result of an operation is a real near the correct result (it covers,
64-bit, 80-bit, double roundings and all uses of FMA)
pragma multi-rounding

Less precise, but always correct !

Solution 2 : look into the assembly. . .

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 39 / 41

Conclusion : limits (2/2)

We assume all double operations are direct 64-bit roundings.

On recent processors, we have x86 extended registers (80-bit long)
and FMA (◦(ax + b) with one single rounding).

How does we know how the program was compiled and what will be
the result ?

Solution 1 : cover all cases.
The result of an operation is a real near the correct result (it covers,
64-bit, 80-bit, double roundings and all uses of FMA)
pragma multi-rounding

Less precise, but always correct !

Solution 2 : look into the assembly. . .

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 39 / 41

Conclusion : limits (2/2)

We assume all double operations are direct 64-bit roundings.

On recent processors, we have x86 extended registers (80-bit long)
and FMA (◦(ax + b) with one single rounding).

How does we know how the program was compiled and what will be
the result ?

Solution 1 : cover all cases.
The result of an operation is a real near the correct result (it covers,
64-bit, 80-bit, double roundings and all uses of FMA)
pragma multi-rounding

Less precise, but always correct !

Solution 2 : look into the assembly. . .

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 39 / 41

Conclusion : limits (2/2)

We assume all double operations are direct 64-bit roundings.

On recent processors, we have x86 extended registers (80-bit long)
and FMA (◦(ax + b) with one single rounding).

How does we know how the program was compiled and what will be
the result ?

Solution 1 : cover all cases.
The result of an operation is a real near the correct result (it covers,
64-bit, 80-bit, double roundings and all uses of FMA)
pragma multi-rounding

Less precise, but always correct !

Solution 2 : look into the assembly. . .

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 39 / 41

Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41

Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41

Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41

Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41

Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41

Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41

Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41

Thank you for your attention

Tools :
I http://frama-c.com/
I http://why.lri.fr/
I http://coq.inria.fr/

Code & proofs :
I http://www.lri.fr/~sboldo/research.html.

Formal proofs about scientific computations :
I http://fost.saclay.inria.fr/

http://frama-c.com/
http://why.lri.fr/
http://coq.inria.fr/
http://www.lri.fr/~sboldo/research.html
http://fost.saclay.inria.fr/

	Motivations
	Tools
	Formal proof
	Frama-C/Jessie/Why

	Examples
	Conclusions

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	anm2:

