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Floating-point number

This is only a string of bits.

11100011010010011110000111000000
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Floating-point number

This is only a string of bits.

11100011010010011110000111000000

We interpret it depending on the respective values of s (sign), e (exponent)
and f (fraction).

1 11000110 10010011110000111000000

1 11000110 10010011110000111000000
s e f
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Floating-point number

We associate a real value :

1 11000110 10010011110000111000000
s e f
↓ ↓ ↓

(−1)s× 2e−B × 1 • f

(−1)1× 2198−127 ×1.100100111100001110000002

−254 × 206727 ≈ −3.724× 1021

except for the special values of e : ±0, ±∞, NaN, subnormals.
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Floating-point number repartition

0 R

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 6 / 41



Floating-point number repartition

0 R

subnormals
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Floating-point number repartition

0 R

subnormals binade (common exponent)

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 6 / 41



Floating-point operations

Thanks to the IEEE-754 standard, the computed results of +,−,×, /,√

should be the same as if they were first computed with infinite precision
and then rounded.

⇒ computations with 3 more bits (see J. Coonen)

⇒ mathematical properties such that :
when a real value fits exactly in a floating-point number in a given format,
then it is exactly computed.
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Critical C code ↪→ formal proof

⇒ high guarantee
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Related work

static analyzers
I Astrée
I Fluctuat

specification languages
I JML

formal proofs about floating-point arithmetic
I trigonometric functions (HOL Light)
I verification of the FPU (ACL2)
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Motivations

C program

Annotated C program

Human

Mathematical theorems
Frama-C

Jessie

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved theorems

Coq ← Human

Program is correct
w.r.t. its specification
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Plan

1 Motivations

2 Tools
Formal proof
Frama-C/Jessie/Why

3 Examples

4 Conclusions
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Formal proof

Certified formal proof

The proof is checked in its deep details until the computer agrees with it.

We often use formal proof checkers, meaning programs that only check a
proof (they may also generate easy demonstrations).

Therefore the checker is a very short program (de Bruijn criteria : the
correctness of the system as a whole depends on the correctness of a very
small ”kernel”).
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The Coq proof assistant (http://coq.inria.fr)

Based on the Curry-Howard isomorphism.
(equivalence between proofs and λ-terms)

Few automations.

Comprehensive libraries, including on Z and R.

Coq kernel mechanically checks each step of each proof.

The method is to apply successively tactics (theorem application,
rewriting, simplifications. . .) to transform or reduce the goal down to
the hypotheses.

The proof is handled starting from the conclusion.
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Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent)

(n, e) ∈ Z2
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Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent)
associated to a real value.

(n, e) ∈ Z2 ↪→ n × βe ∈ R
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Coq formalization (by L. Théry)

Float = pair of signed integers (mantissa, exponent)
associated to a real value.

(n, e) ∈ Z2 ↪→ n × βe ∈ R

1.000102 E 4 7→ (1000102,−1)2 ↪→ 17

IEEE-754 significant of 754R real value

⇒ normal floats, subnormal floats, overflow.

Many floats may represent the same real value, but we can exhibit a canon-
ical representation.
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Example using Coq 8.2

Theorem Rle Fexp eq Zle :

forall x y :float, (x <= y)%R ->

Fexp x = Fexp y -> (Fnum x <= Fnum y)%Z.

intros x y H’ H’0.

apply le IZR.

apply (Rle monotony contra exp radix)

with (z := Fexp x); auto with real arith.

pattern (Fexp x) at 2 in |- *; rewrite H’0; auto.

Qed.

With keywords, stating of the theorem, tactics and names of used theorems.

Theorem (Rle Fexp eq Zle)

If two floats x = (nx , ex) and y = (ny , ey ) verifies x ≤ y, and ex = ey , then
nx ≤ ny .
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Frama-C/Jessie/Why

Frama-C is a framework dedicated to the analysis of the source code
of software written in C.

Available plugins :

I value analysis
I Jessie, the deductive verification plug-in

(based on weakest precondition computation techniques)
I . . .

Free softwares in CAML available at http://frama-c.com/ and
http://why.lri.fr/.
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Frama-C/Jessie/Why

ACSL-annotated C program

Frama-C/Jessie plug-in

WHY verification condition generator

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)
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ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.
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ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part

the value that would have been obtained with exact computations,
x → xe exact part

the value that we ideally wanted to compute
x → xm model part
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ACSL and floating-point numbers

A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part 1+x+x*x/2

the value that would have been obtained with exact computations,
x → xe exact part 1 + x + x2

2
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A floating-point number is a triple :

the floating-point number, really computed by the program,
x → xf floating-point part 1+x+x*x/2

the value that would have been obtained with exact computations,
x → xe exact part 1 + x + x2

2

the value that we ideally wanted to compute
x → xm model part exp(x)

⇒ easy to split into method error and rounding error

For a float f, we have macros such as \rounding error(f) and
\exact(f), while f (as a real) is its floating-point value.
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Pragmas

Several pragmas corresponding to different formalization for floating-point
numbers.

defensive (default pragma) : IEEE roundings occur. We prove that
no exceptional behavior may happen (Overflow, NaN creation. . .)

math : all computations are exact.

full : IEEE roundings occur. Exceptional behaviors may happen.

multi-rounding : we may have any hardware and compiler
(80-bit extended registers, FMA)
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Examples

All examples use Frama-C Boron and Why 2.26.

All proof obligations are proved using Coq.
(except 2 inequalities in the last example).

Code & proofs available on
http://www.lri.fr/~sboldo/research.html.
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Sterbenz

Theorem (Sterbenz)

If x and y are FP numbers in a given precision such that

y

2
≤ x ≤ 2y ,

then x − y fits in a FP number in the same precision and is therefore
computed without error.
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Sterbenz – program

/*@ requires y/2. <= x <= 2.*y;

@ ensures \result == x-y;

@*/

f l o a t S t e r b e n z ( f l o a t x , f l o a t y ) {
return x−y ;

}

Exact subtraction
1 PO : exact subtraction

1 PO : no overflow
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Veltkamp/Dekker

Theorem (Veltkamp/Dekker)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the exact error of the multiplication using only FP operations.

Idea :
split your floats in 2, multiply all the parts, add them in the correct order.
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Veltkamp : how to split a floating-point number

Let C = 227 + 1 for double precision numbers.

27 bits

x

227 × x+

p = ◦(x × C )

q = ◦(x − p)

x1 = p + q
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Dekker : how to get the error of the multiplication

x1 × y1

r1 = ◦(x × y)

x1 × y2

t2 = t1 + x1 × y2

x2 × y1

x2 × y2

r2 = t3 + x2 × y2

t1 = x1 × y1 − r

t3 = t2 + x2 × y1
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Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[ . . . ]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41



Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[ . . . ]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41



Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[ . . . ]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41



Veltkamp/Dekker – program
xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[ . . . ]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41



Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow
Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[ . . . ]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41



Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow

Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[ . . . ]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41



Veltkamp/Dekker – program

xy = ◦(xy)

Overflow

If no Underflow

Exact error of ⊗

Split x and y

Multiply all halves and

add all the results

/*@ requires xy == \round_double (\ NearestEven ,x*y) &&

@ \abs(x) <= 0x1.p995 &&

@ \abs(y) <= 0x1.p995 &&

@ \abs(x*y) <= 0x1.p1021;

@ ensures ((x*y == 0 || 0x1.p-969 <= \abs(x*y))

@ ==> x*y == xy+\ result );

@*/

double Dekker ( double x , double y , double xy ) {

double C , px , qx , hx , py , qy , hy , tx , ty , r2 ;
i n t i ;
[ . . . ]
/*@ assert C == \pow (2. ,27) + 1. */

px=x∗C ; qx=x−px ; hx=px+qx ; t x=x−hx ;

py=y∗C ; qy=y−py ; hy=py+qy ; t y=y−hy ;

r 2=−xy+hx∗hy ;
r 2+=hx∗ t y ;
r 2+=hy∗ t x ;
r 2+=t x ∗ t y ;
r e t u r n r 2 ;

}

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 29 / 41



Accurate discriminant

It is pretty hard to compute b2 − ac accurately.

Theorem (Kahan)

Provided no Overflow and no Underflow occur, there is an algorithm
computing the b2 − a ∗ c within 2 ulps.
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Accurate discriminant – program

If ac 6≈ b2, compute naively

If ac ≈ b2, compute accurately
using errors of the multiplications

Underflow

Overflow

2 ulps

/*@ requires

@ (b==0. || 0x1.p-916 <= \abs(b*b)) &&

@ (a*c==0. || 0x1.p-916 <= \abs(a*c)) &&

@ \abs(b) <= 0x1.p510 &&

@ \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&

@ \abs(a*c) <= 0x1.p1021;

@ ensures \result ==0.

@ || \abs(\result -(b*b-a*c)) <= 2.* ulp(\ result );

@ */

double d i s c r i m i n a n t ( double a , double b , double c ) {
double p , q , d , dp , dq ;
p=b∗b ;
q=a∗c ;

i f ( p+q <= 3∗ f a b s ( p−q ) )
d=p−q ;

e l s e {
dp=Dekker ( b , b , p ) ;
dq=Dekker ( a , c , q ) ;
d=(p−q)+(dp−dq ) ;

}
r e t u r n d ;

}

Test whether ac ≈ b2

Function calls

⇒ pre-conditions to prove

⇒ post-conditions guaranteed

In initial proof,
test assumed correct

⇒ Additional proof
when test is incorrect
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Wave equation resolution scheme

∂2u(x , t)

∂t2
− c2∂

2u(x , t)

∂x2
= s(x , t)

↪→

x

t

xj+1xj−1 xj
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tk−2
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j − 2uk−1
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Wave equation resolution scheme – program

Space loop

Time loop

Loop invariant

Loop invariant

Main computations

double ∗∗ f o r w a r d p r o p ( i n t ni , i n t nk , double dx , double dt ,
double v , double xs , double l ) {

double ∗∗p ; i n t i , k ; double a1 , a , dp ;

a1 = dt / dx∗v ; a = a1∗a1 ;

[ . . . ] // i n i t i a l i z a t i o n s o f p [ . . . ] [ 0 ] and p [ . . . ] [ 1 ]

/* propagation = time loop */

/*@ loop invariant 1 <= k <= nk && analytic_error(p,ni ,ni,k,a);

@ loop variant nk -k; */

f o r ( k=1; k<nk ; k++) {
p [ 0 ] [ k+1] = 0 . ;

/* time iteration = space loop */

/*@ loop invariant 1 <= i <= ni && analytic_error(p,ni ,i-1,k+1,a);

@ loop variant ni -i; */

f o r ( i =1; i<n i ; i ++) {
dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;

}
p [ n i ] [ k+1] = 0 . ;

}
r e t u r n p ;

}

Accumulation of
rounding errors
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Wave equation resolution scheme – rounding error

Interval arithmetic ⇒ pk
i has error 2k2−53.

We define εki as the signed rounding error made at step (i , k).

The predicate analytic error(x,t) is defined in Coq as :
For all steps (i , k) that are under (x , t),

|εki | ≤ 78× 2−52

pk
i − exact(pk

i ) =
k∑

l=0

l∑
j=−l

αl
j ε

k−l
i+j , with known αl

j

∣∣∣pk
i − exact

(
pk
i

)∣∣∣ ≤ 85× 2−53 × (k + 1)× (k + 2)
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Wave equation resolution scheme – proof

33 proof obligations for the behavior
(assertions, loop invariants, post-conditions. . .)

84 proof obligations for the safety
(loop variants, Overflow, pointer dereferencing. . .)

2 admits corresponding to the boundedness of the exact(pk
i )

(by scheme properties)

26000 lines of Coq (including less than 3700 lines of proof)

(Note that the method error proof was presented at ITP on July 11th)
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3 Examples
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Conclusion : advantages

Very high guarantee

not only rounding errors :

I all other errors such as pointer dereferencing or division by zero
I link with mathematical properties
I any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want
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Conclusion : limits (1/2)

long and tedious

for example Gappa (G. Melquiond)

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)
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for example Gappa (G. Melquiond)

Verification conditions

Automatic provers
(Alt-Ergo,Gappa,CVC3,etc.)

Interactive provers
(Coq,PVS,etc.)

⇒ Use automatic provers to prove part of the verification conditions
⇒ Use Gappa inside Coq to ease proofs
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Conclusion : limits (2/2)

We assume all double operations are direct 64-bit roundings.

On recent processors, we have x86 extended registers (80-bit long)
and FMA (◦(ax + b) with one single rounding).

How does we know how the program was compiled and what will be
the result ?

Solution 1 : cover all cases.
The result of an operation is a real near the correct result (it covers,
64-bit, 80-bit, double roundings and all uses of FMA)
pragma multi-rounding

Less precise, but always correct !

Solution 2 : look into the assembly. . .
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Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos
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Rideau. . .)

Gappa
(Melquiond)

1 theo

Flocq
(Boldo,Melquiond)

PFF theos Gappa theos

Sylvie Boldo (INRIA) Formal verification of numerical programs July 15th, 2010 40 / 41



Perspectives

How to find correct specifications ?

⇒ use other tools. . .

What about the Coq library ?

PFF
(Boldo, Théry,
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Thank you for your attention

Tools :
I http://frama-c.com/
I http://why.lri.fr/
I http://coq.inria.fr/

Code & proofs :
I http://www.lri.fr/~sboldo/research.html.

Formal proofs about scientific computations :
I http://fost.saclay.inria.fr/

http://frama-c.com/
http://why.lri.fr/
http://coq.inria.fr/
http://www.lri.fr/~sboldo/research.html
http://fost.saclay.inria.fr/
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