# Superellipsoids: a generalization of the interval, zonotope and ellipsoid domains

Eric Goubault, Sylvie Putot MeASI (Modelling and Analysis of Interacting Systems) CEA and Ecole Polytechnique 14th of july 2011

## The Egg of Columbus

#### Eric Goubault, Sylvie Putot

MeASI (Modelling and Analysis of Interacting Systems) CEA and Ecole Polytechnique

#### 14th of july 2011



## Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer *range* of program variables, *generate tests*, *prove functional properties* (FLUCTUAT, both f.p. and real numbers) etc.

## Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to *ellipsoids*, with the same kind of parametrization but a change of norm
- Some preliminary results



## Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer *range* of program variables, *generate tests*, *prove functional properties* (FLUCTUAT, both f.p. and real numbers) etc.

### Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to *ellipsoids*, with the same kind of parametrization but a change of norm

#### • Some preliminary results



## Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer *range* of program variables, *generate tests*, *prove functional properties* (FLUCTUAT, both f.p. and real numbers) etc.

## Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to *ellipsoids*, to *super-ellipsoids*, with the same kind of parametrization but a change of norm

#### • Some preliminary results





## Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer *range* of program variables, *generate tests*, *prove functional properties* (FLUCTUAT, both f.p. and real numbers) etc.

## Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to *ellipsoids*, to *super-ellipsoids*, with the same kind of parametrization but a change of norm
- Some preliminary results



## Abstraction based on Affine Arithmetic (Stolfi 93)

• A variable x is represented by an affine form  $\hat{x}$  :

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n,$$

where  $x_i \in \mathbb{R}$  and the  $\varepsilon_i$  are independent symbolic variables with unknown value in [-1, 1].

 Sharing ε<sub>i</sub> between variables expresses *implicit dependency*: concretization as a zonotope

$$x = 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4$$

$$y = 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4$$



## Affine arithmetic : arithmetic operations

 Assignment of a of a variable x whose value is given in a range [a, b] introduces a noise symbol ε<sub>i</sub>:

$$\hat{x} = rac{(a+b)}{2} + rac{(b-a)}{2} arepsilon_i.$$

• Addition is computed componentwise (no new noise symbol):  $\hat{x} + \hat{y} = (\alpha_0^x + \alpha_0^y) + (\alpha_1^x + \alpha_1^y)\varepsilon_1 + \ldots + (\alpha_n^x + \alpha_n^y)\varepsilon_n$ 

• Non linear operations : approximate linear form (Taylor expansion), new noise term for the approximation error. Example (gross over-approx!):

$$\hat{x}\hat{y} = \alpha_0^{\mathsf{x}}\alpha_0^{\mathsf{y}} + \sum_{i=1}^n \left(\alpha_i^{\mathsf{x}}\alpha_0^{\mathsf{y}} + \alpha_i^{\mathsf{y}}\alpha_0^{\mathsf{x}}\right)\varepsilon_i + \left(\sum_{i,j>0}^n |\alpha_i^{\mathsf{x}}\alpha_j^{\mathsf{y}}|\right)\varepsilon_{n+1}.$$

 Efficient join operator (SAS 2006, and extensions for meet operators -CAV 2010)

#### Standard "geometric" order on zonotopes

• Necessary for proving the analysis correct, testing the convergence of the analysis (Ifp through Kleene iteration in particular).

• Given 
$$A \in \mathcal{M}(n+1,p)$$
,

$$\begin{array}{rcl} x & = & 20 - 4\varepsilon_1 + 2\varepsilon_3 + 3\varepsilon_4 \\ y & = & 10 - 2\varepsilon_1 + \varepsilon_2 - \varepsilon_4 \end{array} \qquad A = \begin{pmatrix} 20 & 10 \\ -4 & -2 \\ 0 & 1 \\ 2 & 0 \\ 3 & -1 \end{pmatrix}$$

#### Standard "geometric" order on zonotopes

• Given  $A \in \mathcal{M}(n+1,p)$ ,  $\forall t \in \mathbb{R}^p$   $(\|e\|_1 = \sum_{i=0}^n |e_i|, \ell_1 \text{ norm})$ :

$$\sup_{y\in\gamma(A)}\langle t,y\rangle=\|At\|_1$$

• Hence  $X \subseteq Y$  iff for all  $t \in \mathbb{R}^p$ ,  $||Xt||_1 \le ||Yt||_1$ 

Standard "geometric" order on zonotopes

• Given  $A \in \mathcal{M}(n+1,p)$ ,  $\forall t \in \mathbb{R}^p$   $(\|e\|_1 = \sum_{i=0}^n |e_i|, \ell_1 \text{ norm})$ :

$$\sup_{\mathbf{y}\in\gamma(A)}\langle t,\mathbf{y}\rangle = \left\|At\right\|_1$$

• Hence  $X \subseteq Y$  iff for all  $t \in \mathbb{R}^p$ ,  $||Xt||_1 \le ||Yt||_1$ 



# Functional order

## Standard formulation

- Let  $x : \mathbb{R}^n \to \mathbb{R}^p$  be a function that we wish to abstract, and  $x_1, \ldots, x_p$  its p components.
- Instead of abstracting the set of values that x<sub>1</sub>,..., x<sub>p</sub> can take, given the possible input values, we introduce slack variables e<sub>1</sub>,..., e<sub>n</sub> which represent the initial values of the n input variables of function x,
- and we abstract the set of values that  $e_1, \ldots, e_n, x_1, \ldots, x_p$  can take, conjointly
- The geometric order on this *augmented* zonotope is the functional order
- $\rightarrow$  Many distinct parameterizations for the same functional
- $\rightarrow$  Non-economic and non-necessary algorithmic representation!

#### Canonical form of the functional order

- Separate out noise symbols coming from the inputs: *central noise symbols*→matrix C
   with noise symbols not directly related to the inputs
   *perturbation noise symbols*→matrix P
- Let two affine sets over p variables and n input noise symbols X and Y, we say that  $X \leq Y$  iff

$$\sup_{u\in\mathbb{R}^p}\left(\|(C^Y-C^X)u\|+\|P^Xu\|-\|P^Yu\|\right)\leq 0$$

The two formulations are equivalent!

## Ellipsoids

## Usual definition (constraints)

• In dimension 3, in suitable (x, y, z) coordinates:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(in fact, we want all of the interior, so better write  $\leq 1$ )

• In general, in dimension n:

$$(x-v)^T A(x-v) \leq 1$$

where A is symmetric positive definite

 Typical quadratic Lyapunov functions useful for proving stability/convergence of numerous systems (see also the quadratic template domain of Adjé et al., Feret's ellipsoidal domain, Kurzhanski's ellipsoidal calculus and work by Cousot, and by Féron)

# Ellipsoids

### Our definition (parameterization)

• Affine transformation on the *n*-dimensional disc

$$D^{n-1} = \{\varepsilon_1^2 + \ldots + \varepsilon_n^2 \le 1\}$$

• Hence, just like zonotopes:

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n,$$

but with  $\|\varepsilon\|_2 \leq 1$  (and not  $\|\varepsilon\|_\infty \leq 1$ )

Equivalent to the former one: if  $\hat{X} = X_0 + M\varepsilon$ , take  $A = M^t M$ ,  $v = X_0...$ 

## Example





 $\|\varepsilon\|_{\infty} \leq 1$ 

 $\|\varepsilon\|_2 \leq 1$ 

# Going functional

Separate out the set of symbols, again..

- We define an ellipsoidal set X by a pair of matrices  $(C^X, P^X) \in \mathcal{M}(n+1, p) \times \mathcal{M}(m, p)$
- The ellipsoidal form

$$\pi_k(X) = c_{0k}^X + \sum_{i=1}^n c_{ik}^X \varepsilon_i + \sum_{j=1}^m p_{jk}^X \eta_j$$

where the  $\varepsilon_i$  are the central noise symbols and the  $\eta_j$  the perturbation or union noise symbols, describes the *k*th variable of *X* 

 $\bullet$  The noise symbols satisfy  $\|\epsilon,\eta\|_2 \leq 1$ 

# Order

# Geometric order X < Y iff

$$\forall u \in \mathbb{R}^p, \ \|Xu\|_2 \leq \|Yu\|_2 \ .$$

Functional order

We say that  $X \leq Y$  iff

$$\forall u \in \mathbb{R}^{p}, \ \|(C^{Y} - C^{X})u\|_{2} \leq \|P^{Y}u\|_{2} - \|P^{X}u\|_{2}$$
.

Once again, this can be proved to be the right order for comparing functional abstractions!

# Order

# Geometric order X < Y iff

$$\forall u \in \mathbb{R}^p, \ \|Xu\|_2 \leq \|Yu\|_2 \ .$$

Functional order

We say that  $X \leq Y$  iff

$$\forall u \in \mathbb{R}^{p}, \ \| (C^{Y} - C^{X})u \|_{2} \le \| P^{Y}u \|_{2} - \| P^{X}u \|_{2}$$

Once again, this can be proved to be the right order for comparing functional abstractions!

# Remarks

#### This is the Lorentz cone of special relativity!

More than just a mere remark:

- Our order is the Lorentz order (many theoretical tools available)
- Practical tools available! Second-Order Cone Programming in particular:

$$\min_{\|A_i x + b_i\|_2 \le c_i^T x + d_i, F x = g} f^T x$$

(subsumes quadratic constraints - hence concretisation in particular)



# Arithmetic operations - first steps

## As before

Similar calculus as before:

$$\hat{x} + \hat{y} = (\alpha_0^x + \alpha_0^y) + (\alpha_1^x + \alpha_1^y)\varepsilon_1 + \ldots + (\alpha_n^x + \alpha_n^y)\varepsilon_n$$

#### Not as before

• Ellipsoids not closed under Minkowski sum (red=sum of blue):



• Ellipsoidal calculus: find *smallest* ellipsoid containing the Minkowski sum of two ellipsoids, see for instance "Calculus Rules for Combinations of Ellipsoids and Applications" (A. Seeger)

Examples



### All this can be generalized...

• Consider the transformation by an affine map of the *n*-disc for norm  $\ell_p \ (p \ge 1)$ :

$$\|\varepsilon\|_{p} = \left(\sum_{i=1}^{n} |\varepsilon|^{p}\right)^{\frac{1}{p}}$$

• Variables are represented as  $\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n$ , with  $\|\varepsilon\|_p \leq 1$  (not  $\|\varepsilon\|_{\infty} \leq 1$ )

## All this can be generalized...

• Consider the transformation by an affine map of the *n*-disc for norm  $\ell_p$  ( $p \ge 1$ ):

$$\left\|\varepsilon\right\|_{p} = \left(\sum_{i=1}^{n} |\varepsilon|^{p}\right)^{\frac{1}{p}}$$

• Variables are represented as  $\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n$ , with  $\|\varepsilon\|_p \leq 1$  (not  $\|\varepsilon\|_{\infty} \leq 1$ )

Degree 4 super-ellipsoid



## All this can be generalized...

• Consider the transformation by an affine map of the *n*-disc for norm  $\ell_p$  ( $p \ge 1$ ):

$$\|\varepsilon\|_{p} = \left(\sum_{i=1}^{n} |\varepsilon|^{p}\right)^{\frac{1}{p}}$$

• Variables are represented as  $\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n$ , with  $\|\varepsilon\|_p \leq 1$  (not  $\|\varepsilon\|_{\infty} \leq 1$ )





## All this can be generalized...

• Consider the transformation by an affine map of the *n*-disc for norm  $\ell_p$   $(p \ge 1)$ :

$$\left\|\varepsilon\right\|_{p} = \left(\sum_{i=1}^{n} |\varepsilon|^{p}\right)^{\frac{1}{p}}$$

• Variables are represented as  $\hat{x} = x_0 + x_1 \varepsilon_1 + \ldots + x_n \varepsilon_n$ , with  $\|\varepsilon\|_p \leq 1$  (not  $\|\varepsilon\|_{\infty} \leq 1$ )

#### More classically

In dimension 3, this is generally defined as

$$\left(\left|\frac{x}{a}\right|^r + \left|\frac{y}{b}\right|^r\right)^{\frac{t}{r}} + \left|\frac{z}{c}\right|^t \le 1$$

(but here, we consider only t = r)

Use  $\ell_p/\ell_q$  duality, or Hölder's inequality  $\|fg\|_1 \leq \|f\|_p \|g\|_q$  with  $\frac{1}{p} + \frac{1}{q} = 1$ 

Geometric order for *p*-superellipsoids  $\left(q = \frac{p}{p-1}\right)$ 

 $X \subseteq Y$  if and only if for all  $t \in \mathbb{R}^p$ 

 $\|Xt\|_q \le \|Yt\|_q$ 

Functional order  $X \subseteq Y$  if and only if for all  $t \in \mathbb{R}^p$  $\|(C^X - C^Y)t\|_a \le \|P^Yt\|_a - \|P^Xt\|_a$ 

This is the right order for functional abstractions!

Use  $\ell_p/\ell_q$  duality, or Hölder's inequality  $\|fg\|_1 \leq \|f\|_p \|g\|_q$  with  $\frac{1}{p} + \frac{1}{q} = 1$ 

Geometric order for *p*-superellipsoids  $\left(q = \frac{p}{p-1}\right)$ 

 $X \subseteq Y$  if and only if for all  $t \in \mathbb{R}^p$ 

 $\|Xt\|_q \le \|Yt\|_q$ 

Functional order

 $X \subseteq Y$  if and only if for all  $t \in \mathbb{R}^p$ 

$$\|(C^{X} - C^{Y})t\|_{q} \le \|P^{Y}t\|_{q} - \|P^{X}t\|_{q}$$

This is the right order for functional abstractions!

# Conclusion and future work

Ellipsoids

- Has a clear potential, since it complements work on quadratic templates, quadratic Lyapunov functions etc.
- Still has to be experimented... In particular in our analyzer FLUCTUAT (with extensions of this to floating-point/error semantics)

| P O O Fluctuat - Hipass_fluctuat O                                                                                                                                   |                                                         |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|
|                                                                                                                                                                      |                                                         |                                |
| <pre>: #include "daed_builtins.h"</pre>                                                                                                                              | 1.95581e-05<br>1.48936e-05<br>9.92906e-06<br>4.96439-06 |                                |
| <pre>15 16 xnm2 = inputsignal(-2); 17 xnm1 = inputsignal(-1); 18 xn = inputsignal(0);</pre>                                                                          | • • -                                                   | ₹ 25 ÷                         |
| $19 \ ynm^2 = 0;$                                                                                                                                                    | Variables / Files                                       | Variable Interval              |
| $20  \underline{ynm1} = 0;$                                                                                                                                          | i (integer)<br>main (integer)                           | Float : -3.25309873 3.25309873 |
| <pre>22 for (i=1;i&lt;=N;i++) {</pre>                                                                                                                                | xn (float)<br>xnm1 (float)                              | Real : -3.25307802 3.25307802  |
| $\frac{y_{n}}{y_{n}} = (2^{*}(c^{*}c^{-1})^{*}y_{n}m_{1}^{-}(c^{*}c^{-}sqrt2^{*}c^{+1})^{*}y_{n}m_{2}^{-2} + c^{*}c^{*}x_{n}n_{2}^{-2} + c^{*}c^{*}x_{n}n_{2}^{-2})$ | xnm2 (float)                                            | Global error :                 |
| 24 <u>ynm2 = ynm1;</u><br>25 ynm1 = yn;                                                                                                                              | yn (float)<br>ynm1 (float)                              | -2.09172228e-5 2.09172228e-5   |
| $\frac{y_{11}}{26} = \frac{y_{11}}{x_{1}m_{2}} = \frac{y_{11}}{x_{1}m_{1}}$                                                                                          | ynm2 (float)                                            | Relative error :               |
| 27  xnml = xn;                                                                                                                                                       |                                                         | -00 +00                        |
| 28 <u>xn</u> = inputsignal(i);                                                                                                                                       |                                                         | Higher Order error :           |
| 29 FPRINT(xn);                                                                                                                                                       | hipass_fluctuat.c                                       | 0 0                            |
| 30 FPRINT(yn);                                                                                                                                                       |                                                         | At current point (23) :        |

# Conclusion and future work

## Ellipsoids

- Has a clear potential, since it complements work on quadratic templates, quadratic Lyapunov functions etc.
- Still has to be experimented... In particular in our analyzer FLUCTUAT (with extensions of this to floating-point/error semantics)
  - fewer noise symbols for perturbation terms, in loops
  - non-linear invariants and assertions both in real-number and floating-point number semantics (along the lines of VMCAI 2011)

# Conclusion and future work

## Ellipsoids

- Has a clear potential, since it complements work on quadratic templates, quadratic Lyapunov functions etc.
- Still has to be experimented... In particular in our analyzer FLUCTUAT (with extensions of this to floating-point/error semantics)
  - fewer noise symbols for perturbation terms, in loops
  - non-linear invariants and assertions both in real-number and floating-point number semantics (along the lines of VMCAI 2011)

### Superellipsoids

- More a formal game for now
- Useful?