Superellipsoids: a generalization of the interval, zonotope and ellipsoid domains

Eric Goubault, Sylvie Putot
MeASI (Modelling and Analysis of Interacting Systems)
CEA and Ecole Polytechnique
14th of july 2011

The Egg of Columbus

Eric Goubault, Sylvie Putot

MeASI (Modelling and Analysis of Interacting Systems) CEA and Ecole Polytechnique
14th of july 2011

Introduction

Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer range of program variables, generate tests, prove functional properties (FLUCTUAT, both f.p. and real numbers) etc.

Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to ellipsoids, with the same kind of parametrization but a change of norm
- Some preliminary results

Introduction

Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer range of program variables, generate tests, prove functional properties (FLUCTUAT, both f.p. and real numbers) etc.

Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to ellipsoids, with the same kind of parametrization but a change of norm
- Some preliminary results

Introduction

Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer range of program variables, generate tests, prove functional properties (FLUCTUAT, both f.p. and real numbers) etc.

Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to ellipsoids, to super-ellipsoids, with the same kind of parametrization but a change of norm

Introduction

Context

- Static analysis of (numerical) programs, by abstract interpretation
- In order to infer range of program variables, generate tests, prove functional properties (FLUCTUAT, both f.p. and real numbers) etc.

Contents

- Recap on the (functional) zonotopic abstract domain
- Extension to ellipsoids, to super-ellipsoids, with the same kind of parametrization but a change of norm
- Some preliminary results

Abstraction based on Affine Arithmetic (Stolfi 93)

- A variable x is represented by an affine form \hat{x} :

$$
\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\ldots+x_{n} \varepsilon_{n},
$$

where $x_{i} \in \mathbb{R}$ and the ε_{i} are independent symbolic variables with unknown value in $[-1,1]$.

- Sharing ε_{i} between variables expresses implicit dependency: concretization as a zonotope

$$
\begin{aligned}
& x=20-4 \varepsilon_{1}+2 \varepsilon_{3}+3 \varepsilon_{4} \\
& y=10-2 \varepsilon_{1}+\varepsilon_{2}-\varepsilon_{4}
\end{aligned}
$$

Affine arithmetic : arithmetic operations

- Assignment of a of a variable x whose value is given in a range $[a, b]$ introduces a noise symbol ε_{i} :

$$
\hat{x}=\frac{(a+b)}{2}+\frac{(b-a)}{2} \varepsilon_{i} .
$$

- Addition is computed componentwise (no new noise symbol):

$$
\hat{x}+\hat{y}=\left(\alpha_{0}^{x}+\alpha_{0}^{y}\right)+\left(\alpha_{1}^{x}+\alpha_{1}^{y}\right) \varepsilon_{1}+\ldots+\left(\alpha_{n}^{x}+\alpha_{n}^{y}\right) \varepsilon_{n}
$$

- Non linear operations : approximate linear form (Taylor expansion), new noise term for the approximation error. Example (gross over-approx!):

$$
\hat{x} \hat{y}=\alpha_{0}^{x} \alpha_{0}^{y}+\sum_{i=1}^{n}\left(\alpha_{i}^{x} \alpha_{0}^{y}+\alpha_{i}^{y} \alpha_{0}^{x}\right) \varepsilon_{i}+\left(\sum_{i, j>0}^{n}\left|\alpha_{i}^{x} \alpha_{j}^{y}\right|\right) \varepsilon_{n+1} .
$$

- Efficient join operator (SAS 2006, and extensions for meet operators CAV 2010)

Order relations

Standard "geometric" order on zonotopes

- Necessary for proving the analysis correct, testing the convergence of the analysis (Ifp through Kleene iteration in particular).
- Given $A \in \mathcal{M}(n+1, p)$,

$$
\begin{aligned}
& x=20-4 \varepsilon_{1}+2 \varepsilon_{3}+3 \varepsilon_{4} \\
& y=10-2 \varepsilon_{1}+\varepsilon_{2}-\varepsilon_{4}
\end{aligned} \quad A=\left(\begin{array}{cc}
20 & 10 \\
-4 & -2 \\
0 & 1 \\
2 & 0 \\
3 & -1
\end{array}\right)
$$

Order relations

Standard "geometric" order on zonotopes

- Given $A \in \mathcal{M}(n+1, p), \forall t \in \mathbb{R}^{p}\left(\|e\|_{1}=\sum_{i=0}^{n}\left|e_{i}\right|, \ell_{1}\right.$ norm $)$:

$$
\sup _{y \in \gamma(A)}\langle t, y\rangle=\|A t\|_{1}
$$

- Hence $X \subseteq Y$ iff for all $t \in \mathbb{R}^{p},\|X t\|_{1} \leq\|Y t\|_{1}$

Order relations

Standard "geometric" order on zonotopes

- Given $A \in \mathcal{M}(n+1, p), \forall t \in \mathbb{R}^{p}\left(\|e\|_{1}=\sum_{i=0}^{n}\left|e_{i}\right|, \ell_{1}\right.$ norm $)$:

$$
\sup _{y \in \gamma(A)}\langle t, y\rangle=\|A t\|_{1}
$$

- Hence $X \subseteq Y$ iff for all $t \in \mathbb{R}^{p},\|X t\|_{1} \leq\|Y t\|_{1}$

Functional order

Standard formulation

- Let $x: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that we wish to abstract, and x_{1}, \ldots, x_{p} its p components.
- Instead of abstracting the set of values that x_{1}, \ldots, x_{p} can take, given the possible input values, we introduce slack variables e_{1}, \ldots, e_{n} which represent the initial values of the n input variables of function x,
- and we abstract the set of values that $e_{1}, \ldots, e_{n}, x_{1}, \ldots, x_{p}$ can take, conjointly
- The geometric order on this augmented zonotope is the functional order
\rightarrow Many distinct parameterizations for the same functional
\rightarrow Non-economic and non-necessary algorithmic representation!

Order relations

Canonical form of the functional order

- Separate out noise symbols coming from the inputs:

$$
\text { central noise symbols } \rightarrow \text { matrix } C
$$

with noise symbols not directly related to the inputs perturbation noise symbols \rightarrow matrix P

- Let two affine sets over p variables and n input noise symbols X and Y, we say that $X \leq Y$ iff

$$
\sup _{u \in \mathbb{R}^{p}}\left(\left\|\left(C^{Y}-C^{X}\right) u\right\|+\left\|P^{X} u\right\|-\left\|P^{Y} u\right\|\right) \leq 0
$$

The two formulations are equivalent!

Ellipsoids

Usual definition (constraints)

- In dimension 3, in suitable (x, y, z) coordinates:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(in fact, we want all of the interior, so better write ≤ 1)

- In general, in dimension n :

$$
(x-v)^{T} A(x-v) \leq 1
$$

where A is symmetric positive definite

- Typical quadratic Lyapunov functions useful for proving stability/convergence of numerous systems (see also the quadratic template domain of Adjé et al., Feret's ellipsoidal domain, Kurzhanski's ellipsoidal calculus and work by Cousot, and by Féron)

Ellipsoids

Our definition (parameterization)

- Affine transformation on the n-dimensional disc

$$
D^{n-1}=\left\{\varepsilon_{1}^{2}+\ldots+\varepsilon_{n}^{2} \leq 1\right\}
$$

- Hence, just like zonotopes:

$$
\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\ldots+x_{n} \varepsilon_{n}
$$

but with $\|\varepsilon\|_{2} \leq 1$ (and not $\|\varepsilon\|_{\infty} \leq 1$)
Equivalent to the former one:
if $\hat{X}=X_{0}+M \varepsilon$, take $A=M^{t} M, v=X_{0} \ldots$

Example

$$
\begin{aligned}
& x=20-4 \varepsilon_{1}+2 \varepsilon_{3}+3 \varepsilon_{4} \\
& y=10-2 \varepsilon_{1}+\varepsilon_{2}-\varepsilon_{4}
\end{aligned}
$$

$$
\|\varepsilon\|_{\infty} \leq 1
$$

$\|\varepsilon\|_{2} \leq 1$

Going functional

Separate out the set of symbols, again...

- We define an ellipsoidal set X by a pair of matrices
$\left(C^{X}, p^{X}\right) \in \mathcal{M}(n+1, p) \times \mathcal{M}(m, p)$
- The ellipsoidal form

$$
\pi_{k}(X)=c_{0 k}^{X}+\sum_{i=1}^{n} c_{i k}^{X} \varepsilon_{i}+\sum_{j=1}^{m} p_{j k}^{X} \eta_{j}
$$

where the ε_{i} are the central noise symbols and the η_{j} the perturbation or union noise symbols, describes the k th variable of X

- The noise symbols satisfy $\|\epsilon, \eta\|_{2} \leq 1$

Order

Geometric order
$X \leq Y$ iff

$$
\forall u \in \mathbb{R}^{p},\|X u\|_{2} \leq\|Y u\|_{2} .
$$

Functional order
We say that $X \leq Y$ iff

$$
\forall u \in \mathbb{R}^{p},\left\|\left(C^{Y}-C^{X}\right) u\right\|_{2} \leq\left\|P^{Y} u\right\|_{2}-\left\|P^{X} u\right\|_{2} .
$$

Once again, this can be proved to be the right order for comparing functional abstractions!

Order

Geometric order

$X \leq Y$ iff

$$
\forall u \in \mathbb{R}^{p},\|X u\|_{2} \leq\|Y u\|_{2} .
$$

Functional order
We say that $X \leq Y$ iff

$$
\forall u \in \mathbb{R}^{p},\left\|\left(C^{Y}-C^{X}\right) u\right\|_{2} \leq\left\|P^{Y} u\right\|_{2}-\left\|P^{X} u\right\|_{2} .
$$

Once again, this can be proved to be the right order for comparing functional abstractions!

Remarks

This is the Lorentz cone of special relativity!
More than just a mere remark:

- Our order is the Lorentz order (many theoretical tools available)
- Practical tools available!

Second-Order Cone
Programming in particular:
$\min f^{T} x$
$\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, F x=g$
(subsumes quadratic constraints - hence
 concretisation in particular)

Arithmetic operations - first steps

As before
Similar calculus as before:

$$
\hat{x}+\hat{y}=\left(\alpha_{0}^{x}+\alpha_{0}^{y}\right)+\left(\alpha_{1}^{x}+\alpha_{1}^{y}\right) \varepsilon_{1}+\ldots+\left(\alpha_{n}^{x}+\alpha_{n}^{y}\right) \varepsilon_{n}
$$

Not as before

- Ellipsoids not closed under Minkowski sum (red=sum of blue):

- Ellipsoidal calculus: find smallest ellipsoid containing the Minkowski sum of two ellipsoids, see for instance "Calculus Rules for Combinations of Ellipsoids and Applications" (A. Seeger)

Examples

$x=20-4 \varepsilon_{1}+2 \varepsilon_{3}+3 \varepsilon_{4}$

$$
y=10-2 \varepsilon_{1}+\varepsilon_{2}-\varepsilon_{4}
$$

$$
\begin{aligned}
& x=5+\varepsilon_{1} \\
& y=-2+\varepsilon_{2}
\end{aligned}
$$

(one of the ellipsoidal external sums, forgets dependencies)

Towards super-ellipsoids

All this can be generalized...

- Consider the transformation by an affine map of the n-disc for norm $\ell_{p}(p \geq 1)$:

$$
\|\varepsilon\|_{p}=\left(\sum_{i=1}^{n}|\varepsilon|^{p}\right)^{\frac{1}{p}}
$$

- Variables are represented as $\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\ldots+x_{n} \varepsilon_{n}$, with $\|\varepsilon\|_{p} \leq 1\left(\right.$ not $\left.\|\varepsilon\|_{\infty} \leq 1\right)$

Towards super-ellipsoids

All this can be generalized...

- Consider the transformation by an affine map of the n-disc for norm $\ell_{p}(p \geq 1)$:

$$
\|\varepsilon\|_{p}=\left(\sum_{i=1}^{n}|\varepsilon|^{p}\right)^{\frac{1}{p}}
$$

- Variables are represented as $\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\ldots+x_{n} \varepsilon_{n}$, with $\|\varepsilon\|_{p} \leq 1\left(\right.$ not $\left.\|\varepsilon\|_{\infty} \leq 1\right)$

Degree 4 super-ellipsoid

Towards super-ellipsoids

All this can be generalized...

- Consider the transformation by an affine map of the n-disc for norm $\ell_{p}(p \geq 1)$:

$$
\|\varepsilon\|_{p}=\left(\sum_{i=1}^{n}|\varepsilon|^{p}\right)^{\frac{1}{p}}
$$

- Variables are represented as $\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\ldots+x_{n} \varepsilon_{n}$, with $\|\varepsilon\|_{p} \leq 1\left(\right.$ not $\left.\|\varepsilon\|_{\infty} \leq 1\right)$

Degree $\frac{3}{2}$ super-ellipsoid

Towards super-ellipsoids

All this can be generalized...

- Consider the transformation by an affine map of the n-disc for norm $\ell_{p}(p \geq 1)$:

$$
\|\varepsilon\|_{p}=\left(\sum_{i=1}^{n}|\varepsilon|^{p}\right)^{\frac{1}{p}}
$$

- Variables are represented as $\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\ldots+x_{n} \varepsilon_{n}$, with $\|\varepsilon\|_{p} \leq 1\left(\right.$ not $\left.\|\varepsilon\|_{\infty} \leq 1\right)$

More classically

In dimension 3, this is generally defined as

$$
\left(\left|\frac{x}{a}\right|^{r}+\left|\frac{y}{b}\right|^{r}\right)^{\frac{t}{r}}+\left|\frac{z}{c}\right|^{t} \leq 1
$$

(but here, we consider only $t=r$)

Order relation

Use ℓ_{p} / ℓ_{q} duality, or Hölder's inequality $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$ with $\frac{1}{p}+\frac{1}{q}=1$
Geometric order for p-superellipsoids $\left(q=\frac{p}{p-1}\right)$
$X \subseteq Y$ if and only if for all $t \in \mathbb{R}^{p}$

$$
\|X t\|_{q} \leq\|Y t\|_{q}
$$

Functional order
$X \subseteq Y$ if and only if for all $t \in \mathbb{R}^{p}$

$$
\left\|\left(C^{X}-C^{Y}\right) t\right\|_{q} \leq\left\|P^{Y} t\right\|_{q}-\left\|P^{X} t\right\|_{q}
$$

Order relation

Use ℓ_{p} / ℓ_{q} duality, or Hölder's inequality $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$ with $\frac{1}{p}+\frac{1}{q}=1$
Geometric order for p-superellipsoids ($q=\frac{p}{p-1}$)
$X \subseteq Y$ if and only if for all $t \in \mathbb{R}^{p}$

$$
\|X t\|_{q} \leq\|Y t\|_{q}
$$

Functional order

$X \subseteq Y$ if and only if for all $t \in \mathbb{R}^{p}$

$$
\left\|\left(C^{X}-C^{Y}\right) t\right\|_{q} \leq\left\|P^{Y} t\right\|_{q}-\left\|P^{X} t\right\|_{q}
$$

This is the right order for functional abstractions!

Conclusion and future work

Ellipsoids

- Has a clear potential, since it complements work on quadratic templates, quadratic Lyapunov functions etc.
- Still has to be experimented... In particular in our analyzer FLUCTUAT (with extensions of this to floating-point/error semantics)


```
#include "daed_builtins.h"
//#define F . }0
#define N 15
##define c 10
5 #define sqrt2 1.414213562373095
7 float inputsignal(int i) {
    float S = FBETWEEN(-1,1);
    return S:
10}
int main() {
    float xnm2,xnm1,xn,ynm2,ynm1,yn;
1 4 \text { int 1;}
16 xnm2 = inputsignal(-2);
17 xnm1 = inputsignal(-1);
18 xn= inputsignal(0);
19 }\textrm{ynm2}=0
20 ynm1 =0;
22 for (i=1;1<=N;i++) {
23. yn = (2*(c* c-1)*ynm1-(c**-sqrt2* c+1)*ynm2+\mp@subsup{c}{}{*}\mp@subsup{c}{}{*}xn-\mp@subsup{2}{}{*}\mp@subsup{c}{}{*}\mp@subsup{c}{}{*}xnm:
24 ynm2 = ynm
    ynm1 = yn;
    xnm2}=xnm
    xnm1 = xn;
    xn}=\mathrm{ inputsignal(i);
    FPRINT(xn);
FPRINT(yn)
```


Conclusion and future work

Ellipsoids

- Has a clear potential, since it complements work on quadratic templates, quadratic Lyapunov functions etc.
- Still has to be experimented... In particular in our analyzer FLUCTUAT (with extensions of this to floating-point/error semantics)
fewer noise symbols for perturbation terms, in loops
non-linear invariants and assertions both in real-number and floating-point number semantics (along the lines of VMCAI 2011)

Conclusion and future work

Ellipsoids

- Has a clear potential, since it complements work on quadratic templates, quadratic Lyapunov functions etc.
- Still has to be experimented... In particular in our analyzer FLUCTUAT (with extensions of this to floating-point/error semantics)
fewer noise symbols for perturbation terms, in loops non-linear invariants and assertions both in real-number and floating-point number semantics (along the lines of VMCAI 2011)

Superellipsoids

- More a formal game for now
- Useful?

