
Work in Progress: Using Symbolic Execution to
Formally Verify the Accuracy of Numerical

Approximations

Timothy K. Zirkel Louis F. Rossi Stephen F. Siegel

University of Delaware

July 14, 2011

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 1 / 27

1 The problem: verifying the order of accuracy of numeric codes

2 Current approaches

3 Proposed approach

4 Example

5 Challenges

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 2 / 27

Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.

Extend the Toolkit for Accurate Scientific Software (TASS)
I Symbolic execution tool
I http://vsl.cis.udel.edu/tass

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 3 / 27

Error in numerical programs

From numerical method (discretization error)

From floating-point computations (round-off error)

From defects

“To put it baldly, most scientific results are corrupted and
perhaps fatally so by undiscovered mistakes in the software used
to calculate and present those results.” (Les Hatton)

This project is focused on the discretization error.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 4 / 27

Error in numerical programs

From numerical method (discretization error)

From floating-point computations (round-off error)

From defects

“To put it baldly, most scientific results are corrupted and
perhaps fatally so by undiscovered mistakes in the software used
to calculate and present those results.” (Les Hatton)

This project is focused on the discretization error.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 4 / 27

Error in numerical programs

From numerical method (discretization error)

From floating-point computations (round-off error)

From defects

“To put it baldly, most scientific results are corrupted and
perhaps fatally so by undiscovered mistakes in the software used
to calculate and present those results.” (Les Hatton)

This project is focused on the discretization error.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 4 / 27

Error in numerical programs

From numerical method (discretization error)

From floating-point computations (round-off error)

From defects

“To put it baldly, most scientific results are corrupted and
perhaps fatally so by undiscovered mistakes in the software used
to calculate and present those results.” (Les Hatton)

This project is focused on the discretization error.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 4 / 27

Error in numerical programs

From numerical method (discretization error)

From floating-point computations (round-off error)

From defects

“To put it baldly, most scientific results are corrupted and
perhaps fatally so by undiscovered mistakes in the software used
to calculate and present those results.” (Les Hatton)

This project is focused on the discretization error.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 4 / 27

Big-O

Definition

Let I = (0, a), a > 0. Suppose we have two functions φ : I → R and
ψ : I → R. We write

φ(h) = O(ψ(h)) as h→ 0

if there exist positive real numbers C and ε such that |φ(h)| ≤ C|ψ(h)|
whenever 0 < h < ε.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 5 / 27

Order of accuracy

Let D ⊆ R, I = (0, a), a > 0.

Definition

Let n be a positive integer. Given a function f : D → R, consider a
function g : D × I → R. Fix x ∈ D. We say g is an nth order accurate
approximation to f at x if

f(x)− g(x, h) = O(hn) as h→ 0.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 6 / 27

Order of accuracy

Note that a higher n is better.

Verified Software Laboratory http://vsl.cis.udel.edu Contact: siegel@cis.udel.edu

Verification of the Order of Accuracy of Numerical Software

Timothy K. Zirkel, Stephen F. Siegel, Louis F. Rossi, Yi Wei
The Verified Software Laboratory, Department of Computer and Information Science, University of Delaware, Newark DE 19716

Abstract
Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computations
precisely. In particular, programs cannot generally handle exact
evaluation of continuous functions at all points. The common solution
to this is to discretize continuous functions by restricting them to a
mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an
approximation is a common task for scientists using numerical
methods. In practice, programs utilizing these approximations often
unintentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with
information specifying the function and the order of accuracy of the
approximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

Future Work

Currently our tool is able to build a model from source code
written in a large subset of C. It can verify that the program is
valid, and can check simple assertions using CVC3. We are in
the process of developing the ability to do Taylor Series
expansions.

We plan to refine the specification language presented here by
working out specifications for progressively more complex
examples, such as multi-dimensional diffusion equation
solvers with various initial value and boundary conditions,
solutions to Laplace’s equation, and so on. Ideally, we would
like to find ways for the tool to do more of the specification
work: for example, by automatically discovering constants and
discrete operators.

Diffusion Example
The approach is applicable to functions of several variables, and thus can be applied to
approximations for solving systems of partial differential equations. Consider one dimensional
diffusion. This is a function of space and time, . A solution to the one dimensional
diffusion equation must satisfy the linear differential operator

The code below shows part of a program for solving this equation by stepping through time. The
function takes the solution at time in array and computes the solution at time , storing it
in . The assumptions state that and give bounds on certain derivatives of . The
verifier is asked to show that the computed solution satisfies , where

and to show that . This can be proved using partial Taylor expansions in
both the and directions around the point . The technique is similar to the
differentiation example.

Supported by the National
Science Foundation under
Grants CCF-0733035 and
CCF-0953210 and by the

University of Delaware
Research Foundation

What is TASS?
The Toolkit for Accurate Scientific Software is a convenient toolkit for
verifying the accuracy of scientific programs. It uses symbolic
execution [3,4] and model checking [2] techniques to determine
whether a property holds on all possible executions of a program. It
can also determine whether two programs are functionally equivalent
[5].

How do I use TASS?
TASS runs in one of two modes, the verify mode or the compare
mode. In verify mode, TASS takes ONE single program file and tries
to verify it. It checks whether the program has deadlocks and other
potential problems such as out of bounds array accesses or improper
MPI calls. In compare mode, TASS takes TWO program files, one
called the specification and the other called the implementation, and
tries to prove that these two programs are functionally equivalent by
using symbolic execution and model checking. One or both programs
may use parallel processes and message passing [2]. Since TASS
executes the programs symbolically, the properties it verifies will hold
on all possible executions. This project uses TASS in verify mode to
check assertions declared in a single input file.

What is Order of Accuracy?

Many numerical methods require the discretization of a continuous domain. The notion of
order of accuracy describes the accuracy of a numerical method with respect to
parameters such as grid resolution [1]. As an example, suppose we have a continuous
function of one variable . This function could be discretized to create a
function , where is the grid size. An algorithm is nth order accurate if there
exists and such that

where . We describe this using big O notation, as in

It is important to note that it is desirable for the exponent to be larger. Many students are
introduced to the notion of big O in the context of analyzing algorithms. The common
purpose in algorithms is to describe the time or space usage as the input size increases.
Since approximations become more accurate as the mesh size decreases, a higher
exponent means smaller error. For example, the graph below has curves for h, h2, and h3

Code Annotations

Verifying that a program matches its specification requires annotating the code. We use three
basic types of code annotation.

1) Abstract functions

 Abstract functions are used to represent mathematical functions. That is, they are something
like rather than a function in the sense of a programming language function call. Similar
to C functions, they have a type associated with each argument and also a return type. Unlike C
functions, they have information about their continuity. We give an argument that specifies how
many partial derivatives can be taken. Abstract functions are useful and necessary for specifying
the relationship between the continuous and discrete domains.

2) Assumptions

Assumptions provide information that is true at the beginning of the function's execution. This
might include bounds on certain quantities, or relations between the discrete representations and
defined abstract functions. Assumptions can use universal and existential quantifiers.

3) Assertions

Assertions present the relations that we are trying to prove. Our tool needs to use a model of the
function, along with the given assumptions, to prove that the assertions are correct. This will
involve techniques such as Taylor Series expansion. This process is widely used by scientists
using numerical methods. The goal of our approach is to provide an automated tool for verifying
that code correctly implements a numerical method of appropriate order of accuracy.

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

References

u(x, t)

values of f evaluated at the grid points ih (0 ≤ i < n). The second assumption states that |f ���| is
bounded by M everywhere. An assertion declares that on interior points, the computed result is a
second-order approximation to f �, specifically naming the constant M/6.

The TASS verifier will execute the function symbolically and then call the theorem prover
to check the assertion. The prover must be given the appropriate Taylor expansions, i.e., the
first two lines of Figure 1(b). Given these, the computation required to prove the assertion is
straightforward, involving only standard arithmetic operations. In this computation, h, ξ1, ξ2, and
M are symbolic constants, and f, f �, . . . are abstract symbolic functions.7 In particular, the theorem
prover does not need any notion of derivatives or limits, and no interpretation is required for the
functions. The encoding of the query in the input language of CVC3 is shown in Figure 1(c).
The ASSERT statements correspond to our assume and QUERY to our ensures. (The TRANSFORM

instruction simplifies and prints an expression and is for illustrative purposes only.) CVC3 responds
immediately that the query is valid, i.e., that is has proved the query from the given assumptions.

The question is then how the TASS verifier will know which Taylor expansions to provide to the
prover. In this case, each term of the form f(. . .) is expanded around the point ih and truncated
at the third-order term. The choice of ih is suggested by the occurrence of the expression f �(ih)
in the query and the choice of third order is forced by the fact that f is declared C(3). However,
we can imagine situations in which these choices are not obvious, in which case the verifier might
have to iterate over a parameter space, looking for a set of choices that leads to a valid conclusion.
In any case, a “bad” choice can never lead the theorem prover to report that the assertion holds
when it does not, since all of the expansions are valid, they just may not be useful.

Note that if, instead of central differencing, the forward differencing scheme (y[i+1]-y[i])/h

had been used, the result would be O(h) instead of O(h2), and a violation would be reported.
An error would also be reported if the assertion had included the boundary points, as these are
only computed to first-order accuracy. These are simple examples but illustrate the kinds of subtle
errors that can corrupt the accuracy of numerical codes.

The same approach will work in more complex and realistic situations. For example, there
might be another array z for which y[i]-z[i] is O(h4) and the differentiation formula might be
(y[i + 1] − z[i − 1])/(2h). The same technique can conclude that the result is still O(h2).

More generally still, the approach is applicable to functions of several variables, and can therefore
be applied to programs used to solve systems of partial differential equations. Suppose u is a
function of several variables x1, x2, . . ., L is a linear differential operator, and the PDE has the
form L[u] = 0. A program approximating a solution might store the values of u on the points
of a discrete grid Γ = Γ(∆x1,∆x2, . . .), where ∆xi is the distance between two grid points in
the xi-direction. The program computes some discrete approximation û to a solution on Γ. The
approximation satisfies an operator L̂ on discrete arrays that is determined by the program code,
i.e., L̂[û] = 0. In this case, order of accuracy is specified by applying L̂ to the exact solution and
requiring that the result be sufficiently small [34]. For example, to say the algorithm is first-order
accurate in x1 and second-order accurate in x2 would mean ||L̂[u|Γ]|| = O(∆x1) + O(∆x2

2), where
||v|| is the maximum absolute value of the elements in the array v.

Consider, for example, the 1-dimensional diffusion equation. In this case, u is a function of two
variables, x (space) and t (time), and a solution must satisfy the operator

L[u] =
∂u

∂t
− κ

∂2u

∂x2
. (4)

7For simplicity, we assume a concrete value of n is specified. Then the symbolic execution of the loop terminates
in a finite number of steps, and the assertion can be checked for one value of i at a time. However, with more work
it is possible to extend this approach to deal with arbitrary n.

7

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

int n; /* current time step */

/*@ logic C(4) real u(real t, real x);

@ logic real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}

@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}

@ abs(\D[u,{t,2}](t,x)) <= M1 && abs(\D[u,{x,4}](t,x)) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2*v1[i]+v1[i-1])/dx^2 == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}

@ abs((u((n+1)*dt,i*dx)-u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt,i*dx) + u(n*dt,(i-1)*dx))/dx^2

@) <= (M1/2)*dt + (kappa*M2/12)*dx^2; */

void update(int nx, double *v1, double *v2, double dt, double dx, double kappa) {

int i; double c=kappa*dt/(dx*dx);

for (i=1; i<nx-1; i++) v2[i] = v1[i] + c*(v1[i+1] - 2*v1[i] + v1[i-1]);

}

Figure 2: Excerpt of one-dimension diffusion equation solver, with accuracy specification

Figure 2 shows an excerpt of a program to solve this equation by stepping through time. The
function update takes the solution at time n in array v1 and computes the solution at time n + 1,
storing it in v2. The assumptions state that L[u] = 0 and give bounds on certain derivatives of u.
The verifier is asked to show that the computed solution satisfies L̂, where

(L̂[v])[n, i] =
v[n + 1, i] − v[n, i]

∆t
− κ

v[n, i + 1] − 2v[n, i] + v[n, i − 1]

∆x2
(5)

and to show that L̂[u] = O(∆t) + O(∆x2). This can be proved using partial Taylor expansions in
both the x and t directions around the point (n*dt,i*dx), similar to Figure 1(b).

We plan to first refine the specification language sketched here by working out specifications
for progressively more complex examples, such as multi-dimensional diffusion equation solvers with
various initial value and boundary conditions, solutions to Laplace’s equation, and so on. Ideally,
we would like to find ways for the tool to do more of the specification work: for example, by
automatically discovering constants such as M/6 in Figure 1(a), and the discrete operator L̂ of (5).

At the same time, we will work out by hand the queries that will need to be verified automati-
cally, such as the one of Figure 1(c), and apply various automated theorem provers to these. The
results will guide our decisions on the best way to express the queries.

We will then extend the TASS front-end to parse the query specification language, and add the
functionality to generate Taylor expansions, in order to automatically verify the examples starting
from C source code. By year 3, we will apply the tool to progressively larger “real-world” codes in
order to improve and finally evaluate the method. If time permits, in year 5 we will explore other
extensions of these ideas, such as methods to deal with floating-point arithmetic and numerical
stability.

2.3 Verifying Functional Equivalence for Scientific Programs

In high-performance scientific computing, it is standard practice to begin development with a sim-
ple sequential version of an algorithm and then manually parallelize it, i.e., transform it into an
equivalent parallel program. Further modifications may improve performance, scalability, or nu-
merical stability. Messages may be bundled to reduce communication, data structures re-arranged,

8

Simple Example: Differentiation

One method for approximating a derivative is to use central differencing. In this method, the
domain is divided into grid points, and the slope at a particular point is estimated based on the
slope of the line through the previous and next grid point.

As an example of our approach, consider approximating differentiation using central differencing.
Let be three times differentiable. Suppose there exists such that
 for all . The approximation is given by:

This method can be shown to be 2nd order accurate using Taylor polynomials with Lagrangian
remainder terms. Given and , there exist such that

From this we can compute the accuracy:

Here we have an example of C code for the central differencing method. The code has
annotations specifying second order accuracy in the interior.

The TASS Verifier will execute the function symbolically, then call the theorem prover to check
the assertion. The appropriate Taylor expansions (above) must be passed to the theorem
prover. Searching the parameter space for appropriate points about which to expand is one of
the more challenging aspects of this project. In this example, the choice is suggested by the
given continuity and by the i*h in the expression. Note that if the verifier makes a bad choice,
this can never result in the prover reporting the assertion holds when it does not.

Below is the expression of this query in the input language of CVC3. The query returns valid.

x+hxx-h

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

Abstract

Numerical computation has broad application to a variety of fields.
Unfortunately, it is often not possible to do numerical computa-
tions precisely. In particular, programs cannot generally handle ex-
act evaluation of continuous functions at all points. The common
solution to this is to discretize continuous functions by restricting
them to a mesh. Performing calculations on the mesh provides an
approximation to performing calculations on the original function.
However, this introduces error. Calculating the accuracy of an ap-
proximation is a common task for scientists using numerical meth-
ods. In practice, programs utilizing these approximations often un-
intentionally introduce additional error.

We propose a tool to verify the order of accuracy of a numerical
computation. Our method requires annotating C code with infor-
mation specifying the function and the order of accuracy of the ap-
proximation. The tool parses the annotations with the C code to
form a model of the program. The model is symbolically executed,
and the verifier returns either that the assertions hold at all states, or
else that they may not hold. If the assertions may not hold, the tool
provides a potential counterexample.

CR Categories: D.2.4 [Software Engineering]: Software/Program
Verification—Assertion Checkers F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions

Keywords: order of accuracy, verification, symbolic execution,
state exploration

1 Introduction

Recent years have seen advances in the ability to specify and ver-
ify the accuracy of floating-point computations [Boldo and Filliatre
2007; Botella et al. 2006; O’Leary et al. 1999]. An approach rele-
vant to ours is used by Caduceus [Filliâtre and Marché 2004; Boldo
and Filliatre 2007]. Caduceus allows C programs to be annotated
with assertions about the floating-point operations being performed,
then attempts to prove these assertions using (partially) automated
reasoning techniques. While floating-point operations are a source
of error in scientific software, a usually more significant source of
error is the need to approximate continuous functions on a discrete
domain.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

Many numerical methods require the discretization of a continuous
domain[Kincaid and Cheney 1996; Atkinson 1989]. The notion of
order of accuracy describes the accuracy of a numerical method
with respect to parameters such as grid resolution. As an example,
suppose we have a continuous function of one variable f (x). This
function could be discretized to create a function g(x,h), where h
is the grid size. An algorithm is nth order accurate if there exists
C > 0 and δ > 0 such that

|g(x,h)− f (x)| ≤Chn

where 0 < h ≤ δ . We describe this using big O notation, as in
|g(x,h)− f (x)| = O(hn).

Our approach will allow for annotating functions in C programs
with a specification. There are three basic types of annotations.

1. Abstract functions

2. Assumptions

3. Assertions

Abstract functions are used to represent mathematical functions.
That is, they are something like f (x,y,z) rather than a function in
the sense of a programming language function call. Similar to C
functions, they have a type associated with each argument and also
a return type. Unlike C functions, they have information about their
continuity. We give an argument that specifies how many partial
derivatives can be taken. Abstract functions are useful and nec-
essary for specifying the relationship between the continuous and
discrete domains.

Assumptions provide information that is true at the beginning of the
function’s execution. This might include bounds on certain quan-
tities, or relations between the discrete representations and defined
abstract functions. Assumptions can use universal and existential
quantifiers.

Assertions present the relations that we are trying to prove. Our
tool needs to use a model of the function, along with the given as-
sumptions, to prove that the assertions are correct. This will in-
volve techniques such as Taylor Series expansion. This process is
widely used by scientists using numerical methods. The goal of our
approach is to provide an automated tool for verifying that code
correctly implements a numerical method of appropriate order of
accuracy.

2 Exposition

As an example of our approach, consider approximating differen-
tiation using central differencing. Let f : R → R be three times
differentiable. Suppose there exists M > 0 such that | f ���(x)| < M
for all x. The approximation is given by:

g(x,h) ≡ f (x+h)− f (x−h)

2h

We claim that this is O(h2). To verify, we use Taylor polynomials
with Lagrangian remainders. Given x ∈ R and h > 0, there exist
ξ1,ξ2 ∈ [x−h,x+h] such that

f (x+h) = f (x)+ f �(x)h+ 1
2 f ��(x)h2 + 1

6 f ���(ξ1)h3

f (x−h) = f (x)− f �(x)h+ 1
2 f ��(x)h2 − 1

6 f ���(ξ2)h3

From this we compute the accuracy:

| f (x+h)− f (x−h)

2h
− f �(x)| = 1

12
| f ���(ξ1)+ f ���(ξ2)|h2 ≤ 1

6
Mh2

We see that the difference between the discrete and continuous re-
sults is bound by a constant times h2, and thus this method is 2nd

order accurate.

Below is an example of annotated code for our method. Notation is
in a similar style to Caduceus [Filliâtre and Marché 2004], and the
derivative notation is borrowed from Mathematica [Wolfram Re-
search 2008]. Note that the annotations assert second order accu-
racy only in the interior region. The boundary is only first order
accurate, a subtlety that many programmers would miss. If the user
had made the assertion over the entire region, the tool would report
a potential violation and output a trace as well as symbolic values
of all quantities and other information for finding the problem.

/*@ abstract C(3) real f(real x);
@ input real M;
@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);
@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

*/
void differentiate(double h, int n, double[] y,

double[] result){
int i;
for(i = 1; i < n-1; i++)

result[i] = (y[i+1)-y[i-1])/2*h);
result[0] = (y[1]-y[0])/h;
result[n-1] = (y[n-1] - y[n-2])/h;

}
Our tool will build a model of the function, which can be symboli-
cally executed with state exploration. We will use a theorem prover
such as CVC3 [Barrett and Tinelli 2007] to check that the asser-
tion holds. In order to do this, information on the Taylor Series
expansion must be passed to the prover. A major component of this
project is determining how to explore possible expansions to find a
“good” point to expand around.

Currently our tool is able to build a model from source code in an
intermediate language we call MINIMP. It can verify that the pro-
gram is valid, and can check simple assertions using CVC3. We are
in the process of developing the ability to do Taylor Series expan-
sions.

References

ATKINSON, K. E. 1989. An Introduction to Numerical Analysis.
Wiley and Sons.

BARRETT, C., AND TINELLI, C. 2007. CVC3. In Proceedings
of the 19th International Conference on Computer Aided Verifi-
cation (CAV ’07), Springer-Verlag, W. Damm and H. Hermanns,
Eds., vol. 4590 of Lecture Notes in Computer Science, 298–302.
Berlin, Germany.

BOLDO, S., AND FILLIATRE, J.-C. 2007. Formal verification
of floating-point programs. In ARITH ’07: Proceedings of the
18th IEEE Symposium on Computer Arithmetic, IEEE Computer
Society, Washington, DC, USA, 187–194.

BOTELLA, B., GOTLIEB, A., AND MICHEL, C. 2006. Sym-
bolic execution of floating-point computations: Research arti-
cles. Softw. Test. Verif. Reliab. 16, 2, 97–121.

FILLIÂTRE, J.-C., AND MARCHÉ, C. 2004. Multi-prover veri-
fication of c programs. In Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 15–29.

KINCAID, D., AND CHENEY, W. 1996. Numerical Analysis.
Brooks/Cole.

O’LEARY, J., ZHAO, X., GERTH, R., AND SEGER, C.-J. H. 1999.
Formally verifying ieee compliance of floating-point hardware.
Intel Technology Journal Q1, 1–14.

WOLFRAM RESEARCH, I., 2008. Mathematica.
http://www.wolfram.com/products/mathematica/index.html.

f (x+h) = f (x)+ f �(x)h+ 1
2 f ��(x)h2 + 1

6 f ���(ξ1)h3

f (x−h) = f (x)− f �(x)h+ 1
2 f ��(x)h2 − 1

6 f ���(ξ2)h3

From this we compute the accuracy:

| f (x+h)− f (x−h)

2h
− f �(x)| = 1

12
| f ���(ξ1)+ f ���(ξ2)|h2 ≤ 1

6
Mh2

We see that the difference between the discrete and continuous re-
sults is bound by a constant times h2, and thus this method is 2nd

order accurate.

Below is an example of annotated code for our method. Notation is
in a similar style to Caduceus [Filliâtre and Marché 2004], and the
derivative notation is borrowed from Mathematica [Wolfram Re-
search 2008]. Note that the annotations assert second order accu-
racy only in the interior region. The boundary is only first order
accurate, a subtlety that many programmers would miss. If the user
had made the assertion over the entire region, the tool would report
a potential violation and output a trace as well as symbolic values
of all quantities and other information for finding the problem.

/*@ abstract C(3) real f(real x);
@ input real M;
@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);
@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

*/
void differentiate(double h, int n, double[] y,

double[] result){
int i;
for(i = 1; i < n-1; i++)

result[i] = (y[i+1)-y[i-1])/2*h);
result[0] = (y[1]-y[0])/h;
result[n-1] = (y[n-1] - y[n-2])/h;

}
Our tool will build a model of the function, which can be symboli-
cally executed with state exploration. We will use a theorem prover
such as CVC3 [Barrett and Tinelli 2007] to check that the asser-
tion holds. In order to do this, information on the Taylor Series
expansion must be passed to the prover. A major component of this
project is determining how to explore possible expansions to find a
“good” point to expand around.

Currently our tool is able to build a model from source code in an
intermediate language we call MINIMP. It can verify that the pro-
gram is valid, and can check simple assertions using CVC3. We are
in the process of developing the ability to do Taylor Series expan-
sions.

References

ATKINSON, K. E. 1989. An Introduction to Numerical Analysis.
Wiley and Sons.

BARRETT, C., AND TINELLI, C. 2007. CVC3. In Proceedings
of the 19th International Conference on Computer Aided Verifi-
cation (CAV ’07), Springer-Verlag, W. Damm and H. Hermanns,
Eds., vol. 4590 of Lecture Notes in Computer Science, 298–302.
Berlin, Germany.

BOLDO, S., AND FILLIATRE, J.-C. 2007. Formal verification
of floating-point programs. In ARITH ’07: Proceedings of the
18th IEEE Symposium on Computer Arithmetic, IEEE Computer
Society, Washington, DC, USA, 187–194.

BOTELLA, B., GOTLIEB, A., AND MICHEL, C. 2006. Sym-
bolic execution of floating-point computations: Research arti-
cles. Softw. Test. Verif. Reliab. 16, 2, 97–121.

FILLIÂTRE, J.-C., AND MARCHÉ, C. 2004. Multi-prover veri-
fication of c programs. In Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 15–29.

KINCAID, D., AND CHENEY, W. 1996. Numerical Analysis.
Brooks/Cole.

O’LEARY, J., ZHAO, X., GERTH, R., AND SEGER, C.-J. H. 1999.
Formally verifying ieee compliance of floating-point hardware.
Intel Technology Journal Q1, 1–14.

WOLFRAM RESEARCH, I., 2008. Mathematica.
http://www.wolfram.com/products/mathematica/index.html./*@ logic C(3) real f(real x);

@ logic real M;

@ assume forall {int i|i>=0 && i<n} y[i] == f(i*h);

@ assume forall {real x} abs(\D[f,{x,3}](x)) <= M;

@ ensures forall {int i|i>0 && i<n-1}

@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h^2); */

void differentiate(double h, int n, double[] y, double[] result) {

int i;

for (i = 1; i < n-1; i++) result[i] = (y[i+1]-y[i-1])/(2*h);

result[0] = (y[1]-y[0])/h; result[n-1] = (y[n-1]-y[n-2])/h;

} (a) Source code with annotation specifying second order accuracy in interior

f((i + 1)h) = f(ih) + f �(ih)h + 1
2f ��(ih)h2 + 1

6f ���(ξ1)h3

f((i − 1)h) = f(ih) − f �(ih)h + 1
2f ��(ih)h2 − 1

6f ���(ξ2)h3

f((i + 1)h) − f((i − 1)h) = 2f �(ih)h + 1
6(f ���(ξ1) + f ���(ξ2))h3

��[f((i + 1)h) − f((i − 1)h)]/(2h) − f �(ih)
�� = 1

12 |f ���(ξ1) + f ���(ξ2)|h2 ≤ 1
6Mh2

(b) Symbolic arithmetic required to verify post-condition

f, f1, f2, f3 : REAL -> REAL; h, a, xi1, xi2, M, r : REAL; i : INT;

ASSERT a = i*h;

ASSERT FORALL (x : REAL): f3(x) <= M AND f3(x) >= -M;

ASSERT f((i+1)*h) = f(a) + f1(a)*h + f2(a)*h^2/2 + f3(xi1)*h^3/6;

ASSERT f((i-1)*h) = f(a) - f1(a)*h + f2(a)*h^2/2 - f3(xi2)*h^3/6;

ASSERT r = (f((i+1)*h)-f((i-1)*h))/(2*h) - f1(a);

TRANSFORM r/(h*h); % CVC3 returns: (0 + (1/12 * f3(xi2)) + (1/12 * f3(xi1)))

QUERY r <= M*h^2/6 AND r >= -M*h^2/6; % CVC3 returns: Valid.

(c) Expression of query in input language of CVC3 with results of execution

Figure 1: Accuracy specification and verification for a numerical differentiation function.

(Louis Rossi), I plan to develop a formal method for specifying and automatically verifying the order
of accuracy of numerical codes. In this section I describe the approach we plan to follow.6

Specification is provided by the user in the form of annotations to functions in a C program.
These annotations describe assertions on the accuracy of the values computed by those functions.
The TASS verifier will parse these annotations with the source code, perform a special kind of
symbolic execution with state exploration, and respond either that the assertions hold for all inputs
to the function, or that they may not hold (with information on a counterexample). The functions
may involve parallelism, but to simplify the presentation we will consider only sequential programs.

An example using central differencing is shown in Figure 1(a). (The annotations are a variation
on those used by Caduceus and the derivative notation is borrowed from Mathematica [102].) The
first line declares a real-valued function f of one variable which is 3-times differentiable; f does
not occur in the code but will be used in the specification. The second line declares the constant
M , which is also only used in the specification. The first assumption declares that y contains the

6We have obtained a small “seed” grant ($35K) to begin exploring these ideas, but the full project will require at
least four years to fully realize the plan described here. Note that our goal differs from that of automatic differentiation
(e.g., [7]), which produces a program that computes the derivative of the function computed by the original program.
Nevertheless, some AD techniques may bear on this work and we plan to investigate them.

6

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

C(4) real u(real t, real x);

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

test */

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1)-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

C(4) real u(real t, real x);

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

test */

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1)-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

C(4) real u(real t, real x);

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

test */

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1)-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

C(4) real u(real t, real x);

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

test */

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

C(4) real u(real t, real x);

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

test */

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

f(x)

f(x+h)

f(x-h)

y = h
y = h2

y = h3
y = h

y = h2

y = h3

y = h
y = h2

y = h3

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

[1]

[2]

[3]

[4]

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

[1]

[2]

[3]

[4]

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

[1]

[2]

[3]

[4]

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

[1]

[2]

[3]

[4]
∣∣∣∣
f (x+h)− f (x−h)

2h
− f ′(x)

∣∣∣∣ =
1
12

∣∣∣ f ′′′(!1)+ f ′′′(!2)
∣∣∣h2 ≤ 1

6
Mh2

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

Verification of the Order of Accuracy of a Numerical Program

Timothy K. Zirkel∗

Verified Software Lab
CIS Department

Stephen F. Siegel†

Verified Software Lab
CIS Department

Louis F. Rossi‡

Math Department

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] [Siegel et al. 2008]

References

ATKINSON, K. E. 1989. An Introduction to Numerical Analysis.
Wiley and Sons.

CLARKE, E. M., AND EMERSON, E. A. 1982. Design and synthe-
sis of synchronization skeletons using branching-time temporal
logic. In Logic of Programs, Workshop, Springer-Verlag, Lon-
don, UK, 52–71.

KHURSHID, S., PASAREANU, C. S., AND VISSER, W. 2003. Gen-
eralized symbolic execution for model checking and testing. In
TACAS, 553–568.

KING, J. C. 1976. Symbolic execution and program testing. Com-
mun. ACM 19, 7, 385–394.

SIEGEL, S. F., MIRONOVA, A., AVRUNIN, G. S., AND CLARKE,
L. A. 2008. Combining symbolic execution with model check-
ing to verify parallel numerical programs. ACM TOSEM 17, 2,
1–34.

∗e-mail: zirkel@cis.udel.edu
†e-mail: siegel@cis.udel.edu
‡e-mail: rossi@math.udel.edu

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] [?] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

[1]

[2]

[3]

[4]

[5]

����
f (x+h)− f (x−h)

2h
− f �(x)

���� =
1

12

��� f ���(ξ1)+ f ���(ξ2)
���h2 ≤ 1

6
Mh2

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[Clarke and Emerson 1982] [King 1976] [Khurshid et al. 2003]
[Atkinson 1989] [?] 1.0

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

[1]

[2]

[3]

[4]

[5]

����
f (x+h)− f (x−h)

2h
− f �(x)

���� =
1

12

��� f ���(ξ1)+ f ���(ξ2)
���h2 ≤ 1

6
Mh2

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[1, 2] [3] [4] [5] [6]

#pragma TASS abstract continuous(3) double f(double x);

#pragma TASS input

double M;

void differentiate(double h, int n, double[] y, double[] result){
#pragma TASS assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

#pragma TASS assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1)-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}
#pragma TASS assert forall {int i|i>0 && i<n-1} \

abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

Fig. 1. C code annotated with TASS pragmas

int n; /* current time step */

int n; /* current time step */

/*@ abstract C(4) real u(real t, real x);

@ input real M1, M2;

@ assume forall {real t | t >= 0} forall {real x}
@ \D[u,{t,1}](t,x) - kappa*\D[u,{x,2}](t,x) == 0;

@ assume forall {real t} forall {real x}
@ abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ (v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

@ ensures forall {int i | 1 <= i && i < nx-1}
@ abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

@ - kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/(dx*dx)

@) <= (M1/2)*dt + (kappa*M2/12)*dx*dx; */

/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}
@ abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

*/

void differentiate(double h, int n, double[] y,

double[] result){
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1]-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}

0.5

0.0

[1]

[2]

[3]

[4]

[5]

����
f (x+h)− f (x−h)

2h
− f �(x)

���� =
1
12

��� f ���(ξ1)+ f ���(ξ2)
���h2 ≤ 1

6
Mh2

% CVC3 returns: (0+(1/12 * f3(xi2)) + (1/12 * f3(xi1)))

% CVC3 returns: Valid.

[1, 2] [3] [4] [5] [6]

#pragma TASS abstract continuous(3) double f(double x);

#pragma TASS input

double M;

void differentiate(double h, int n, double[] y, double[] result){
#pragma TASS assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

#pragma TASS assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
int i;

for(i = 1; i < n-1; i++)

result[i] = (y[i+1)-y[i-1])/2*h);

result[0] = (y[1]-y[0])/h;

result[n-1] = (y[n-1] - y[n-2])/h;

}
#pragma TASS assert forall {int i|i>0 && i<n-1} \

abs(result[i]-\D[f,{x,1}](i*h)) <= (M/6)*(h*h);

Fig. 1. C code annotated with TASS pragmas

int n; /* current time step */

int n; /* current time step */

#pragma TASS abstract continuous(4) double u(double t, double x);

#pragma TASS input

double M1, M2;

void update(int nx, double *v1, double *v2, double dt, double dx,

double kappa) {
int i; double c=kappa*dt/(dx*dx);

#pragma TASS assume forall{double t | t >= 0} forall {double x}\
\D[u,{t,1}](t,x) -kappa*\D[u,{x,2}](t,x) == 0;

#pragma TASS assume forall {double t} forall {double x}
abs(\D[u,{t,2}](t,x) <= M1 && abs(\D[u,{x,4}](t,x) <= M2;

for (i=1; i<nx-1; i++) v2[i]=v1[i] +c*(v1[i+1]-2*v1[i]+v1[i-1]);

#pragma TASS assert forall{int i | 1 <= i && i < nx-1}
(v2[i]-v1[i])/dt - kappa*(v1[i+1]-2(v1[i]+v1[i-1])/(dx*dx) == 0;

#pragma TASS assert forall {int i | 1 <= i && i < nx-1}
abs((u((n+1)*dt,i*dx) - u(n*dt,i*dx))/dt

- kappa*(u(n*dt,(i+1)*dx) - 2*u(n*dt, i*dx) + u(n*dt, (i-1)*dx))/

(dx*dx)) <= (M1/2)*dt + (kappa*M2/12)*dx*dx;

}
/*@ abstract C(3) real f(real x);

@ input real M;

@ assume forall {int i|i>=0 && i<n} y[i]==f(i*h);

@ assume forall {real x} abs(\D[f,{x, 3}](x))<=M;
@ assert forall {int i|i>0 && i<n-1}

TASS Parser TASS Verifier

Properties Hold

Possible
Counterexample

Automated
Theorem

Prover CVC3

 program.c

TASS Viewer arguments

9/17/09 1:45 AMhttp://openclipart.org/people/spacm/spacm_screen.svg

Page 1 of 1

TASS Model
BuilderTASS AST

number of processes, etc.

TASS Model

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 7 / 27

Uniformly nth order accurate

Definition

Let n be a positive integer. Given a function f : D → R, consider a
function g : D × I → R. Define φ : I → R by

φ(h) = sup
x∈D
|f(x)− g(x, h)|.

We say that g is a uniformly nth order accurate approximation of f on D if

φ(h) = O(hn) as h→ 0.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 8 / 27

Grid approximations

(i-1,j+1)

(i-1,j)

(i-1,j-1) (i,j-1)

(i,j)

(i,j+1) (i+1,j+1)

(i+1,j)

(i+1,j-1)

j

i

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 9 / 27

Grid approximations

Definition

Let n be a positive integer, D ⊆ R, and f a function from D → R. Let
I = (0, a), where a is a positive real number and suppose ∆: I → ℘(D).
Let S =

⋃
h∈I (∆(h)× {h}) ⊆ D × I. Suppose g : S → R. Define

φ : I → R by
φ(h) = sup

x∈∆(h)
|f(x)− g(x, h)|.

We say g is a ∆-uniformly nth order accurate approximation of f if

φ(h) = O(hn) as h→ 0.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 10 / 27

Example: derivative using central difference

Approximate a derivative by taking the slope through neighboring points.

ρ′(x) ≈ ρ(x+ h)− ρ(x− h)

2h

xx-h x+h

ρ(x)

ρ(x+h)

ρ(x-h)

Definition Example

D R
I (0, a)
f(x) ρ′(x)

g(x, h) ρ(x+h)−ρ(x−h)
2h

∆(h) {ih|i ∈ Z}
S

⋃
h∈I (∆(h)× {h})

φ sup
x∈∆(h)

∣∣∣∣ρ′(x)− ρ(x+ h)− ρ(x− h)

2h

∣∣∣∣

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 11 / 27

Code

In this example, ∆(h) = {ih|i ∈ Z, 0 ≤ i < n}
void differentiate(double h, int n, double[] y, double[] result) {

int i;

for(i = 1; i < n-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[n-1]-y[n-2])/h;

}

We want to show this is a ∆-uniformly 2nd order accurate approximation
of ρ′.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 12 / 27

Current approaches

Prove manually
I Prove bounds on truncation error in the numerical method
I Limitations

F Manual proof could have an error
F Program might not match the proved method

I Assume correct translation to code

Do convergence studies
I Run for various values of h and x
I Limitations

F Looking at a finite set of values for h does not prove anything about
the limit

F Might not be valid for all x in the input space

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 13 / 27

How the manual proof works

Show that
ρ(x+ h)− ρ(x− h)

2h
− ρ′(x) = O(h2).

Use Taylor’s theorem with Lagrangian remainders:

ρ(x+ h) = ρ(x) + ρ′(x)h+
1

2
ρ′′(x)h2 +

1

6
ρ′′′(ξ1)h3

ρ(x− h) = ρ(x)− ρ′(x)h+
1

2
ρ′′(x)h2 − 1

6
ρ′′′(ξ2)h3.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 14 / 27

How the manual proof works

Show that
ρ(x+ h)− ρ(x− h)

2h
− ρ′(x) = O(h2).

Use Taylor’s theorem with Lagrangian remainders:

ρ(x+ h) = ρ(x) + ρ′(x)h+
1

2
ρ′′(x)h2 +

1

6
ρ′′′(ξ1)h3

ρ(x− h) = ρ(x)− ρ′(x)h+
1

2
ρ′′(x)h2 − 1

6
ρ′′′(ξ2)h3.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 14 / 27

How the manual proof works

Suppose ∀x.|ρ′′′(x)| ≤M . Then

∣∣∣∣
ρ(x+ h)− ρ(x− h)

2h
− ρ′(x)

∣∣∣∣ =
1

12

∣∣ρ′′′(ξ1) + ρ′′′(ξ2)
∣∣h2

≤ 1

6
Mh2.

Therefore
ρ(x+ h)− ρ(x− h)

2h
− ρ′(x) = O(h2).

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 15 / 27

Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.

Develop a tool
I Extend TASS, a powerful symbolic execution tool
I Operate on the semantics of real numbers

Prove relation between code and function
I Bound the truncation error
I Check for bugs

Automatic (almost)
I Let the computer do similar work to manual proof
I Need annotations

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 16 / 27

Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.

Develop a tool
I Extend TASS, a powerful symbolic execution tool
I Operate on the semantics of real numbers

Prove relation between code and function
I Bound the truncation error
I Check for bugs

Automatic

(almost)
I Let the computer do similar work to manual proof
I Need annotations

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 16 / 27

Automatic verification of order of accuracy

Using symbolic execution and theorem proving techniques, it is possible to
provide automatic formal verification of the accuracy of a numerical
program.

Develop a tool
I Extend TASS, a powerful symbolic execution tool
I Operate on the semantics of real numbers

Prove relation between code and function
I Bound the truncation error
I Check for bugs

Automatic (almost)
I Let the computer do similar work to manual proof
I Need annotations

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 16 / 27

Annotations

Abstract functions

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

Derivatives

\D[rho,{x,1}]

Quantifiers

forall {int j} a[j] == j*j;

forall {int j | 0 <= j && j < n} a[j] == j*j;

forall {j=0..n-1} a[j] == j*j;

Assumptions

#pragma TASS assume x==0.0;

Assertions

#pragma TASS assert x==0.0;

Big-O

\O(h)

Uniform

#pragma TASS assert uniform {j=1..n-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 17 / 27

Annotated code
void differentiate(double h, int m, double[] y, double[] result) {

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[m-1]-y[n-2])/h;

#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

}

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 18 / 27

Symbolic execution
void differentiate(double h, int m, double[] y, double[] result) {

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[m-1]-y[m-2])/h;

#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

}

Variable Symbolic Value

h Xh

m Xm

y Xy〈(0, Xy[0]), . . . , (m− 1, Xy[Xm − 1])〉
result Xresult〈〉

Path condition: true

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 19 / 27

Symbolic execution
void differentiate(double h, int m, double[] y, double[] result) {

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[m-1]-y[m-2])/h;

#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

}

Variable Symbolic Value

h Xh

m 3
y Xy〈(0, Xy[0]), (1, Xy[1]), (2, Xy[2])〉
result Xresult〈〉

Path condition: true

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 20 / 27

Symbolic execution
void differentiate(double h, int m, double[] y, double[] result) {

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[m-1]-y[m-2])/h;

#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

}

Variable Symbolic Value

h Xh

m 3
y Xy〈(0, Xy[0]), (1, Xy[1]), (2, Xy[2])〉
result Xresult〈〉

Path condition: y[0] = ρ(0) ∧ y[1] = ρ(h) ∧ y[2] = ρ(2h)

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 21 / 27

Symbolic execution
void differentiate(double h, int m, double[] y, double[] result) {

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[m-1]-y[m-2])/h;

#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

}

Variable Symbolic Value

h Xh

m 3
y Xy〈(0, Xy[0]), (1, Xy[1]), (2, Xy[2])〉
result Xresult〈(1, ρ(2h)−ρ(0)

2h)〉
Path condition: y[0] = ρ(0) ∧ y[1] = ρ(h) ∧ y[2] = ρ(2h)

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 22 / 27

Symbolic execution
void differentiate(double h, int m, double[] y, double[] result) {

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[m-1]-y[m-2])/h;

#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

}

Variable Symbolic Value

h Xh

m 3
y Xy〈(0, Xy[0]), (1, Xy[1]), (2, Xy[2])〉
result Xresult〈(0, ρ(h)−ρ(0)

h), (1, ρ(2h)−ρ(0)
2h)〉

Path condition: y[0] = ρ(0) ∧ y[1] = ρ(h) ∧ y[2] = ρ(2h)

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 23 / 27

Symbolic execution
void differentiate(double h, int m, double[] y, double[] result) {

#pragma TASS abstract continuous(3) bound(3) double rho(double x);

#pragma TASS assume forall {j=0..m-1} y[j]==rho(j*h);

int i;

for(i = 1; i < m-1; i++) {

result[i] = (y[i+1]-y[i-1])/(2*h);

}

result[0] = (y[1]-y[0])/h;

result[m-1] = (y[m-1]-y[m-2])/h;

#pragma TASS assert uniform {j=1..m-2} \

result[j]-\D[rho,{x,1}](j*h) == \O(h^2);

}

Variable Symbolic Value

h Xh

m 3
y Xy〈(0, Xy[0]), (1, Xy[1]), (2, Xy[2])〉
result Xresult〈(0, ρ(h)−ρ(0)

h), (1, ρ(2h)−ρ(0)
2h), (2, ρ(2h)−ρ(h)

h)〉
Path condition: y[0] = ρ(0) ∧ y[1] = ρ(h) ∧ y[2] = ρ(2h)

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 24 / 27

Simplification

result[1]-\D[rho, {x,1}](h) == \O(h^2)

ρ(2h)− ρ(0)

2h
− ρ′(h) =

ρ(h) + ρ′(h)h+ 1
2ρ
′′(h)h2 + 1

6ρ
′′′(ξ1)h3

2h

− ρ(h)− ρ′(h)h+ 1
2ρ
′′(h)h2 − 1

6ρ
′′′(ξ2)h3

2h
− ρ′(h)

=

(
ρ′(h) +

1

12

(
ρ′′′(ξ1) + ρ′′′(ξ2)

)
h2

)
− ρ′(h)

≤Ch2

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 25 / 27

CVC3 Interaction

Input

h, M, xi1, xi2, v : REAL;

r, rx1, rx2, rx3: (REAL) -> REAL;

y : ARRAY INT OF REAL;

ASSERT h > 0 AND M > 0;

ASSERT r(2*h) = r(h)+rx1(h)*h+(1/2)*rx2(h)*h*h+(1/6)*rx3(xi1)*h*h*h;

ASSERT r(0) = r(h)-rx1(h)*h+(1/2)*rx2(h)*h*h-(1/6)*rx3(xi2)*h*h*h;

ASSERT FORALL (x : REAL): rx3(x)<= M;

ASSERT v = (r(2*h)-r(0))-rx1(h)*2*h;

QUERY v <= (M/3)*h*h*h;

Output

Valid.

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 26 / 27

Challenges
Specification

Mathematical functions

Derivatives

Differentiability

Bounded Derivatives

Big-O notation

Relationship to program
variables

Minimize annotation effort

Verification

Value representation

Taylor expansion point

Taylor expansion degree

Theorem proving problems

Zirkel, Rossi, Siegel (University of Delaware) Formally Verifying Numerical Accuracy July 14, 2011 27 / 27

	The problem: verifying the order of accuracy of numeric codes
	Current approaches
	Proposed approach
	Example
	Challenges

