Template- Based Static Analysis
Hybrid Systems

meets

Strategy Iteration

Thomas Martin Gawlitza
VERIMAG, Grenoble, France

This presentation is based on the work of

Assalé Adjé, Alexandru Costan, Thao Dang,
Stéphane Gaubert, Thomas Martin Gawlitza, Eric Goubault,
Matthieu Martel, Sylvie Putot, Helmut Seidl, Ankur Taly, and

Sarah Zennou

NSV, July 14th, 2011




Template-based

Unbounded Time Verification

of

Hybrid Systems



Hybrid System?



Context & Motivation

Hybrid System?



Hybrid System?
ltime’ =0, 0<temp.’ <99
time and temp.
evolve according to “heater ON”

temp. > 90

time' =0

time' =0

time and temp.
evolve according to “heater OFF”

temp. < 80




Hybrid System?
ltime’ =0, 0<temp.’ <99
time and temp.
evolve according to “heater ON”

temp. > 90

time' =0

time' =0

time and temp.
evolve according to “heater OFF”

L) . temp.

temp. < 80

1

time.



Hybrid System?

ltime’ =0, 0<temp.’ <99

time and temp.
evolve according to “heater ON”

- I
temp. > 90 time" =0
Jtime =0 temp. < 80
time and temp.
evolve according to “heater OFF”
| . temp.
N _— —
7 7
time.
| ON



Hybrid System?

ltime’ =0, 0<temp.’ <99

time and temp.
evolve according to “heater ON”

- ! _
temp. > 90 time" =0
Jtime =0 temp. < 80
time and temp.
evolve according to “heater OFF”
| . temp.
‘ " —
7 7
time.
| ON



Hybrid System?

ltime’ =0, 0<temp.’ <99

time and temp.
evolve according to “heater ON”

- I
temp. > 90 time" =0
Jtime =0 temp. < 80
time and temp.
evolve according to “heater OFF”
' . temp. temp.
h I!’ : —
7 7
time.
| ON |



Hybrid System?
ltime’ =0, 0<temp.’ <99
time and temp.
evolve according to “heater ON”

temp. > 90

time' =0

time' =0

time and temp.
evolve according to “heater OFF”

temp. < 80

U . temp. temp.

I

7 7
ON

d)FF time.



Hybrid System?
ltime’ =0, 0<temp.’ <99
time and temp.
evolve according to “heater ON”

temp. > 90

time' =0

time' =0

time and temp.
evolve according to “heater OFF”

temp. < 80

U . temp. temp.

I

7 7
ON

d)FF time.



Hybrid System?
ltime’ =0, 0<temp.’ <99
time and temp.
evolve according to “heater ON”

temp. > 90

time' =0

time' =0

time and temp.
evolve according to “heater OFF”

temp. < 80

U . temp. temp.

I

/ 7 time
ON OFF '



Hybrid System?
ltime’ =0, 0<temp.’ <99
time and temp.
evolve according to “heater ON”

temp. > 90

time' =0

time' =0

time and temp.
evolve according to “heater OFF”

temp. < 80

U . temp. temp.

I

7 7

‘ ON d)FF ON time.




Hybrid System?

ltime’ =0, 0<temp.’ <99

time and temp.
evolve according to “heater ON”

- ! _
temp. > 90 time" =0
Jtime =0 temp. < 80
time and temp.
evolve according to “heater OFF”
' . temp. temp.
\ P And so on...

/

/ time.
| ON OFF ON




Context & Motivation Frame 3 of 42

Unbounded Time Verification?



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

a Example: Grandma-Stays-Alive-Property



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

a Example: Grandma-Stays-Alive-Property
temp. temp.
%
P And so on...
» . / time.

~ | B



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

a Example: Grandma-Stays-Alive-Property
temp. temp.
_)
o And so on...
» . / time.

~ | B



Here:

Affine

Hybrid Automata

(with Uncertainty)



Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7




Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7

Conjunction of Linear Inequalities
describes Discrete Transition




Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7

Conjunction of Linear Inequalities
describes Discrete Transition, e.g.

temp. > 90
time' =0




Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7

Conjunction of Linear Inequalities
describes Discrete Transition, e.g.

temp. > 90
time' =0

Conjunction of Linear Differential Inequalities
describes Continuous Dynamics




Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7

Conjunction of Linear Inequalities
describes Discrete Transition, e.g.

temp. > 90
time' =0

Conjunction of Linear Differential Inequalities
describes Continuous Dynamics, e.g.




Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7

Conjunction of Linear Inequalities
describes Discrete Transition, e.g.

temp. > 90
time' =0

Conjunction of Linear Differential Inequalities
describes Continuous Dynamics, e.g.

— tir?\e(t) _ 1 forallt € Rog
temp () = 100 (100 — temp.(t)) forall t € R
temp.(t) <90




Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7

Conjunction of Linear Inequalities
describes Discrete Transition, e.g.

temp. > 90
time' =0

Conjunction of Linear Differential Inequalities
describes Continuous Dynamics, e.g.

—  time =1 —

temp. = 55 - (100 — temp. )
temp. <90




Context & Motivation Frame 5 of 42

Affine?

(& (Q
’LJ 7

Conjunction of Linear Inequalities
describes Discrete Transition, e.g.

temp. > 90
time' =0

Conjunction of Linear Differential Inequalities
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The Annoying Truth:

Affine Hybrid Automata are Turing Complete

Rice’s Theorem

Checking/Verifying
Non-Trivial Properties
is
Undecidable
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The author decided to not show ‘ ;
this slide, since the contained
humor might be misunderstood

as an offense.
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Abstract Domain: Template Polyhedra [Sriram Sank...]

Fixed set of linear templates:

X2
~ Xy, —Xq, X2, — X2, X4 X2, X2 X4
X1
A template polyhedron:
( X1 S 00 ) ( X1 S 1 )
—x1 <0 —x1 <0
) (x4 | <05 _J (X | X2 < 0.5
) \xe X2 <0 )\ X2 <0
X1—X2§0.5 X1—X2§O.5
L Xo — X4 < 0.25 ) L Xo — X1 < 0.25 )
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Abstract Interpretation?

temp.

Compute the
P _ Smallest Template Polyhedra
time. that are
a invariant
temp. Safe Over-approximation
’ y of the set of
time. Reachable States
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Difficult?

? { <p Our Problem
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Meaning: Value of b} = upperboundontatl/, i.e.,

(bi,.....b} ) represents ! at /

Compute: Minimal Solution of:
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b} > BlowUp (b} ,....,b; ) for all locations /
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[stmt] (d) ?

t

Convention: T:=|: |,eg. T := 2 1) for 24— %
0 1 Xo
tm
Concretization: ~(d)={x e R"| Tx < d} vd e R”

Abstraction: «(X)=min {deR" |v(d) 2 X} VXCR"

[stmt]* := o o [stmt] o v
([stmt]; , ..., [stmt]} ) := [stmt]*

Then:
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Example: stmt = x'=Ax+b

[x'=Ax+b]; (d) = sup {t{(Ax + b) | Tx < d}
Then: = tib+sup {tAx | Tx < d}
=tb+inf{d"y | yT =tA, y >0}

[x' = Ax + b]]?i

~

point-wise min of
finitely many monotone and affine operators.

Observation:
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Example:
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Then:
(BlowUp?)”(d)

BlowUp?

Observation: . S
point-wise min of

finitely many monotone and affine operators.
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[stmt]!:R" =R and BlowUp? :R" - R

are

Point-wise min
of
finitely many
monotone and affine operators!

So What?
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1-dim Example:

Compute Minimal Solution of
x=max {04, vx, 1 +vx—-1}
X

AN

Least Solution
X
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Kleene + Widening/Narrowing?

X=max <0 1x+1
N 2 2

Kleene (without widening) gives us:
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X1 =max {fi1(X1,...,Xn), ..., fru(X1,....Xp) }
Recall:

X, =max {f1(Xi,..., Xn), s Fnk (Xa, .o Xn) }

Minette’s View

o Minimal Solution of x = F(x) VxR’

o F(X) =min {x(x)|7reN} vxeR
Set of simpler monotonic operators

o Consequence: uF =min {ur | 7 € M}
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monotone and concave
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point-wise maximum Linear
of affine4ll‘ﬁg+ran" ||i||§
monotone and copeatge

operators v
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¥

x(0)
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x=max {3, - \/x—3+3 1+/x-08}
N \

At x®): x = max {

i

x3)
verges to x ~ 2.1708203933
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Requirement 1:

B (x) = f(x0) +dT(x = x0) Vx

Requirement 2:
f(x) < B (x) = 1(x0) +d " (x — x0) Vx

— f(x)—d"(x —x) < f(x) VX
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How can ’\ compute the == s?
s 4

Requirement 1:

B (x) = f(x0) +dT(x = x0) Vx

Requirement 2:
f(x) < B (x) = f(x0) +d T (x — Xp) Vx
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How can ’\ compute the == s?

s 0

Requirement 1:

B (x) = f(x0) +dT(x = x0) Vx

Requirement 2:
f(x) < Bt (x) = f(x0) +dT(x — x0) Vx
— f(x)—d"(x —x) < f(x) VX
— g(d) := sup f(x) —d"(x — x0) < f(x0)

= g convex = igf g(d) is a convex optimization problem
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Are their Special Cases?

Linear Programming (As in our Application):
f(d)=sup {c'x|Ax < d}
Then:

Use Strong Duality

to compute
the s

Semidefinite Programming: ...
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Advantages:

@ Minette can be stopped at any time

Safe Over-approximation
° m s can be computed efficiently

Small Convex Optimization Problems

@ Each Min-Strategy 7 (point-wise max of B s) can be
evaluated efficiently

[\

Linear Programming
@ Minette’s iteration “usually” convergences fast

Newton’s iteration “usually” convergences fast

@ The Hybrid Systems Case: Minette performs at most
exponentially many min-strategy iteration steps.
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Disadvantages:

Minette is a bit short-sighted

JLg]




Min-Strategy Iteration

Outline

@ Template-Based Static Analysis
@ Min-Strategy lteration

@ Max-Strategy lteration

@ Conclusion



Max-Strategy lteration Frame 34 of 42

Mlznamilian

TM.G.
Helmut Seidl



Max-Strategy lteration

Xx=max {-oco , 04 , VX , 1+vVx—1}
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X=max {—oco . 0.4 }
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Observations

@ Maximilian’s iteration always terminates

(after at most exponentially many improvement steps).
@ Maximilian always finds the Minimal Solution.
@ Each Max-Strategy ~~ convex optimization.

@ For our Hybrid-Systems-Application:
Each Max-Strategy ~~ linear programming.

@ Abstract Reachability/Verification € coNP.
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Linear

Non-Linear

Frame 38 of 42

Conclusion
Mean Payoff Games <p Abstract Reachability € coNP

~8
A

Terminates with Safe
Over-approximation

Can be stopped at any time

Converges to a Safe
Over-approximation

Can be stopped at any time

Small Convex Optimization
Problems

o,

Terminates with Least
Solution

Terminates with Least
Solution

Big Convex Optimization
Problems



What else?

@ More sophisticated Discrete Transitions
[Gawlitza & Monniaux, ESOP’11]:

- Y
Q

Linear Inequalities Linear Inequalities
(Xaya"'vxlv.yla"') W (Xaya"'7xlay,7"')
+ +

A N+ V

coNP N M2-complete



What else?

@ More sophisticated Abstract Domains
[Adjé et al, ESOP’10; Gawlitza & Seidl, SAS’10]:

linear templates N> non-linear templates

Idea: Semi-definite Relaxation of the Abstract Semantics

@ Least Fixpoints ~> Nested Fixpoints
[Gawlitza & Seidl, CAV’'09]

@ Recursive Stochastic Games
[Esparza & Gawlitza & Kiefer & Seidl, ICALP’08]



Perspectives?

@ Numerical Issues (Exact Arithmetic necessary?)
@ Practical Evaluations?
@ Combinations with Other techniques?

@ Flow-Pipe Constructions?
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Jestons
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