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Matthieu Martel, Sylvie Putot, Helmut Seidl, Ankur Taly, and

Sarah Zennou

NSV, July 14th, 2011



Context & Motivation Frame 1 of 42

Template-based

Unbounded Time Verification
of

Hybrid Systems



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON

temp.



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON

temp.

OFF



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON

temp.

OFF



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON

temp.

OFF



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON

temp.

OFF ON



Context & Motivation Frame 2 of 42

Hybrid System?

time and temp.
evolve according to “heater ON”

time and temp.
evolve according to “heater OFF”

time′ = 0, 0 ≤ temp.′ ≤ 99

temp. ≥ 90

time′ = 0 temp. ≤ 80

time′ = 0

time.

temp.

ON

temp.

OFF ON

And so on...



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

Example: Grandma-Stays-Alive-Property

time.

temp. temp.

And so on...



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

Example: Grandma-Stays-Alive-Property

time.

temp. temp.

And so on...



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

Example: Grandma-Stays-Alive-Property

time.

temp. temp.

And so on...



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

Example: Grandma-Stays-Alive-Property

time.

temp. temp.

And so on...



Context & Motivation Frame 3 of 42

Unbounded Time Verification?

Does the system stay in a safe region forever?

Example: Grandma-Stays-Alive-Property

time.

temp. temp.

And so on...



Context & Motivation Frame 4 of 42

Here:
Affine

Hybrid Automata
(with Uncertainty)
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The Annoying Truth:

Affine Hybrid Automata are Turing Complete⇒
Rice’s Theorem

Checking/Verifying
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Undecidable
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Octopus-based Verifier
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Cousot and Cousot-based VerifierCENSOREDThe author decided to not show
this slide, since the contained
humor might be misunderstood
as an offense.
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Outline
1 Template-Based Static Analysis

2 Min-Strategy Iteration

3 Max-Strategy Iteration

4 Conclusion
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Abstract Domain: Template Polyhedra [Sriram Sank...]
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Abstract Interpretation?

time.

temp.

l1

l2

time.

temp.

Compute the
Smallest Template Polyhedra

that are
invariant 

Safe Over-approximation
of the set of

Reachable States
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Our Problem 
Mathematical

Optimization Problem
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Assumption: The linear templates are t1, . . . , tm

Variables: bl
t

location

template

∈ R := R ∪ {±∞}

Meaning: Value of bl
t = upper bound on t at l , i.e.,

(bl
t1 , . . . ,b

l
tm ) represents at l

Compute: Minimal Solution of:

bl2
t ≥ JstmtK]

t (bl1
t1 , . . . ,b

l1
tm ) for all discrete transitions (l1, stmt, l2)

bl
t ≥ BlowUpD

t (bl
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l
tm ) for all locations l

with Diff.-Inequalities D
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JstmtK]t (d) ?

Convention: T :=

 t1
...

tm

, e.g. T :=

(
2 −1
0 1

)
for 2x1 − x2

x2

Concretization: γ(d) = {x ∈ Rn | Tx ≤ d} ∀d ∈ Rm

Abstraction: α(X ) = min {d ∈ Rm | γ(d) ⊇ X} ∀X ⊆ Rn

Then:
JstmtK] := α ◦ JstmtK ◦ γ

(JstmtK]
t1
, . . . , JstmtK]

tm ) := JstmtK]
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JstmtK]t (d) ?

Example: stmt = x ′ = Ax + b

Then:

Jx ′=Ax+bK]
ti

(d)

= sup {ti(Ax + b) | Tx ≤ d}
= tib + sup {tiAx | Tx ≤ d}
= tib + inf {d>y | yT = tiA, y ≥ 0}

Observation:

Jx ′ = Ax + bK]
ti

'
point-wise min of

finitely many monotone and affine operators.
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Summary: Our Problem reduces to

Compute Minimal Solution of
x1 ≥

max {

f1,1(x1, . . . ,xn) , . . . , f1,k1(x1, . . . ,xn)

}

...
xn ≥

max {

fn,1(x1, . . . ,xn) , . . . , fn,kn(x1, . . . ,xn)

}

where
x1, . . . ,xn ∈ R := R ∪ {−∞,∞} are the variables

The fi,j ’s are monotone and concave
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Kleene + Widening/Narrowing?
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Outline
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2 Min-Strategy Iteration

3 Max-Strategy Iteration

4 Conclusion
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Éric Goubault
Matthieu Martel
Sylvie Putot
Ankur Taly
Sarah Zennou



Min-Strategy Iteration Frame 26 of 42

Recall:
x1 = max { f1,1(x1, . . . ,xn), . . . , f1,k1(x1, . . . ,xn) }

...
xn = max { fn,1(x1, . . . ,xn), . . . , fn,kn(x1, . . . ,xn) }

Minette’s View
Minimal Solution of x = F (x) ∀x ∈ Rn

F (x) = min {π(x) | π ∈ Π} ∀x ∈ Rn

Consequence: µF = min {µπ | π ∈ Π}
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How can compute the s?

rhs

f

x0

Requirement 1:

(x) = f (x0) + d>(x − x0) ∀x

Requirement 2:

f (x) ≤ (x)

= f (x0) + d>(x − x0)

∀x

⇐⇒ f (x)− d>(x − x0) ≤ f (x0) ∀x
⇐⇒

g(d) :=

sup
x

f (x)− d>(x − x0) ≤ f (x0)

⇒ g convex ⇒ inf
d

g(d) is a convex optimization problem
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d

g(d) is a convex optimization problem
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Minette can be stopped at any time 

Safe Over-approximation

s can be computed efficiently⇐

Small Convex Optimization Problems

Each Min-Strategy π (point-wise max of s) can be
evaluated efficiently⇐

Linear Programming
Minette’s iteration “usually” convergences fast⇐
Newton’s iteration “usually” convergences fast
The Hybrid Systems Case: Minette performs at most
exponentially many min-strategy iteration steps.
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Outline
1 Template-Based Static Analysis

2 Min-Strategy Iteration

3 Max-Strategy Iteration

4 Conclusion
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MaximilianMaximilian

T.M.G.
Helmut Seidl
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Observations

Maximilian’s iteration always terminates

(after at most exponentially many improvement steps).

Maximilian always finds the Minimal Solution.

Each Max-Strategy  convex optimization.

For our Hybrid-Systems-Application:
Each Max-Strategy  linear programming.

Abstract Reachability/Verification ∈ coNP.
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What else?

More sophisticated Discrete Transitions
[Gawlitza & Monniaux, ESOP’11]:

 

Linear Inequalities
(x , y , . . . , x ′, y ′, . . .)

+
∧

 
Linear Inequalities
(x , y , . . . , x ′, y ′, . . .)

+
∧ + ∨

coNP  Πp
2-complete
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What else?

More sophisticated Abstract Domains
[Adjé et al, ESOP’10; Gawlitza & Seidl, SAS’10]:

linear templates  non-linear templates

Idea: Semi-definite Relaxation of the Abstract Semantics

Least Fixpoints  Nested Fixpoints
[Gawlitza & Seidl, CAV’09]

Recursive Stochastic Games
[Esparza & Gawlitza & Kiefer & Seidl, ICALP’08]
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Perspectives?

Numerical Issues (Exact Arithmetic necessary?)

Practical Evaluations?

Combinations with Other techniques?

Flow-Pipe Constructions?
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