
Incremental Computation of
Succinct Abstractions of

Mixed Discrete-Continuous Systems

Tomáš Dzetkulič and Stefan Ratschan

Institute of Computer Science
Czech Academy of Sciences

July 14, 2011

1 / 13



Mixed Discrete-Continuous Systems

State space: Cross product of

I finite (e.g., Boolean functions, floating point)

I infinite, but countable (e.g., integers, dynamical data
structures)

I uncountable (reals)

component state spaces.

Corresponding dynamics given by

I ODEs (at least linear)

I computer programs,

I . . .

Formal details: open (see e.g., Bouissou et. al.: HybridFluctuat)

2 / 13



Mixed Discrete-Continuous Systems

State space: Cross product of

I finite (e.g., Boolean functions, floating point)

I infinite, but countable (e.g., integers, dynamical data
structures)

I uncountable (reals)

component state spaces.

Corresponding dynamics given by

I ODEs (at least linear)

I computer programs,

I . . .

Formal details: open (see e.g., Bouissou et. al.: HybridFluctuat)

2 / 13



Mixed Discrete-Continuous Systems

State space: Cross product of

I finite (e.g., Boolean functions, floating point)

I infinite, but countable (e.g., integers, dynamical data
structures)

I uncountable (reals)

component state spaces.

Corresponding dynamics given by

I ODEs (at least linear)

I computer programs,

I . . .

Formal details: open (see e.g., Bouissou et. al.: HybridFluctuat)

2 / 13



Ultimate Goal: Safety verification

For

I system with

I set of initial states

I set of unsafe states

do:

I If system has an error trajectory
(i.e., trajectory from initial to unsafe states), find it,

I otherwise (the system is safe), detect this.

3 / 13



Ultimate Goal: Safety verification

For

I system with

I set of initial states

I set of unsafe states

do:

I If system has an error trajectory
(i.e., trajectory from initial to unsafe states), find it,

I otherwise (the system is safe), detect this.

3 / 13



Ultimate Goal: Safety verification

For

I system with

I set of initial states

I set of unsafe states

do:

I If system has an error trajectory
(i.e., trajectory from initial to unsafe states), find it,

I otherwise (the system is safe), detect this.

3 / 13



Observation 1

Unlike for purely discrete systems,
for non-trivial continuous dynamics one has to over-approximate

when computing reachability information

It is a-priori not clear
how much and where

to over-approximate for a given safety property.

⇒:

incrementally improve abstraction
(abstraction refinement)

4 / 13



Observation 1

Unlike for purely discrete systems,
for non-trivial continuous dynamics one has to over-approximate

when computing reachability information

It is a-priori not clear
how much and where

to over-approximate for a given safety property.

⇒:

incrementally improve abstraction
(abstraction refinement)

4 / 13



Observation 1

Unlike for purely discrete systems,
for non-trivial continuous dynamics one has to over-approximate

when computing reachability information

It is a-priori not clear
how much and where

to over-approximate for a given safety property.

⇒:

incrementally improve abstraction
(abstraction refinement)

4 / 13



Observation 2

Unlike for finite state systems,
there is no bound on the size of abstractions

(uncountable state space!)

For hybrid systems,
removing single error trajectories from abstractions (CEGAR)

tends to rapidly increase the number of abstract states.

⇒:

compute as much information as possible
without increasing the abstraction size

5 / 13



Observation 2

Unlike for finite state systems,
there is no bound on the size of abstractions

(uncountable state space!)

For hybrid systems,
removing single error trajectories from abstractions (CEGAR)

tends to rapidly increase the number of abstract states.

⇒:

compute as much information as possible
without increasing the abstraction size

5 / 13



Observation 2

Unlike for finite state systems,
there is no bound on the size of abstractions

(uncountable state space!)

For hybrid systems,
removing single error trajectories from abstractions (CEGAR)

tends to rapidly increase the number of abstract states.

⇒:

compute as much information as possible
without increasing the abstraction size

5 / 13



Observation 3

The ability to handle high-dimensional systems is important

Even if safety verification fails,
we want at least to be able to compute abstractions

(guidance for simulation based approaches)

⇒:

high-dimensional abstractions should be efficiently computable
(even if the refinement loop may not terminate)

6 / 13



Observation 3

The ability to handle high-dimensional systems is important

Even if safety verification fails,
we want at least to be able to compute abstractions

(guidance for simulation based approaches)

⇒:

high-dimensional abstractions should be efficiently computable
(even if the refinement loop may not terminate)

6 / 13



Observation 3

The ability to handle high-dimensional systems is important

Even if safety verification fails,
we want at least to be able to compute abstractions

(guidance for simulation based approaches)

⇒:

high-dimensional abstractions should be efficiently computable
(even if the refinement loop may not terminate)

6 / 13



Summary of Resulting Design Principles

I Use some form of abstraction refinement

I Compute as much information as possible
without increasing the abstraction size

I Compute single abstractions in such a way that
this scales with problem dimension

7 / 13



Abstractions

Based on decomposition of state space
into finite set of regions

with marks

and transitions.

8 / 13



Abstractions

Based on decomposition of state space
into finite set of regions

with marks and transitions.

8 / 13



Abstractions

Based on decomposition of state space
into finite set of regions

with marks and transitions.

8 / 13



Abstraction Pruning

Reflect more information in abstraction,
without creating more abstract states

Observation:
parts of state space not lying on an error trajectory not needed,

remove such parts from regions

9 / 13



Abstraction Pruning

Reflect more information in abstraction,
without creating more abstract states

Observation:
parts of state space not lying on an error trajectory not needed,

remove such parts from regions

9 / 13



Algorithm for Abstraction Pruning

10 / 13



Algorithm for Abstraction Pruning

For each region marked as initial:
over-approximate set of states reachable from an initial state

10 / 13



Algorithm for Abstraction Pruning

If empty set, remove initiality mark

10 / 13



Algorithm for Abstraction Pruning

while some new states reachable through a transition,
add them

10 / 13



Algorithm for Abstraction Pruning

while some new states reachable through a transition,
add them

10 / 13



Algorithm for Abstraction Pruning

while some new states reachable through a transition,
add them

10 / 13



Algorithm for Abstraction Pruning

while some new states reachable through a transition,
add them

10 / 13



Algorithm for Abstraction Pruning

remove unconfirmed transitions

10 / 13



Algorithm for Abstraction Pruning

Replace regions by new ones

10 / 13



Discussion

Termination?

Backward in time

Exit regions (exploit continuous time nature):

11 / 13



Discussion

Termination?

Backward in time

Exit regions (exploit continuous time nature):

11 / 13



Discussion

Termination?

Backward in time

Exit regions (exploit continuous time nature):

11 / 13



Splitting

Only if pruning does not compute relevant information any more.

Split a region into into two, creating two abstract states.

Incrementality between splits, forward/backward phases

Method can be instantiated
with arbitrary reachability computation algorithm

(it should scale in problem dimension).

Experiments with prototypical implementation
for classical hybrid systems promising

See our tool HSolver (http://hsolver.sourceforge.net)

12 / 13

http://hsolver.sourceforge.net


Splitting

Only if pruning does not compute relevant information any more.

Split a region into into two, creating two abstract states.

Incrementality between splits, forward/backward phases

Method can be instantiated
with arbitrary reachability computation algorithm

(it should scale in problem dimension).

Experiments with prototypical implementation
for classical hybrid systems promising

See our tool HSolver (http://hsolver.sourceforge.net)

12 / 13

http://hsolver.sourceforge.net


Splitting

Only if pruning does not compute relevant information any more.

Split a region into into two, creating two abstract states.

Incrementality between splits, forward/backward phases

Method can be instantiated
with arbitrary reachability computation algorithm

(it should scale in problem dimension).

Experiments with prototypical implementation
for classical hybrid systems promising

See our tool HSolver (http://hsolver.sourceforge.net)

12 / 13

http://hsolver.sourceforge.net


Splitting

Only if pruning does not compute relevant information any more.

Split a region into into two, creating two abstract states.

Incrementality between splits, forward/backward phases

Method can be instantiated
with arbitrary reachability computation algorithm

(it should scale in problem dimension).

Experiments with prototypical implementation
for classical hybrid systems promising

See our tool HSolver (http://hsolver.sourceforge.net)

12 / 13

http://hsolver.sourceforge.net


Splitting

Only if pruning does not compute relevant information any more.

Split a region into into two, creating two abstract states.

Incrementality between splits, forward/backward phases

Method can be instantiated
with arbitrary reachability computation algorithm

(it should scale in problem dimension).

Experiments with prototypical implementation
for classical hybrid systems promising

See our tool HSolver (http://hsolver.sourceforge.net)

12 / 13

http://hsolver.sourceforge.net


Conclusion

Method for incremental computation of abstractions.

Pruning for keeping number of abstract states small.

Instantiations in various domains
and with various reachability algorithms possible.

Computed abstractions can be used for

I verification

I falsification/testing

Implementation based on boxes available (open source) from

http://hsolver.souceforge.net

13 / 13

http://hsolver.souceforge.net


Conclusion

Method for incremental computation of abstractions.

Pruning for keeping number of abstract states small.

Instantiations in various domains
and with various reachability algorithms possible.

Computed abstractions can be used for

I verification

I falsification/testing

Implementation based on boxes available (open source) from

http://hsolver.souceforge.net

13 / 13

http://hsolver.souceforge.net


Conclusion

Method for incremental computation of abstractions.

Pruning for keeping number of abstract states small.

Instantiations in various domains
and with various reachability algorithms possible.

Computed abstractions can be used for

I verification

I falsification/testing

Implementation based on boxes available (open source) from

http://hsolver.souceforge.net

13 / 13

http://hsolver.souceforge.net


Conclusion

Method for incremental computation of abstractions.

Pruning for keeping number of abstract states small.

Instantiations in various domains
and with various reachability algorithms possible.

Computed abstractions can be used for

I verification

I falsification/testing

Implementation based on boxes available (open source) from

http://hsolver.souceforge.net

13 / 13

http://hsolver.souceforge.net


Conclusion

Method for incremental computation of abstractions.

Pruning for keeping number of abstract states small.

Instantiations in various domains
and with various reachability algorithms possible.

Computed abstractions can be used for

I verification

I falsification/testing

Implementation based on boxes available (open source) from

http://hsolver.souceforge.net

13 / 13

http://hsolver.souceforge.net

