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Modeling Hybrid Systems

e Example: Bouncing Ball
— ball with mass m and position x in free fall
— bounces when it hits the ground at x = 0
— initially at position z_, and at rest
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Part | — Free Fall

e Condition for Free Fall

— ball above ground: r >0

e First Principles (physical laws)

e gravitational force :
Fy=—mg

g =9.81m/s?

e Newton's law of motion :
mr = F,




Part | — Free Fall

F, = —mg
mr = F,

e Obtaining 1 st Order ODE System

e ordinary differential equation & = f(x)

e transform to 1st order by introducing variables
for higher derivatives

e here: v = z:




Part || — Bouncing

e Conditions for “Bouncing”

e ball at ground position: x =0
e downward motion: v < 0
e Action for “Bouncing”
e Vvelocity changes direction
e loss of velocity (deformation, friction)

o v:=—cv,0<¢c<1



Combining Part | and Il
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Free Fall

e While z > 0,
T )

-9

v

Bouncing

e ifzr=0andv <0
v = —Cv

continuous dynamics

= f(z)

discrete dynamics
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Hybrid Automaton Model

initial conditions

:c::co/

v=20

location
\/ freefall \ label

o t//a; = 0 bounce/
invarian . r—0Av < ()——9uard

o — V. — —CU
flow )<U B / Treset

discrete transition




Hybrid Automata - Semantics

e Run

— seqguence of time elapse and discrete transitions

e EXxecution

— run that starts in the initial states

Ay | Y

z,(t)



Execution of Bouncing Ball

position x

time ¢

velocity v

time ¢
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Execution of Bouncing Ball

e State-Space View (infinite time range)

position x

velocity v
discrete transition
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Computing Reachable States

e Compute successor states
e time elapse : Post.(R)

e discrete transitions : Posty(R)

R1=P03tC(RO)\;
— R,=Post,(R,)

+~R,=Post (R,)
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Computing Reachable States

e Fixpoint computation
e [nitialization: Ry = In:
e Recurrence: Ry,1 = Ry U Posty(Ry) U Post.(Ry)
e Termination: Ry,1 = Ry = Reach = Ry.

e Problems

— in general termination not guaranteed

— time-elapse very hard to compute with sets
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Outline

e SpaceEx Approximation Algorithm

— Time Elapse Computation with Support Functions
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Time Elapse with Affine Dynamics

e Affine Flow

— nondeterministic affine differential equation:

T =Ax +u, withu e U
e Solve with superposition principle

— disregard inputs: “autonomous dynamics”

— add inputs afterwards
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Linear Dynamics

e “Autonomous” part of the dynamics:

x=Ax, xe€R"

e Known solutions:
— analytic solution in continuous time

— explicit solution at discrete points in time
(up to arbitrary accuracy)

e Approach for Reachability:
— Compute reachable states over finite time: Reachy, y(X,;)

— Use time-discretization, but with care!
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Time-Discretization for an Initial Point

e Analytic solution:  z(t) = eAtz,; .
x(t
o With ¢ = 6k : s
Lo
r(6(k+1) = eMx(fk) To| 11

e EXplicit solution in discretized time (recursive):

Zo LIni

eAd g,

Lk+1

N multiplication with const. matrix e4?
= linear transform
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Time-Discretization for an Initial Set

e EXplicit solution in
discretized time

Xo = X
X1 = ePXy

e Acceptable solution for purely continuous systems
— z(t) is in €(6)-neighborhood of some X,

e Unacceptable for hybrid systems
— discrete transitions might “fire” between sampling times
— if transitions are “missed,” z(t) not in ¢(§)-neighborhood
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Time Discretization for Hybrid Systems

e One can mMiss jumps

— intersection with guard set jump not visible

In discretization

flowpipe setsin
discretized time
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Bouncing Ball

//////j
/ /// ////// ‘///// 2

o
\Xgoz 0

— In other examples this error might not be as obvious...
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Reachabillity by Time-Discretization

e Goal:
— Compute sequence Q, over bounded time [0,/N§] such that:
Reach[O,N(g] (X]nz) g Qo U Ql Uu...U QN

e Approach:
— Refine Q, by recurrence: N Q,
Qk+1 = eA(SQk

— Condition for Q_:
Reach(o 5)(X1ni) € Qo
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Nondeterministic Affine Dynamics

e Let’s include the effect of inputs:
r=Arx+u, xR uelU

— variables z,...,z,, Inputs u,,...,u,

e |Input v models nondeterminism

— disturbances etc.

— can be used for overapproximating nonlinear dynamics
(U = bounds of approximation error)
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Nondeterministic Affine Dynamics

e Superposition Principle

x(t) = e’ x(0) + /T ey (T dr
0
NN - ),

autonomous influence of
dynamics inputs

/ __ influence of inputs

[: T~ Reach[o,%] (X 1)

| | | |
0 J 20 30 t
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Nondeterministic Affine Dynamics

e Set overapproximation of input influence
— How far can the input “push” the system in ¢ time?

— from Taylor series expansion
U =0U P &y (input influence set)
Ey = (Py O (AU)) (error bound)
Oy = |A|7? (24 — T — 5| A]) (matrix)
e Operators:
— Minkowski Sum: A B={a+b|ac A, be B}

— Symmetric Bounding Box: [ (-) !
— Linear Transform T

diit

—
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Nondeterministic Affine Dynamics

e Recurrence equation with influence of inputs

Q1 = e v

e Still needed:

— approximation of the
initial time step with Q,

— called “approximation model”
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Approximating Initial Time Step
— Previous Work

e convex hull constraints e bloat last set with ~ ell4lld
+ bloat with ~ ellAlld + convex hull

W/,

e error large and uniform e error large and uniform

e exponential cost
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Approximating Initial Time Step

e approximate set separately e intersect forward and
for each ¢ backward approximations

e error small and non-uniform e if no inputs:
bloat with ~ e2bs(40A X exact at t=0 and t=§
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New Approximation Model

e for each t: overapproximate Reach,with Q,
Qt e (1 — %)XO @ %6514%0

N J
Y

linear interpolation between X, and X; = e”’ X,

®((E3N(1—£)EY)

N J
Y

error bound from Taylor approximation
around ¢t = 0and around t = ¢

DtU D g—zgqf

N J
Y

Taylor approximation of inputs with error bound
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New Approximation Model

e overapproximate Reach, 5 with convex hull
of time instant approximations

9[075] = ChuH(UOSt§5 Qt)

e error terms: symmetric bounding boxes
5*(960,5) = (P2(]4],0) B (42X)) .

Eq (X, 8) = B (D2(]A],0) B (A%’ X))
Eu(U,0) = B(%(\AI,& L1 (AU)) .
Dy(A,6) = A2 (24 — 1 — 6 A)
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New Approximation Model

e overapproximate Reach, 5 with convex hull
of time instant approximations

9[075] = ChuH(UOSt§5 Qt)

e smaller overall error with math tricks

— Taylor approx. of interpolation error

— bound remainder with absolute value sum instead of matrix norm

30



New Approximation Model

e What Set Representation to Use?

Polyhedra
Operators Constraints Vertices Zonotopes Support F.
Convex hull -- + - ++
Linear transform +/- ++ ot ++
Minkowski sum -- -- ++ F+
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Support Functions

pp(d) = max,ep d’ x

\ max. signed distance of P to
origin projected in direction d

32



Support Functions

If we know the value of p(d),
we know Pis in the halfspace

{z |d"'z < pp(d)}

33



Support Functions

______ b % N
dy |
— P 4,
A ____;"_________________________________\‘;\_.
l: d2 “\
v
>
0
If we know p,(d,), ppldy),... we

know Pis inside the intersection of

the halfspaces

= outer polyhedral approx.



Computing with Support Functions

e Needed operations are simple

— Linear Transform: pap(d) = pp(Ald)
— Minkowski sum:  ppgo(d) = pp(d) + pg(d)

— Convex hull: Peruti(P,Q)(d) = max(pp(d), po(d))

e Implement as function objects

— can add more directions at any time

C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using
support functions. CAV’'09 35



New Approximation Model

e Efficiently computable with support functions

Q[O,5] = ChU.ll U0§t§5 ((1 — %)XO b §€5AXO

\

_ chull of union = max
(L€ N (1 —£)ET)
S

iIntersection of
axis aligned boxes
DU D g—zgq,) = solution of pw linear function
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New Approximation Model

e Efficiently computable with support functions

P (d) = (1= Dpxy (d) @ Lpx, (74 d)

& iy min(ge, (1— £)e; )|di]
\

solution for intersection of
axis aligned boxes

2
Dtpu(d) ® 5 pe,(d)
- guadratic term

— maximize piecewise guadratic scalar function
for each template direction
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New Approximation Model

e Error bounds for each template direction d

cwsu)(d) < pey (d) + p—ad,u(d)

EQyq,) (o) (€) < fél[%ﬁ] {p(AS;{H(l—)\)Sg)(d)
Ny 04.5)(d) + A0 awu(d)

— used to choose time steps
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Extension to Variable Time Steps

i

adapt to error

different time scale for each direction

— new approximation model can interpolate

cost: recompute matrix — e49

— cache matrix
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Intersection with Invariant

Polyhedra
Operators Constraints Vertices Zonotopes Support F.
Convex hull -- + - ++
Affine transform +/- ++ o ++
Minkowski sum -- -- ++ F+

Intersection = - ;

40



Computing Time Elapse

Support Functions

Initial Set

Convex Hull

Linear Map

Minkowski Sum

overapprox.

Polyhedra

Initial Set

Invariant Intersection
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Outline

e SpaceEx Approximation Algorithm

— Transition Successors Mixing Support Functions and Polyhedra

— Fixpoint Algorithm: Clustering & Containment
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Computing Transition Successors

e I[ntersection with guard

r = Ty
— use outer poly approximation l v="0
. freefall
e Linear map & z 2 0
Minkowski sum . "ig bounce _Quard
. . . =0Av <0
— with polyhedra if invertible ’ Y e _ch
(map regular, input set a point) reset

— otherwise use support functions

e [ntersection with target invariant

— use outer poly approximation
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Computing Transition Successors

Support Functions Polyhedra

Guard Intersection

irreversible | map

exact (LP) reversible
Linear Map Linear Map
Minkowski Sum Minkowski Sum
overapprox. Invariant Intersection
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Fixpoint Computation

e Standard fixpoint algorithm
— Alternate time elapse and transition successor computation

— Stop if new states are contained in old states

e Problem: flowpipe = union of many sets
— number of flowpipes may explode with exploration depth
— containment very difficult on unions

e Solution:
— reduce number after jump through clustering

— use sufficient conditions for containment

— nested depth of support function calls is limited due to outer poly.

45



Clustering

e After discrete jump, every convex set spawns a new

flowpipe
1.6
0.8+
e Reduce number
y to avoid explosion
- e How many sets?
0.4 e Bound approximation
error
0.2 - n
0.0 . | . | . | . | . | .
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
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Clustering — Template Hull

e Template Hull
= Quter polyhedron for template directoins

1.0

guard |
! | e template hull up to
given error bound

0.8+

0.6 -

= low number of sets

0.4+

,\small error

0.2
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Clustering

Even a low number of sets might be still too much

1.0

0.8+

0.6 -

0.4+

0.2

0.0

guard

e 2 sets = possibly
2k sets at iteration k

e cluster again using
convex hull

= 1 set, good accuracy
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Transition Successors with Clustering

Support Functions Polyhedra

Guard Intersection
irreversible | map

exact (LP)

reversible
Linear Map Linear Map
Minkowski Sum Minkowski Sum
Template Hull
overapprox. Invariant Intersection

Convex Hull

after intersection because
contained in convex invariant

49



Sufficient Conditions for Containment

e “Cheap” containment e
— pairwise comparison 0.41 hh5 .
L 'ﬂ\h{\ hE ¥ . : , i
— comparison only with initial set 021 %, X\ .
of flowpipe - Ny Ny
e Clustering helps ‘
_ -0.2} -
— delays containment one !
iteration if clustering to a -04f .
single set * |

6 L L . . . | L | L | L | L
-0.8-06-04-0.200 0.2 04 06 08 1.0
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Summary: Fixpoint Computation

Support Functions

Polyhedra

Initial Set

Time Elapse

Transition Successors

Clustering

Containment Check
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Outline

e SpaceEx Verification Platform

— Examples
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SpaceEx Web Interface

S p a C @ E X State Space Explorer

Model Spedification Options Qutput Advanced
Maodel editor Download
Model file

Browse_

Configuration file

|Load Save

-/ User file

User input file

Examples () Bounicing Ball (), -

_ Timed Bouncing Ball {.xm, .cfo}

) Nondet. Bouncing Ball (.«m, .cfg

™) Gircle (i, .cfa)
() Fitered oscilator 6 (i, i)

\"_! Filtered Oscilator 18 (.xmi, .cfg)

0 Fittered Oscilator 34 (., .cfg)

A filtered oscillator.

Same as the &-variable filtered osdllator, but with a higher order filter,
With 34 state variables, an analysis with octagonal constraints is no
longer practical, since this requires 2*34°2=2312 constraints to be
computed at every time step, The analysis with 2*34=68 box
constraints remains cheap.

Variables: x,,z,...5

Overview

Analysic

Start [ Stop

Execution terminated

Home

Console

Iteration ...
Iteration 7...
Iteration 8...
Iteration 9...

Iteration 10...
Iteration 11...
Iteration 12...
Iteration 13...

About SpaceEx

8 sym states passed, 1 waiting 0.457s

9 sym states passed, 1 waiting 0.941s

10 sym states passed, 1 waiting 0.434s

11 sym states passed, 1 waiting 0.936s
12 sym states passed, 1 waiting 0.457s

14 sym states passed, 1 waiting 0.4555
14 sym states passed, 0 waiting 0.9175

Found fixpoint after 14 iterations.
Computing reachable states done after 10.0585
Qutput of reachable states... 0.823s

Graphics

Documentation

-~

13 sym states passed, 1 waiting 0.92095 —

m

Run SpaceEx Downloads

Reporis

11.05s elapsed
29516KB memory
SpaceEx output file : o

Contact

53



SpacekEx Model Editor

SpaceEx - Model Editor (0.8.385) - dam_model__?@?Ell_xml

File Edit Help

B

Component(s)

2\} workout_total

2\} height2vol_template
£ spillway_template
2\} weather_templat

| untimed_user_template_2 X | timed_user_template_1 x weather_template X i spillway_template x height2vol_template X i workout_total X

param

2\} timed_user_template_.
2\} timed_user_for_3

£3 untimed_user_templat
3 untimed_user for 3
2\} total_outflow_templat
2\} deterministic_weather.
£ update_dh

1 dam_template

G SUTL

B9 5UT2

G SUT3

G SUT4

open open
hl==h h2<=h
& O<=av & D<=dv

hclose<=h<=h2

hclose<=h<=h3

close

=
h<=hclose :
& dv==0 ! & dv<=0
[ close G
h<=hclose
close h3<=h
close & dv<=0 -
h<=hclose & D==dv
8 dv<=0 h<=hclose
ste & dv<=0

st4

helose<=h<=106.5 helose<=h<=h5

hclose<=h<=h4

open open
hs<=h h4==h
& O==dv B O<=dv

timedr

transition

synchronization label

h<=hclose
& dv<=0

assignment

| Apply

note: transition close
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Example 1: Switched Oscillator

0.6 —

e Switched oscillator ol B ‘
— 2 state variables LN Ry =

— similar to many circuits ol N N H

(Buck converters,...) f ANVEERN
-0.2 \\

-04

e plus mt order filter | R\

— dampens output signal

_06 | | | \ |

L L . . . | L | L L 1 L
-0.8-06-04-020.0 0.2 04 06 08 10

e Piecewise affine dynamics
— 4 discrete states

— total 2 + m continuous state variables
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filter t =

Example 1: Switched Oscillator

e Connecting Filter Components

filter_2nd_order x

filter t x

Params

Params
L_In
E[}E_U ut ]7 is a filkar_£
[::{_internal ]:I— 0
#_Internal
-5
is a filkar &

¥_Internal

¥_out

-




Example 1: Switched Oscillator

e Low number of direction sufficent

— here: 6 state variables

12 box constraints 72 octagonal constraints
(axis directions) (£ % £ %)

S7



Template Hull and Convex
Clustering

jull

e first jump has 57 sets = impossible w/o clustering

11.5 sec

03 0z J4 L2 9l 92 L4 0B 03 0% 06 04 0 0D 02 03 B CE
(c) Constraint hull aggregation (d) Convex hull aggregation

3.6 sec

8.2 sec
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Example 1: Switched Oscillator

e Scalable: 10000.0 -
— fixpoint reached in O(nm?) time - %00
— box constraints: O(n?) g 1000
— octagonal constraints: O(n?) S 100
1.0 1
e Clustering necessary 01
1 10 100 1000
— 57 sets take first jump number of variables n

— combination of template and convex hull:
compromise in speed and accuracy
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Example 2: Controlled Helicopter

e 28t order linear model

— 8" order model of an (actual) helicopter

— 20" order disturbance rejection controller

e Performance:
— old approx.: 200s
— New approx.: 24s

— variable time step: 14s
(without interpolation)

e Guaranteed error
— <0.025

v, [ft/s]

04

0.2

0.0

-04r

-0.6

W
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Example 2: Controlled Helicopter

e Comparison of two controllers
for nondeterministic inputs

0.15 0.15
Qaf ; 01}
0.05 0.05
B )
§ 0 E 0
3 5
€ 008 o 0,05
% ¥
0.1 0.1
015 0.15F
-0.05 o 0.05 g 0.15 -0.04 -0.02 o Q.02 0.04 006 008 0.1 0.2
x2 (Roll Attitude) x1 (Pitch Attitude)
(a) Roll stabilization (b) Pitch stabilization
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Conclusions

e Classic problems mitigated to “softer” problems
— no more explosion with number of variables
— complexity increases with
e accuracy needed (less explosive)
* nb. of constraints (for Hausdorff error: exponential)
e Important algorithmic improvements
— switching set representations for best efficiency
— variable time step with error bounds
— Interpolation = different time scale for each direction

— clustering
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