### Towards Efficient Set Representations in SpaceEx

VERIMAG

Goran Frehse, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Manish Goyal, Rodolfo Ripado, Thao Dang, Oded Maler Université Grenoble 1 Joseph Fourier / CNRS – Verimag, France

> Colas Le Guernic New York University CIMS

Antoine Girard Laboratoire Jean Kuntzmann, France

NSV Workshop, Snowbird, UT, July 14, 2011

# Outline

#### • Hybrid Systems Reachability

Modeling Hybrid Systems

### • SpaceEx Approximation Algorithm

- Time Elapse Computation with Support Functions
- Transition Successors Mixing Support Functions and Polyhedra
- Fixpoint Algorithm: Clustering & Containment

### • SpaceEx Verification Platform

- Examples

# **Modeling Hybrid Systems**

#### • Example: Bouncing Ball

- ball with mass m and position x in free fall
- bounces when it hits the ground at x = 0
- initially at position  $x_0$  and at rest



### Part I – Free Fall

- Condition for Free Fall
  - ball above ground:  $x \ge 0$
- First Principles (physical laws)
  - gravitational force :

$$F_g = -mg$$
$$g = 9.81 \text{m/s}^2$$

• Newton's law of motion :

$$m\ddot{x} = F_g$$



### Part I – Free Fall

$$\begin{array}{rcl} F_g &=& -mg \\ m\ddot{x} &=& F_g \end{array}$$

#### • Obtaining 1<sup>st</sup> Order ODE System

- ordinary differential equation  $\dot{x} = f(x)$
- transform to 1st order by introducing variables for higher derivatives

• here: 
$$v = \dot{x}$$
:

$$\dot{x} = v$$
  
 $\dot{v} = -g$ 



# **Part II – Bouncing**

### • Conditions for "Bouncing"

- ball at ground position: x = 0
- downward motion: v < 0

### • Action for "Bouncing"

- velocity changes direction
- loss of velocity (deformation, friction)
- v := -cv,  $0 \le c \le 1$

### **Combining Part I and II**

#### • Free Fall

• while  $x \ge 0$ ,  $\dot{x} = v$  $\dot{v} = -g$ 

### continuous dynamics

 $\dot{x} = f(x)$ 

### • Bouncing

• if 
$$x = 0$$
 and  $v < 0$ 

v := -cv

#### discrete dynamics



### **Hybrid Automaton Model**



# **Hybrid Automata - Semantics**

#### • Run

- sequence of time elapse and discrete transitions

#### • Execution

- run that starts in the initial states



### **Execution of Bouncing Ball**



10

# **Execution of Bouncing Ball**

• State-Space View (infinite time range)



### **Computing Reachable States**

#### • Compute successor states

- time elapse :  $Post_c(R)$
- discrete transitions :  $Post_d(R)$



# **Computing Reachable States**

#### • Fixpoint computation

- Initialization:  $R_0 = Ini$
- Recurrence:  $R_{k+1} = R_k \cup Post_d(R_k) \cup Post_c(R_k)$
- Termination:  $R_{k+1} = R_k \Rightarrow Reach = R_k$ .

#### • Problems

- in general termination not guaranteed
- time-elapse very hard to compute with sets

# **Outline**

- Hybrid Systems Reachability
  - Modeling Hybrid Systems

### • SpaceEx Approximation Algorithm

- Time Elapse Computation with Support Functions
- Transition Successors Mixing Support Functions and Polyhedra
- Fixpoint Algorithm: Clustering & Containment
- SpaceEx Verification Platform
  - Examples

# **Time Elapse with Affine Dynamics**

#### • Affine Flow

- nondeterministic affine differential equation:

 $\dot{x} = Ax + u$ , with  $u \in U$ 

### • Solve with superposition principle

- disregard inputs: "autonomous dynamics"
- add inputs afterwards

# **Linear Dynamics**

• "Autonomous" part of the dynamics:

 $\dot{x} = Ax, \quad x \in \mathbb{R}^n$ 

### • Known solutions:

- analytic solution in continuous time
- explicit solution at discrete points in time (up to arbitrary accuracy)

#### • Approach for Reachability:

- Compute reachable states over finite time:  $Reach_{[0,T]}(X_{Ini})$
- Use time-discretization, but with care!

### **Time-Discretization for an Initial Point**

- Analytic solution:  $x(t) = e^{At}x_{Ini}$ 
  - with  $t = \delta k$ :  $x(\delta(k+1)) = e^{A\delta}x(\delta k)$   $x_{0}$   $x_{1}$   $x_{2}$   $x_{1}$   $x_{2}$   $x_{1}$   $x_{2}$   $x_{3}$   $x_{1}$   $x_{2}$   $x_{3}$   $x_{2}$   $x_{3}$   $x_{4}$   $x_{2}$   $x_{3}$   $x_{4}$   $x_{2}$   $x_{3}$   $x_{4}$   $x_{2}$   $x_{3}$   $x_{4}$   $x_{5}$   $x_{2}$   $x_{4}$   $x_{5}$   $x_{5}$
- Explicit solution in discretized time (recursive):

$$\begin{array}{rcl} x_{0} & = & x_{Ini} \\ x_{k+1} & = & e^{A\delta}x_{k} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

### **Time-Discretization for an Initial Set**



- Acceptable solution for purely continuous systems
  - -x(t) is in  $\epsilon(\delta)$ -neighborhood of some  $X_k$
- Unacceptable for hybrid systems
  - discrete transitions might "fire" between sampling times
  - if transitions are "missed," x(t) not in  $\epsilon(\delta)$ -neighborhood

### **Time Discretization for Hybrid Systems**

#### • One can miss jumps





– In other examples this error might not be as obvious...

# **Reachability by Time-Discretization**

• Goal:

- Compute sequence  $\Omega_k$  over bounded time  $[0, N\delta]$  such that: Reach $_{[0,N\delta]}(X_{Ini}) \subseteq \Omega_0 \cup \Omega_1 \cup \ldots \cup \Omega_N$ 

### • Approach:

- Refine  $\Omega_k$  by recurrence:

$$\Omega_{k+1} = e^{A\delta}\Omega_k$$

- Condition for  $\Omega_{o}$ : Reach<sub>[0, $\delta$ ]</sub> $(X_{Ini}) \subseteq \Omega_{0}$ 



• Let's include the effect of inputs:

 $\dot{x} = Ax + u, \quad x \in \mathbb{R}^n, u \in U$ 

- variables  $x_1, \ldots, x_n$ , inputs  $u_1, \ldots, u_p$ 

#### • Input u models nondeterminism

- disturbances etc.
- can be used for overapproximating nonlinear dynamics (U = bounds of approximation error)

• Superposition Principle



23

#### • Set overapproximation of input influence

- How far can the input "push" the system in  $\delta$  time?
- from Taylor series expansion

$$\begin{split} \Psi &= \delta U \bigoplus \mathcal{E}_{\Psi} & \text{(input influence set)} \\ \mathcal{E}_{\Psi} &= \boxdot \left( \Phi_{\Psi} \boxdot (A\mathcal{U}) \right) & \text{(error bound)} \\ \Phi_{\Psi} &= |A|^{-2} \left( e^{\delta |A|} - I - \delta |A| \right) & \text{(matrix)} \end{split}$$

#### • Operators:

- Minkowski Sum:  $A \oplus B = \{a + b \mid a \in A, b \in B\}$
- Symmetric Bounding Box:  $\Box(\cdot)$
- Linear Transform



#### • Recurrence equation with influence of inputs

 $\Omega_{k+1} = e^{A\delta}\Omega_k \oplus \Psi$ 

- Still needed:
  - approximation of the initial time step with  $\Omega_0$
  - called "approximation model"



# Approximating Initial Time Step – Previous Work

• convex hull constraints + bloat with  $\sim e^{\|A\|\delta}$ 

Asarin, Dang et al., HSCC 2000



- error large and uniform
- exponential cost

• bloat last set with  $\sim e^{||A||\delta}$ + convex hull

Le Guernic, Girard, CAV 2009



• error large and uniform

### **Approximating Initial Time Step**

- approximate set separately for each *t*
- intersect forward and backward approximations



- error small and non-uniform bloat with  $\sim e^{{\rm abs}(A)\delta}AX_0$
- if no inputs: exact at t=0 and  $t=\delta$

• for each t: overapproximate Reach<sub>[t,t]</sub> with  $\Omega_t$ 

$$\Omega_t = \underbrace{(1 - \frac{t}{\delta})\mathcal{X}_0 \oplus \frac{t}{\delta}e^{\delta A}\mathcal{X}_0}_{\swarrow}$$

linear interpolation between  $X_0$  and  $X_{\delta} = e^{A\delta} X_0$ 

$$\oplus \left( \frac{t}{\delta} \mathcal{E}_{\Omega}^{+} \cap (1 - \frac{t}{\delta}) \mathcal{E}_{\Omega}^{-} \right)$$

error bound from Taylor approximation around t = 0 and around  $t = \delta$ 

$$\oplus t\mathcal{U}\oplus rac{t^2}{\delta^2}\mathcal{E}_{\Psi}$$

Taylor approximation of inputs with error bound

 overapproximate Reach<sub>[0, δ]</sub> with convex hull of time instant approximations

 $\Omega_{[0,\delta]} = \operatorname{chull}(\bigcup_{0 \le t \le \delta} \Omega_t)$ 

• error terms: symmetric bounding boxes

$$\begin{split} \mathcal{E}_{\Omega}^{+}(\mathcal{X}_{0},\delta) &= \boxdot \left( \Phi_{2}(|A|,\delta) \boxdot \left(A^{2}\mathcal{X}_{0}\right) \right), \\ \mathcal{E}_{\Omega}^{-}(\mathcal{X}_{0},\delta) &= \boxdot \left( \Phi_{2}(|A|,\delta) \boxdot \left(A^{2}e^{\delta A}\mathcal{X}_{0}\right) \right), \\ \mathcal{E}_{\Psi}(\mathcal{U},\delta) &= \boxdot \left( \Phi_{2}(|A|,\delta) \boxdot \left(A\mathcal{U}\right) \right). \\ \Phi_{2}(A,\delta) &= A^{-2} \left(e^{\delta A} - I - \delta A\right) \end{split}$$

 overapproximate Reach<sub>[0, δ]</sub> with convex hull of time instant approximations

 $\Omega_{[0,\delta]} = \operatorname{chull}(igcup_{0\leq t\leq \delta}\Omega_t)$ 

- smaller overall error with math tricks
  - Taylor approx. of interpolation error
  - bound remainder with absolute value sum instead of matrix norm

#### • What Set Representation to Use?

|                  | Polyhedra   |          |           |            |
|------------------|-------------|----------|-----------|------------|
| Operators        | Constraints | Vertices | Zonotopes | Support F. |
| Convex hull      |             | +        |           | ++         |
| Linear transform | +/-         | ++       | ++        | ++         |
| Minkowski sum    |             |          | ++        | ++         |





# **Support Functions**



If we know the value of  $\rho_P(d)$ , we know *P* is in the halfspace  $\{x \mid d^T x \leq \rho_P(d)\}$ 



If we know  $\rho_P(d_1)$ ,  $\rho_P(d_2)$ ,... we know *P* is inside the intersection of the halfspaces

= outer polyhedral approx.

# **Computing with Support Functions**

#### • Needed operations are simple

- Linear Transform:  $ho_{AP}(d) = 
ho_P(A^T d)$ 

– Minkowski sum: 
$$ho_{P\oplus Q}(d)=
ho_P(d)+
ho_Q(d)$$

– Convex hull: 
$$ho_{chull(P,Q)}(d) = \max(
ho_P(d),
ho_Q(d))$$

#### • Implement as function objects

- can add more directions at any time

C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using support functions. CAV'09

#### • Efficiently computable with support functions

$$\begin{split} \Omega_{[0,\delta]} &= \operatorname{chull} \bigcup_{0 \leq t \leq \delta} \left( (1 - \frac{t}{\delta}) \mathcal{X}_0 \oplus \frac{t}{\delta} e^{\delta A} \mathcal{X}_0 \\ &\oplus \left( \frac{t}{\delta} \mathcal{E}_{\Omega}^+ \cap (1 - \frac{t}{\delta}) \mathcal{E}_{\Omega}^- \right) & \text{chull of union} \Rightarrow \max \\ &\oplus t \mathcal{U} \oplus \frac{t^2}{\delta^2} \mathcal{E}_{\Psi} \right) & \text{intersection of} \\ &\oplus \text{solution of pw linear function} \end{split}$$

#### Efficiently computable with support functions

 $\rho_{\Omega_t}(d) = (1 - \frac{t}{\delta})\rho_{\mathcal{X}_0}(d) \oplus \frac{t}{\delta}\rho_{\mathcal{X}_0}(e^{\delta A^T}d)$ 

$$\oplus \sum_{i=1}^{n} \min(\frac{t}{\delta}e_i^+, (1-\frac{t}{\delta})e_i^-)|d_i|$$

 solution for intersection of axis aligned boxes

$$\oplus t
ho_{\mathcal{U}}(d)\oplus rac{t^2}{\delta^2} 
ho_{\mathcal{E}_{\Psi}}(d)$$

- quadratic term

 maximize piecewise quadratic scalar function for each template direction

• Error bounds for each template direction d

$$arepsilon_{\Psi_{\delta}(\mathcal{U})}(d) \leq 
ho_{\mathcal{E}_{\Psi}}(d) + 
ho_{-A\Phi_{2}\mathcal{U}}(d) \ arepsilon_{\Omega_{[0,\delta]}(\mathcal{X}_{0},\mathcal{U})}(\ell) \leq \max_{\lambda \in [0,1]} igg\{ 
ho_{\left(\lambda \mathcal{E}_{\Omega}^{+} \cap (1-\lambda) \mathcal{E}_{\Omega}^{-}
ight)}(d) \ + \lambda^{2} 
ho_{\mathcal{E}_{\Psi}(\mathcal{U},\delta)}(d) + \lambda 
ho_{-A\Phi_{2}\mathcal{U}}(d) igg\}.$$

- used to choose time steps

# **Extension to Variable Time Steps**



- different time scale for each direction
  - new approximation model can interpolate
- cost: recompute matrix  $e^{A\delta}$ 
  - cache matrix

### **Intersection with Invariant**

|                  | Polyhedra   |          |           |            |
|------------------|-------------|----------|-----------|------------|
| Operators        | Constraints | Vertices | Zonotopes | Support F. |
| Convex hull      |             | +        |           | ++         |
| Affine transform | +/-         | ++       | ++        | ++         |
| Minkowski sum    |             |          | ++        | ++         |
| Intersection     | ++          |          |           | -          |

# **Computing Time Elapse**



# **Outline**

- Hybrid Systems Reachability
  - Modeling Hybrid Systems

#### • SpaceEx Approximation Algorithm

- Time Elapse Computation with Support Functions
- Transition Successors Mixing Support Functions and Polyhedra
- Fixpoint Algorithm: Clustering & Containment
- SpaceEx Verification Platform
  - Examples

# **Computing Transition Successors**

### • Intersection with guard

- use outer poly approximation
- Linear map & Minkowski sum
  - with polyhedra if invertible (map regular, input set a point)
  - otherwise use support functions

#### • Intersection with target invariant

- use outer poly approximation



# **Computing Transition Successors**



44

# **Fixpoint Computation**

### • Standard fixpoint algorithm

- Alternate time elapse and transition successor computation
- Stop if new states are **contained** in old states

### • **Problem: flowpipe = union of many sets**

- number of flowpipes may explode with exploration depth
- containment very difficult on unions

### • Solution:

- reduce number after jump through clustering
- use sufficient conditions for containment
- nested depth of support function calls is limited due to outer poly.

# Clustering

• After discrete jump, every convex set spawns a new flowpipe



- Reduce number to avoid explosion
- How many sets?
- Bound approximation error

# **Clustering – Template Hull**

#### • Template Hull

#### = Outer polyhedron for template directoins



# Clustering

• Even a low number of sets might be still too much



- 2 sets ⇒ possibly
   2<sup>k</sup> sets at iteration k
- cluster again using convex hull
  - $\Rightarrow$  1 set, good accuracy

# **Transition Successors with Clustering**



### **Sufficient Conditions for Containment**

#### • "Cheap" containment

- pairwise comparison
- comparison only with initial set of flowpipe
- Clustering helps
  - delays containment one iteration if clustering to a single set



# **Summary: Fixpoint Computation**



# Outline

#### • Hybrid Systems Reachability

Modeling Hybrid Systems

### • SpaceEx Approximation Algorithm

- Time Elapse Computation with Support Functions
- Transition Successors Mixing Support Functions and Polyhedra
- Fixpoint Algorithm: Clustering & Containment

### • SpaceEx Verification Platform

- Examples

### **SpaceEx Web Interface**



### **SpaceEx Model Editor**



#### • Switched oscillator

- 2 state variables
- similar to many circuits (Buck converters,...)

#### • plus *m*<sup>th</sup> order filter

- dampens output signal

#### • Piecewise affine dynamics

- 4 discrete states
- total 2 + m continuous state variables



#### • Connecting Filter Components



#### • Low number of direction sufficent

- here: 6 state variables



# Template Hull and Convex Hull Clustering

• first jump has 57 sets  $\Rightarrow$  impossible w/o clustering



#### • Scalable:

- fixpoint reached in  $O(nm^2)$  time
- box constraints:  $O(n^3)$
- octagonal constraints:  $O(n^5)$
- Clustering necessary
  - 57 sets take first jump
  - combination of template and convex hull: compromise in speed and accuracy



### **Example 2: Controlled Helicopter**

#### • 28<sup>th</sup> order linear model

- 8<sup>th</sup> order model of an (actual) helicopter
- 20<sup>th</sup> order disturbance rejection controller

### • Performance:

- old approx.: 200s
- new approx.:
- variable time step: 14s (without interpolation)
- Guaranteed error
  - < 0.025



### **Example 2: Controlled Helicopter**

# • Comparison of two controllers for nondeterministic inputs



# Conclusions

### • Classic problems mitigated to "softer" problems

- no more explosion with number of variables
- complexity increases with
  - accuracy needed (less explosive)
  - nb. of constraints (for Hausdorff error: exponential)

#### • Important algorithmic improvements

- switching set representations for best efficiency
- variable time step with error bounds
- interpolation  $\Rightarrow$  different time scale for each direction
- clustering

# **Bibliography**

### • Affine Dynamics

- E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems. HSCC'00
- A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. HSCC'06

#### • Support Functions

- C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using support functions. CAV'09
- G. Frehse, R. Ray. Design Principles for an Extendable Verification Tool for Hybrid Systems. ADHS'09