
1

Towards Efficient
Set Representations

in SpaceEx

Goran Frehse, Alexandre Donzé, Scott Cotton, Rajarsh i Ray, Olivier Lebeltel,
Manish Goyal, Rodolfo Ripado, Thao Dang, Oded Maler

Université Grenoble 1 Joseph Fourier / CNRS – Verimag, France

Colas Le Guernic
New York University CIMS

Antoine Girard
Laboratoire Jean Kuntzmann, France

NSV Workshop, Snowbird, UT, July 14, 2011

2

Outline

Hybrid Systems Reachability
– Modeling Hybrid Systems

SpaceEx Approximation Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment

SpaceEx Verification Platform
– Examples

3

Modeling Hybrid Systems

Example: Bouncing Ball
– ball with mass m and position x in free fall

– bounces when it hits the ground at x = 0

– initially at position x and at rest

x

0

Fg

4

Condition for Free Fall
– ball above ground:

First Principles (physical laws)

Part I – Free Fall

• gravitational force :
Fg = −mg

g = 9.81m/s2

• Newton's law of motion :
mẍ = Fg

x ≥ 0 x

0

Fg

5

Obtaining 1 st Order ODE System

Part I – Free Fall

Fg = −mg
mẍ = Fg

• ordinary differential equation ẋ = f(x)

• transform to 1st order by introducing variables
for higher derivatives

• here: v = ẋ:
ẋ = v
v̇ = −g

x

0

Fg

6

Part II – Bouncing

Conditions for “Bouncing”

Action for “Bouncing”

• ball at ground position: x = 0

• downward motion: v < 0

• velocity changes direction

• loss of velocity (deformation, friction)

• v := −cv, 0 ≤ c ≤ 1

7

Combining Part I and II

Free Fall

Bouncing

• while x ≥ 0,
ẋ = v
v̇ = −g

• if x = 0 and v < 0
v := −cv

continuous dynamics

discrete dynamics

ẋ = f(x)

x ∈ G
x := R(x)

8

Hybrid Automaton Model

x ≥ 0 bounce

x = 0 ∧ v < 0
v := −cv

freefall

ẋ = v
v̇ = −g

x = x0
v = 0

flow

location

invariant

discrete transition

guard

label

reset

initial conditions

9

Hybrid Automata - Semantics

Run
– sequence of time elapse and discrete transitions

Execution
– run that starts in the initial states

x(t)

x(t)

x(t)

10

Execution of Bouncing Ball

time t

position x

x(t)
x(t)

x(t)
x(t)

x(t)

δ δ δ δ δ

x

0

…

time t

velocity v

v(t)
v(t)

v(t)
v(t)

v(t)

δ δ δ δ δ

v

0

…

11

Execution of Bouncing Ball

State-Space View (infinite time range)

position x

velocity v

discrete transition

x

0

x(t)

x(t)

x(t)

12

Compute successor states

0

R0

Computing Reachable States

R1=Postc(R0)

R2=Postd(R1)

R3=Postc(R2)

13

Computing Reachable States

Fixpoint computation

Problems
– in general termination not guaranteed

– time-elapse very hard to compute with sets

• Initialization: R0 = Ini

• Recurrence: Rk+1 = Rk ∪ Postd(Rk) ∪ Post c(Rk)

• Termination: Rk+1 = Rk ⇒ Reach = Rk.

14

Outline

Hybrid Systems Reachability
– Modeling Hybrid Systems

SpaceEx Approximation Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment

SpaceEx Verification Platform
– Examples

15

Time Elapse with Affine Dynamics

Affine Flow
– nondeterministic affine differential equation:

Solve with superposition principle
– disregard inputs: “autonomous dynamics”

– add inputs afterwards

16

Linear Dynamics

“Autonomous” part of the dynamics:

Known solutions:
– analytic solution in continuous time

– explicit solution at discrete points in time
(up to arbitrary accuracy)

Approach for Reachability:
– Compute reachable states over finite time: Reach[0,T](XIni)

– Use time-discretization, but with care!

ẋ = Ax, x ∈ Rn

17

Time-Discretization for an Initial Point

Analytic solution:

Explicit solution in discretized time (recursive):
x0 = xIni
xk+1 = eAδxk

x(t) = eAtxIni

2δ 3δδ0

x0
x1

x2

x3

t

x(t)

multiplication with const. matrix eAδ

= linear transform

x(δ(k + 1)) = eAδx(δk)

• with t = δk :

18

Time-Discretization for an Initial Set

Explicit solution in
discretized time

Acceptable solution for purely continuous systems
– x(t) is in ǫ(δ)-neighborhood of some Xk

Unacceptable for hybrid systems
– discrete transitions might “fire” between sampling times

– if transitions are “missed,” x(t) not in ǫ(δ)-neighborhood

2δ 3δδ0

X0

X1

X2

X3

t

X0 = XIni

Xk+1 = eAδXk

Reach[0,3δ](XIni)

19

One can miss jumps
– intersection with guard set

Time Discretization for Hybrid Systems

guard

flowpipe sets in
discretized time

X1
X2

jump not visible
in discretization

20

Bouncing Ball

– In other examples this error might not be as obvious…

X90= ∅

21

Goal:
– Compute sequence Ωk over bounded time [0,Nδ] such that:

Approach:
– Refine Ωk by recurrence:

– Condition for Ω:

Reachability by Time-Discretization

Reach[0,Nδ](XIni) ⊆ Ω0 ∪ Ω1 ∪ . . . ∪ ΩN

2δ 3δδ0 t

Reach[0,3δ](XIni)

Ω0

Ω1

Ω2

Ωk+1 = eAδΩk

Reach[0,δ](XIni) ⊆ Ω0

22

Nondeterministic Affine Dynamics

Let’s include the effect of inputs:

– variables x,…,xn, inputs u,…,up

Input u models nondeterminism
– disturbances etc.

– can be used for overapproximating nonlinear dynamics
(U = bounds of approximation error)

23

Nondeterministic Affine Dynamics

Superposition Principle

2δ 3δδ0 t

Reach[0,3δ](XIni)

influence of inputs

autonomous
dynamics

influence of
inputs

24

Set overapproximation of input influence
– How far can the input “push” the system in δ time?

– from Taylor series expansion

Operators:
– Minkowski Sum:

– Symmetric Bounding Box:

– Linear Transform

Nondeterministic Affine Dynamics

A⊕B = {a+ b | a ∈ A, b ∈ B}

(error bound)

(matrix)

(input influence set)

25

Nondeterministic Affine Dynamics

Recurrence equation with influence of inputs

Still needed:
– approximation of the

initial time step with Ω0

– called “approximation model”

2δ 3δδ0 t

Ω0

Ω1

Ω2

26

Approximating Initial Time Step
– Previous Work

convex hull constraints
+ bloat with ∼∼∼∼ e||A||δ

Asarin, Dang et al., HSCC 2000

error large and uniform

exponential cost

bloat last set with ∼∼∼∼ e||A||δ

+ convex hull
Le Guernic, Girard, CAV 2009

error large and uniform

27

intersect forward and
backward approximations

if no inputs:
exact at tttt=0=0=0=0 and tttt====δδδδ

Approximating Initial Time Step

approximate set separately
for each tttt

error small and non-uniform
bloat with ∼∼∼∼ eabs(A)δAX0

Ωt

28

New Approximation Model

for each tttt: overapproximate Reach[[[[tttt,,,,tttt]]]] with ΩΩΩΩtttt

linear interpolation between X0 and Xδ = eAδ X0

error bound from Taylor approximation
around t = 0 and around t = δ

Taylor approximation of inputs with error bound

29

New Approximation Model

overapproximate Reach[[[[0000,,,, δδδδ]]]] with convex hull
of time instant approximations

error terms: symmetric bounding boxes

30

New Approximation Model

overapproximate Reach[[[[0000,,,, δδδδ]]]] with convex hull
of time instant approximations

smaller overall error with math tricks
– Taylor approx. of interpolation error

– bound remainder with absolute value sum instead of matrix norm

31

New Approximation Model

What Set Representation to Use?

++--+--Convex hull

Polyhedra

Operators Constraints Vertices Zonotopes Support F.

Linear transform +/- ++ ++ ++

Minkowski sum -- -- ++ ++

32

Support Functions

0

d

max. signed distance of P to
origin projected in direction d

P

33

Support Functions

0

If we know the value of ρP (d),
we know P is in the halfspace

d

P

34

d1

Support Functions

0

If we know ρP (d1), ρP (d2),… we
know P is inside the intersection of
the halfspaces
= outer polyhedral approx.

d2

d3

d2

P

35

Computing with Support Functions

Needed operations are simple

– Linear Transform:

– Minkowski sum:

– Convex hull:

Implement as function objects
– can add more directions at any time

C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using
support functions. CAV’09

36

New Approximation Model

Efficiently computable with support functions

chull of union ⇒ max

intersection of
axis aligned boxes
⇒ solution of pw linear function

37

Efficiently computable with support functions

– maximize piecewise quadratic scalar function
for each template direction

New Approximation Model

quadratic term

solution for intersection of
axis aligned boxes

38

New Approximation Model

Error bounds for each template direction dddd

– used to choose time steps

39

Extension to Variable Time Steps

adapt to error

different time scale for each direction
– new approximation model can interpolate

cost: recompute matrix eAδ

– cache matrix

X0

x

t2 t3t10 t

Ω0

Ω1

Ω2

40

Intersection with Invariant

++--+--Convex hull

Polyhedra

Operators Constraints Vertices Zonotopes Support F.

Affine transform +/- ++ ++ ++

Minkowski sum -- -- ++ ++

Intersection ++ -- -- -

41

Computing Time Elapse

Linear Map

Minkowski Sum Invariant Intersection

Convex Hull

Support Functions Polyhedra

overapprox.

Initial Set Initial Set

42

Outline

Hybrid Systems Reachability
– Modeling Hybrid Systems

SpaceEx Approximation Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment

SpaceEx Verification Platform
– Examples

43

Computing Transition Successors

Intersection with guard
– use outer poly approximation

Linear map &
Minkowski sum
– with polyhedra if invertible

(map regular, input set a point)

– otherwise use support functions

Intersection with target invariant
– use outer poly approximation

x ≥ 0

bounce

x = 0 ∧ v < 0
v := −cv

freefall

ẋ = v
v̇ = −g

x = x0
v = 0

guard

reset

44

Computing Transition Successors

Linear Map

Minkowski Sum

Invariant Intersection

Guard Intersection

Support Functions Polyhedra

overapprox.

Linear Map

Minkowski Sum

map
reversible

irreversible
exact (LP)

45

Fixpoint Computation

Standard fixpoint algorithm
– Alternate time elapse and transition successor computation

– Stop if new states are contained in old states

Problem: flowpipe = union of many sets
– number of flowpipes may explode with exploration depth

– containment very difficult on unions

Solution:
– reduce number after jump through clustering

– use sufficient conditions for containment

– nested depth of support function calls is limited due to outer poly.

46

Clustering

After discrete jump, every convex set spawns a new
flowpipe

Reduce number
to avoid explosion

How many sets?

Bound approximation
error

guard

47

Clustering – Template Hull

Template Hull
= Outer polyhedron for template directoins

guard

template hull up to
given error bound

⇒⇒⇒⇒ low number of sets

small error

48

Clustering

Even a low number of sets might be still too much

guard

2 sets ⇒⇒⇒⇒ possibly
2k sets at iteration k

cluster again using
convex hull

⇒⇒⇒⇒ 1 set, good accuracy

49

Transition Successors with Clustering

Support Functions Polyhedra

Invariant Intersectionoverapprox.

Linear Map

Minkowski Sum

Guard Intersection

Linear Map

Minkowski Sum

map
reversible

irreversibleexact (LP)

Convex Hull

Template Hull

after intersection because
contained in convex invariant

50

Sufficient Conditions for Containment

“Cheap” containment

– pairwise comparison

– comparison only with initial set
of flowpipe

Clustering helps

– delays containment one
iteration if clustering to a
single set

51

Summary: Fixpoint Computation

Support Functions Polyhedra

Time Elapse

Initial Set

Clustering

Transition Successors

Containment Check

52

Outline

Hybrid Systems Reachability
– Modeling Hybrid Systems

SpaceEx Approximation Algorithm
– Time Elapse Computation with Support Functions

– Transition Successors Mixing Support Functions and Polyhedra

– Fixpoint Algorithm: Clustering & Containment

SpaceEx Verification Platform
– Examples

53

SpaceEx Web Interface

54

SpaceEx Model Editor

55

Example 1: Switched Oscillator

Switched oscillator
– 2 state variables

– similar to many circuits
(Buck converters,…)

plus mth order filter
– dampens output signal

Piecewise affine dynamics
– 4 discrete states

– total 2 + m continuous state variables

56

Example 1: Switched Oscillator

Connecting Filter Components

57

Example 1: Switched Oscillator

Low number of direction sufficent
– here: 6 state variables

12 box constraints
(axis directions)

72 octagonal constraints
(± xi ± xj)

58

first jump has 57 sets ⇒⇒⇒⇒ impossible w/o clustering

Template Hull and Convex Hull
Clustering

11.5 sec 3.6 sec

3.4 sec 8.2 sec

59

Example 1: Switched Oscillator

Scalable:
– fixpoint reached in O(nm2) time

– box constraints: O(n3)

– octagonal constraints: O(n5)

Clustering necessary
– 57 sets take first jump

– combination of template and convex hull:
compromise in speed and accuracy

�� �� � �� �� �� � �� �� � � �� �� � � � �� �
� � � � � � � � � �

number of variables n

ru
nt

im
e

[s
]

60

Example 2: Controlled Helicopter

28th order linear model
– 8th order model of an (actual) helicopter

– 20th order disturbance rejection controller

Performance:
– old approx.: 200s

– new approx.: 24s

– variable time step: 14s
(without interpolation)

Guaranteed error
– < 0.025

61

Example 2: Controlled Helicopter

Comparison of two controllers
for nondeterministic inputs

62

Conclusions

Classic problems mitigated to “softer” problems
– no more explosion with number of variables

– complexity increases with

• accuracy needed (less explosive)

• nb. of constraints (for Hausdorff error: exponential)

Important algorithmic improvements
– switching set representations for best efficiency

– variable time step with error bounds

– interpolation ⇒⇒⇒⇒ different time scale for each direction

– clustering

63

Bibliography

Affine Dynamics

– E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability

Analysis of Piecewise-Linear Dynamical Systems. HSCC’00

– A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets

of linear time-invariant systems with inputs. HSCC’06

Support Functions

– C. Le Guernic, A.Girard. Reachability analysis of hybrid systems using support

functions. CAV’09

– G. Frehse, R. Ray. Design Principles for an Extendable Verification Tool for

Hybrid Systems. ADHS’09

